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Abstract

Predictive simulation is a powerful approach for analyzing human locomotion. Unlike tech-
niques that track experimental data, predictive simulations synthesize gaits by minimizing a
high-level objective such as metabolic energy expenditure while satisfying task require-
ments like achieving a target velocity. The fidelity of predictive gait simulations has only
been systematically evaluated for locomotion data on flat ground. In this study, we construct
a predictive simulation framework based on energy minimization and use it to generate nor-
mal walking, along with walking with a range of carried loads and up a range of inclines. The
simulation is muscle-driven and includes controllers based on muscle force and stretch re-
flexes and contact state of the legs. We demonstrate how human-like locomotor strategies
emerge from adapting the model to a range of environmental changes. Our simulation dy-
namics not only show good agreement with experimental data for normal walking on flat
ground (92% of joint angle trajectories and 78% of joint torque trajectories lie within 1 stan-
dard deviation of experimental data), but also reproduce many of the salient changes in
joint angles, joint moments, muscle coordination, and metabolic energy expenditure ob-
served in experimental studies of loaded and inclined walking.

Introduction

Creating models of human locomotion that synthesize gait patterns in the absence of experi-
mental data—often called predictive simulation—is a fundamental problem in biomechanics.
Predictive simulation uses high-level specifications, such as achieving a target velocity and
minimizing metabolic cost, to synthesize full-body dynamics, typically by applying optimiza-
tion under physical and physiological constraints [1-3]. The ability to synthesize human-like
motion from minimal experimental inputs has a wide range of potential uses, including analyz-
ing gait pathologies, designing assistive devices, and planning musculoskeletal surgeries. To
employ predictive gait simulations in these applications, methods must accurately predict
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changes in parameters of interest, such as joint angles and torques, muscle activations, and
metabolic energy expenditures for a range of locomotor activities.

Musculoskeletal simulations are usually developed to track experimental measurements and
then used to estimate quantities that are difficult or impossible to measure experimentally [4-
8]. For example, simulation-based estimates of muscle forces have revealed which muscles are
responsible for body weight support and forward progression during level walking and running
[9-11]. Tracking-based simulation approaches have also revealed how muscles forces affect in-
ternal joint loads [12]. Although simulation methods that rely on tracking a priori experimen-
tal data have offered valuable insights into human movement, these methods cannot be used to
predict new motions for novel tasks or environmental conditions where existing data is not
available. Predictive simulations are capable of predicting new movements, as they do not ex-
plicitly track motion data, and can also reveal muscle forces and other hard-to-measure quanti-
ties for these novel motions.

The most widely-employed framework for predictive simulation synthesizes motion by op-
timizing kinematic, joint torque, or muscle excitation trajectories that minimize some measure
of effort while satisfying high-level task requirements [13-21]. This paradigm, also called opti-
mal control, is valuable in the study of human locomotion because new motions can be synthe-
sized as the surrounding environment is changed. Anderson and Pandy [17] synthesized a
three-dimensional muscle-driven cycle of gait that reproduced the features of human walking
by computing the pattern of activation for 54 muscles that minimized metabolic energy. How-
ever, the optimization was prohibitively expensive due to the high dimensionality of the muscle
excitation trajectories and the necessity to accurately integrate the equations of motion. Acker-
mann and van den Bogert showed that direct collocation methods [22], which avoid integra-
tion altogether, can be used to study human walking [19] and low-gravity skipping [23] and
are much more computationally efficient. Miller et al. employed predictive optimization to in-
vestigate limits of sprinting speed [20], as well as gain insights into the chosen objective terms
[24] and muscle energy model [25]. Alternatively, Neptune et al. [7] synthesized optimal walk-
ing in a lower dimensional space constructed from muscle synergies, which were computed
from experimental normal walking data. Each of the above studies synthesized motion by dis-
cretizing each muscle excitation trajectory into individual nodes over time and optimizing for
the value of these nodes. The resulting trajectories do not change based on feedback from the
musculoskeletal model or the environment, and would fail to take a new step even under
minor differences in external forces. Through a combination of CPG (central pattern genera-
tor) inspired control architecture and environmental feedbacks, Taga et al. [15, 16] and Ogi-
hara and Yamazaki [18] demonstrated that more robust controllers can be constructed. More
recently, Geyer and Herr [26] proposed a set of simple muscle control laws based on specific
force and length reflexes that were able to generate the complex neural excitation signals for
human locomotion. The control parameters constitute a low-dimensional representation of
muscle excitations and can be optimized to generate a variety of gaits under different environ-
ments, as demonstrated by Wang et al. [27].

There is a long history of work on predicting biological motion using optimization [1, 28,
29] including gait [13, 30]. While significant progress has been made over the years—including
simulating gaits in perturbed environments [16, 23, 25, 26, 31]—systematic evaluations against
experimental data have been largely limited to normal, level walking. Comparisons to indepen-
dent ground truth data beyond a single nominal motion are crucial for properly evaluating the
reliability and flexibility of predictive simulation methods.

The goal of our study was to demonstrate that a single predictive simulation model can be
used to simulate human walking movements that are comparable to ground truth data in a va-
riety of environments—specifically, while carrying different loads on the back and over

PLOS ONE | DOI:10.1371/journal.pone.0121407  April 1,2015 2/16



@' PLOS ‘ ONE

Predictive Simulation of Loaded and Inclined Walking

different inclines. Our first aim was to synthesize a dynamic simulation of normal human
walking that reproduced the kinematics, kinetics, and muscle coordination observed in gait ex-
periments, building on the approach of Wang et al. [27] and Geyer and Herr [26]. Our second
aim was to introduce a range of backpack loads, ground inclines, and generate simulations that
predict the salient gait adaptations reported in experimental studies [32-35].

Methods

We developed a planar, muscle-driven dynamics model to simulate gait (Fig. 1). The model
was controlled by a set of reflex-based control laws that generate muscle excitation signals de-
pending on the current foot-ground contact conditions, muscle states, and joint kinematics.
We optimized the parameters of these control laws to simulate human-like walking on flat
ground, as well as up inclines and with load. We first evaluated our simulation of normal walk-
ing by determining the percentage of joint angle and joint torque trajectories that were within

1 standard deviation of experimental data. In addition, we compared the timings of individual
muscle force generation to EMG onset/offset timings. To determine if our simulations captured
the salient adaptations to load and incline, we qualitatively compared predicted and experi-
mental changes in kinematics, kinetics, muscle coordination, and energetics.

Musculoskeletal Model

We adapted a two-dimensional (2D) musculoskeletal model described by Geyer and Herr [26].
The model had 9 degrees-of-freedom in the sagittal plane and 7 body segments (80 kg mass;
1.88 m height). A lumped trunk, head, and arms segment was connected to thigh segments for
each limb by pin joints to represent the hip. The lower limbs consisted of thigh, shank, and foot
segments, connected by knee and ankle joints, modeled as pin joints. The model was actuated
by 8 Hill-type musculotendon units (MTUs) on each lower limb (ILPSO: iliopsoas; GMAX: glu-
teus maximus; HAMS: biarticular hamstrings; RF: rectus femoris; VAS: vasti; GAS: gastrocne-
mius; SOL: soleus; TA: tibialis anterior) (Fig. 1). The segment inertial parameters and joint
limits were taken from Geyer and Herr [26], MTU model and parameters (i.e., moment arm
curves, activation time constants, maximum isometric strength, optimal fiber length, and maxi-
mum shortening velocity) were based on the MTU model and values from Geyer et al. [36].

Unlike the model in Geyer and Herr [26], we include the RF muscle, raise the ankle position
relative to the feet to better approximate human anatomy, and employ a different contact
model. Contact with the ground plane was modeled using two spheres of radius 1 cm located at
the heel and ball of the foot (Fig. 1). The normal contact force was generated using a compliant
Hunt-Crossley model [37] when ground penetration (/) exceeded zero:

GRF, = kh1'5<1+ 1.5ch),

where k models the stiffness of the contact and ¢ is a dissipation coefficient.
The friction force was given by

GRF, = u(x)GRF,,

where x is the tangential velocity between the contact point and the ground and y is the coeffi-
cient of friction as a function of slip velocity (x) and the contact material. The material is fully
defined by the static, dynamic, viscous coefficients of friction (u,, 4, #,) and a transition speed
(v,). We refer readers to Sherman et al. [38] for details.

The specific contact parameters we used were k = 9.4281 e5(Nm™),c = 2(m/s)™, and v, = 0.1
(m/s)us = pa= 0.8y, = 0.5. We tuned the contact parameters empirically for simulation speed
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Fig 1. The model and optimization framework for simulating locomotion. The OpenSim musculoskeletal model has 9 degrees of freedom and 8
musculotendon actuators per leg. The dynamics of each musculotendon actuator are governed by force-length-velocity properties and first order excitation-
activation dynamics. Ground contact is represented by two compliant spheres on each foot with Coulomb friction. The model’s controllers include stretch and
force feedback, as well as proportional-derivative control. The parameters of these controllers and 18 initial position and velocities of the model constitute
design variables that we optimized to generate simulations of locomotion.

doi:10.1371/journal.pone.0121407.g001

while avoiding unrealistically “bouncy” surfaces. For example, we found that if the dissipation
coefficient was too high, it caused the integrator to take small timesteps and thus slow simula-
tions. The dynamics were enforced through forward simulation using Simbody/OpenSim [5,
38]. The same contact parameters were used for all simulations.

MTU Feedback Controllers

Our control formulation was based on a combination of lower-level MTU feedback laws moti-
vated by spinal reflexes and higher-level gait modes that depended on the phase of locomotion
[26, 27]. In particular, excitation signals to the MTUs were determined by a combination of
feedback control laws (Fig. 1), grouped into three categories: force feedback (uh), stretch feed-
back (#1), and PD control (u%). A simple first order activation dynamics model [26] was then
used to generate activation inputs for MTU force generation. The specific laws for each MTU
changed depending on the gait modes. We provide a high-level overview here and refer readers
to Wang et al. [27] for details. Force feedback controllers excited each muscle in proportion to
its normalized force (Fy;7y), delayed by D seconds:

" = G.F,.(t—D).

Stretch feedback controllers excited each muscle in proportion to the muscle’s normalized fiber
length (Icg) beyond a threshold H, delayed by D seconds:

ut = G|l (t — D) — HJ

4+

The notation [x], for the PD and stretch feedback controller indicates that the signal is zero
for,x<0 and set to x otherwise. PD controllers were used to coordinate multiple MTUs to
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control angular features (6). For example, the hip muscles and hamstrings work together to
control the trunk orientation with respect to the ground during stance. PD controllers were
also used for the hip and knee angles during the stance preparation gait mode (see below). PD
controllers were defined as:

u = [K,(0(t = D) = 0,.0) + K,0(t = D)
The muscle gain parameters GpGLKy,Ky, the threshold parameter H, and the desired feature
target 6 .ireq, Were free variables used by the optimizer to tune the controllers. Following Geyer
and Herr [26], sensory feedback signal propagation delays were fixed at D = 5 ms for the
ILPSO, GMAX, HAMS and RF; 10 ms for the VAS; and 20 ms for the GAS, SOL, and TA.

Each muscle had its own set of parameters for the MTU feedback laws and the laws for each
muscle could change as the limb progressed through 3 gait-modes. Stance and swing modes
were triggered by the foot making and breaking contact with the ground, respectively. We fur-
ther divided the swing mode into “early swing” and “late swing”, which gave our model the
flexibility to determine the landing configuration of the swing leg. Inclusion of the late swing
mode was necessary for generating human-like inclined walking motions, since the early swing
phase assumes the swing leg to be largely passive. The transition from early to late swing was
triggered when the sagittal-plane distance between the limb ankle joint center and the model
mass center was greater than a constant threshold dswne, an additional parameter determined
during the optimization. The control laws for each limb were symmetric (e.g., the right and left
GMAX each had the same stance-phase PD controller).

Objective Function

The objective of the optimization was given by:

R = Wfail]fail + erl]vel + Whead]heud + weﬁort]q[fort'
Specifically,
1
S = 7 (10— Ta)
fail Tfull Sfall

where T,y is the first time in the simulation where the vertical COM drops below 0.7 m. Note
that T,y = 10 and Jp,; = 0 if the model did not fall for the entire duration of the simulation. In
practice, this term serves to terminate the simulation when the model has fallen down, which
can significantly shorten the computing time during early iterations of the optimization. The
next term is

1

]vel = ﬁ

Z Q(forward_vel, — 1.5, 0.05),

teC

where Q(de) = &2 if |d|>¢, 0 otherwise. C was the set of times when heel-strike occurred during
the simulation, and forward_vel, was the average forward velocity of the COM during the pre-
vious step computed at time . This term captured the basic requirements of upright, forward
progressing locomotion targeted at 1.5 m/s. Note that € = 0.05 m/s was an error threshold,
such that we considered all solutions between 1.45 m/s and 1.55 m/s to have been sufficiently
close to the target and were not penalized by J,.;.
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Additionally, the objective included

1
Jhead = EZQ(kead_velt, 0.2),

tes

where S was the set of timesteps sampled at 100 Hz (i.e., 0's,0.01 s, 0.02 s, etc.), and head_vel,
was the relative forward velocity between the head (top of the trunk segment) and the COM at
time . Jpeqq Was motivated by the observed desire of humans to stabilize the visual and vestibu-
lar systems during locomotion [39]. Lastly, the objective included the term

1
Jiow = —————————= » Metabolics, + 0.005HPE,,
ot (Mbody + Mbm:k)ls| Z ' '

tes

where My,,4, and My, were the mass of the body (80 kg) and backpack load, respectively.
Metabolics, was the total muscle metabolic power (J/s) at time ¢, HPE, was the hyperextension
penalty, defined as the total squared joint limit torque at time . Readers are referred to Ander-
son and Pandy [17] and Wang et al. [27] for the precise definitions of Metabolics; and HPE,.

We empirically set wg,i; = 500000, Wye; = 50, Wheaq = 25, and Wegor: = 1. The value of wy,; was
large to reject any solutions where the model fell. The term, w,,; was set so that stable gaits
achieving the target velocity could be quickly discovered. The head stability and effort terms
were not as heavily weighted and were tuned to generate a human-like walking style on flat
ground. Note that no further tuning was done for load and incline changes; the same weights
were used for all simulations in this study.

Predictive Simulation of Normal Walking

The movement predicted by our algorithm (i.e., the musculoskeletal simulation) was parame-
terized by a total of 74 design variables: 56 MTU controller parameters and the swing phase
threshold distance dgwing as defined above, along with 18 initial conditions for the joint angles
and joint velocities. Optimization was used to solve for these design variables using a Covari-
ance Matrix Adaptation (CMA) evolution strategy [40], which were initialized from previous
work [26, 27]. Note that the initialization did not achieve stable walking due to differences be-
tween our foot and contact model and prior work. Simulations of 10 seconds were executed in
parallel on a 48-node computing cluster (Amazon EC2). CMA is a gradient-free algorithm that
adapts a Gaussian distribution (mean and covariance matrix) towards low energy regions. The
covariance matrix is estimated by design variable candidate samples that can be evaluated in
parallel. A master node containing the CMA optimization algorithm was responsible for gener-
ating and distributing sets of samples to each of the 48 slave nodes and evaluating the cluster of
objective function values following an iteration of parallelized simulations. We took the mean
stride cycle across the 10-second simulation as model prediction, ignoring the first two strides
to allow the control excitation cycles to stabilize.

To evaluate our nominal predictive walking simulation, we obtained experimental un-
loaded, level walking data collected during a previous study [10]. These data came from a co-
hort of nine subjects (5 males, 4 females; age, 27.7 + 8.0 years; mass, 73.1 + 8.6 kg; height,

176 + 7 cm; leg length 93 + 5 cm) who walked at 1.5 m/s along a level platform while marker-
based kinematics, ground reaction forces, and electromyography (EMG) data were simulta-
neously collected. Using a variant of the standard OpenSim model [4, 41] described in Dorn
etal. [10], we performed inverse kinematics, inverse dynamics, and static optimization (with
an objective to minimize the sum of all squared muscle activations) on the experimental data
to obtain a time history of sagittal plane joint angles, joint torques, and muscle forces, respec-
tively during a full cycle of gait. The computation was performed in OpenSim [5], independent
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from the predictive simulations described above to ensure an unbiased comparison of key
walking variables from our predictive simulations. The reader is referred to Dorn et al. [10] for
a complete description of the experimental protocols and analysis procedures.

We then compared the experimental joint kinematics, ground reaction forces, inverse dy-
namics-derived joint moments, static optimization-derived MTU forces, and muscle onset/
offset timings (from EMG) to our simulation. We computed normalized kinematic, kinetic,
and ground reaction force trajectories over a gait cycle and determined the percentage of the
predicted curves that were within the equivalent experimental data. To assess muscle coordina-
tion, we compared the timing of muscle force generation in the simulation to corresponding
muscle activation timing from EMG. The EMG onset/offset timings were determined by apply-
ing a Teager-Kaiser energy filter [42] to the raw EMG data sampled at 1500 Hz. We manually
identified “oft” regions for each muscle to estimate the corresponding noise distributions. A
threshold of six standard deviations for onset detection was used as suggested by Li et al. [42].

Predictive Simulations of Loaded and Inclined Walking

We generated simulations for level-ground walking with loads of 10%, 20%, 30% and 40% of
body mass, denoted by M, (i.e., 8-32 kg), and incline walking without load of 5°, 10°, 15°,
and 20° (i.e., 8.7-36.4% grade). All achieved the same walking velocity of 1.45 m/s. The loads
were modeled as an additional mass attached to the model’s torso 0.1 m posterior to the torso
COM, with a moment of inertia of 0.15 My, (kgem?). Separate optimization problems were
solved for each of the loaded and incline scenarios, initializing each optimization to the solu-
tion of the previous optimization. For example, the optimized parameters from the level, un-
loaded walking simulation were used as the initial conditions to the optimization in which 10%
of bodyweight (BW) was added; the optimized parameters from the 10% BW simulation were
used as the initial conditions to the 20% BW optimization and so on. Optimizations for the in-
clined walking scenarios were performed in a similar fashion. We evaluated the predicted sim-
ulations by comparing against the experimental data captured by Silder et al. [34, 35] and Lay
etal. [32, 33]. In particular, we examined whether the changes in metabolic cost, and peak joint
angles, moments, muscle activity, and ground reaction forces in response to load or incline for
our predictive simulation qualitatively agreed with the changes observed in these

experimental studies.

Results

All optimization scenarios found stable solutions with walking speeds of 1.45 + 0.03 m/s. The
objective function value for normal walking decreased rapidly in the first 1000 iterations, after
which it decreased more slowly until iteration 2000, when we terminated the algorithm. The
optimization took approximately 12 hours. Objective values for the loaded and incline walking
cases stabilized more quickly as they were initialized from previous solutions. In these cases, we
terminated the optimization when the objective values stopped improving for approximately
300 consecutive iterations. Visualization of these results is provided in the supplemental

video (S1 File).

Simulations of Normal Walking

Simulated level-ground, unloaded walking joint angles and moments were generally in agree-
ment with human walking (Fig. 2). More specifically, 92% of the gait cycle of joint angles (hip
100%, knee 82%, ankle 95%) and 78% of the joint moments (hip 64%, knee 86%, ankle 83%)
were within 1 standard deviation of experimental data. One notable exception was a higher
ankle plantarflexion moment generated in the simulation. Ground reaction forces for normal
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Fig 2. Sagittal plane joint kinematics, moments, and ground reaction force for each loaded walking condition. Experimental data for normal
(unloaded) walking are represented by the shaded region (+1 SD). The dotted line represents equivalent simulation results for normal walking used to
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walking displayed the typical biphasic profile except in the first 20% of stance, where impact
spikes were present in the simulation, but not experimental data. A concomitant spike was ob-
served in the hip extension moment immediately after heel-strike (Fig. 2, middle), likely to
maintain trunk orientation in the presence of spikes in ground reaction forces.

Simulated muscle force trajectories were similar in magnitude and timing to previous static
optimization results, with the biggest differences present in the RF muscle in early stance,
ILPSO in late stance, and HAMS in late swing (Fig. 3). Where available, the EMG onset/offset
timings (Fig. 3, red bars) coincided with the generation of forces predicted by static optimiza-
tion and therefore the trajectories from our predictive simulations as well, with the exception
of HAMS. Note that when comparing force to EMG timings, we do expect there to be a small
electromechanical delay. Our simulated metabolic energy expenditure (including basal rate)
was 3.91 W/kg, which is approximately one standard deviation lower than the mean in both
data sets reported by Silder et al. [34, 35] (Fig. 4).

Simulations of Loaded Walking

Walking simulations across all loads predicted a constant stride length (1.45 m), which is con-
sistent with experimental data. The metabolic cost increased with load, as in experiments

(Fig. 4 left). The estimated values were smaller than in experiments, but still within one stan-
dard deviation of the experimental values reported by Silder et al. [35].

Asload increased, the changes in kinematics were small and the model’s walking posture
become slightly more crouched (Fig. 2 left), which is consistent with experiments [35]. Peak
knee extension, knee flexion, and ankle plantarflexion moments during stance increased with
load, which is also consistent with experiments. Increases were observed for the peak vertical
ground reaction force in the 2™ half of stance (Fig. 2 right). Contrary to the observation by
Silder et al. [35], our percent increase in peak ground reaction force in the 2" half of stance
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roughly corresponded to the added load (with a rate of 9.8% for every load increase of 10%
body weight).

Several muscles exerted greater peak forces in response to carrying increasing loads (Fig. 3),
including VAS, GAS, and SOL which were muscles observed to have increasing peak muscle
activities in EMG experiments [35]. We saw some increase in swing-phase HAMS forces for
the heaviest load, although the trend was not as clear as the increase in peak hamstring EMG
activities observed in experiments. We also saw increased GMAX and ILPSO forces with load.
Experimental EMG for walking with load wasn't collected for these muscles, but the increased
forces in these muscles are in agreement with the larger hip extension moment observed in
loaded walking experiments.
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Simulations of Inclined Walking

Our model exhibited two distinct strategies as platform incline increased (Fig. 5). At an incline
of 5° and 10°, the model adopted a strategy that was kinematically similar to normal walking,
with hip, knee, and ankle curves largely within 1 standard deviation of normal gait. In contrast,
inclines of 15° and 20° brought about a more crouched posture at ground contact as a conse-
quence of planting the foot on a slope. This crouched gait was characterized by peak stance-
phase hip flexion angles up to 33°, stance-phase knee flexion angles up to 42° and stance-phase
ankle dorsiflexion angles up to 19°. A crouched posture was observed by Silder et al. [34] at
lower inclines and Lay et al. [32] for larger inclines.

At higher inclines, our model predicted features not observed by Lay et al. [32] including
plantarflexion in the second half of swing, and reduced stride length combined with increased
stride frequency as inclines increased. Our predicted normalized metabolic cost increased at a
substantially lower rate than experimental data. Specifically, Silder et al. [34] reported a mean
increase (excluding basal rate) of 113% above level walking at 5.71° incline (Fig. 4 right). In
contrast, our simulations predicted an increase of 34% at 5° and 71% at 10° incline above level
walking. As in Silder et al. [34] and Lay et al. [32], the peak hip and knee extension and knee
flexion moments in stance generally increased with incline, though in our simulations, we did
not observe a clear increase in peak ankle plantarflexion moment and the 10° incline case
showed knee flexion moments throughout stance.

For the low platform inclines (5° and 10°), the general shape of muscle forces did not change
substantially from the level walking case. However, for the 10° incline, sustained force genera-
tion by HAMS along with corresponding knee flexion torques were seen throughout the stance
phase. This was different from level walking and the 5° incline case. For the higher inclines,
peak forces developed by HAMS, VAS, and GMAX increased (Fig. 6), which is consistent with
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changes in EMG activity from experiments [33, 34]. In our simulations, ILPSO, RF, and TA
did not show any clear changes with incline. The forces developed in the ankle plantarflexors,
SOL and GAS began to develop a double-peaked pattern for the higher inclines; SOL peaks
also increased.

Discussion

We generated predictive simulations of loaded and inclined human walking in a variety of sce-
narios to evaluate the capacity of our neuro-musculoskeletal model to synthesize motions
adapted to different environments. Our results were generated using a combination of reflex
control and effort minimization. We were able to reproduce the salient features of level, un-
loaded gait using a relatively simple musculoskeletal model. In particular, our kinematic, joint
moment, and ground contact force results were mostly within 1 standard deviation of experi-
mental data, and the onset/offset timing of muscle forces closely matched experimentally-
determined EMG recordings. Our model was also able to adapt to walking with a load of up to
40% bodyweight and inclines of up to 20°. While previous muscle-driven predictive simula-
tions of walking have been evaluated against experimental unloaded walking data on flat
ground [7, 17, 19, 25-27, 31], our predictive model is the first to compare synthesized kinemat-
ics, kinetics, muscle coordination, and metabolic adaptations to experiments with increasing
load and incline.

Normal Walking

Our result for walking on flat ground matched both kinematics and kinetics measured experi-
mentally, to a degree comparable with state-of-the-art in predictive gait simulation [19, 25-27,
31]. We also reproduced the general lower limb muscle force coordination pattern and vertical
ground reaction force profile from human walking.
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A notable difference between our simulations and experimental data was the sharper spike
in ground reaction force upon heel-strike, which is likely to produce large knee loads and cause
discomfort in human subjects. Incorporating additional terms such as joint loading in the ob-
jective function could encourage a strategy with a smoother initial heel-strike. Note the sharp
spike has been observed in prior predictive simulation of gaits [7, 19, 23, 25, 26] and could also
be an artifact of the simplified contact models typically employed in predictive simulation. Im-
proving the ground contact model to better match experimental force profiles is an important
area of future work.
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Loaded Walking

For loaded walking, as in experimental studies of human subjects, the general strategy for loco-
motion, including kinematics and muscle coordination did not change with increasing load
[35]. In particular, stride length and stride frequency were invariant, and in general, joint an-
gles stayed close to unloaded gait kinematics. Contrary to the data presented by Silder et al.
[35], we observed that an increase in added load as a percent of bodyweight leads to an almost
identical percent increase in peak ground reaction force during late stance. Adding a joint load-
ing term to the cost function, in addition to effort minimization, might reduce the ground reac-
tion forces in our simulations of loaded walking.

Asload increases, greater body support and extension moments are required. The knee ex-
tension and ankle plantarflexion moments increased with load, along with the muscle forces
from VAS, GAS, and SOL (Fig. 3). These changes in force generation agree with the increased
muscle activities observed experimentally [35] and prior studies showing that the vasti and
plantarflexors are the primary muscles that extend the joints and support the body during
walking [43]. We observed an increase in metabolic cost with load, as in experiments, with the
support muscles VAS, GAS, and SOL, accounting for the majority of this increase.

Inclined Walking

Our relatively simple musculoskeletal model and neural control framework was also able to
synthesize biologically feasible walking up to a 20° incline (see S1 File). Walking on a steep in-
cline required a crouched strategy with increased hip and knee flexion, along with greater
stance-phase dorsiflexion, as observed experimentally [32, 34].

There was also some divergence between model and experiment. The predicted motion for
the 10° incline exhibited insufficient knee flexion during stance despite increased knee flexion
moments and hamstring force outputs. Moreover, the model reduced stride length and in-
creased stride frequency, in contrast with experiments by Lay et al. [32]. One hypothesis to ex-
plain this discrepancy is that humans may have a preferred stride length and frequency on
inclines, even if it is not metabolically optimal. We also observed that for small changes in in-
cline (5° and 10°) our simulations used a kinematic, kinetic, and muscle force pattern closer to
level walking than in experiments. It should also be noted that our simulations required a target
velocity of 1.45 m/s, which is faster than speeds in experimental studies (0.8 to 1.2 m/s). Fur-
ther experimental study, at faster speeds, fixed stride lengths and frequencies would help re-
solve these questions. As discussed in the previous section, our prediction of metabolic cost
with increasing incline was also significantly lower than experimental data. Exploring alterna-
tive models of muscle metabolic energy expenditure [25] or even alternative objectives for loco-
motion [19] are interesting future directions.

Limitations and Opportunities for Future Work

Our normal walking predictions show differences from human ground truth data, which may
be due to limitations of the present study. First, while the reflex-based controller we employ is
biologically motivated, it is necessarily only a crude approximation of the actual control mech-
anism used in human locomotion. One potential direction for future work is to rigorously ana-
lyze the biological basis of the parameters used in our control algorithm. For example, we
would like to examine the control gains recovered in the optimization process as well as the
feedback signal transmission delays assumed by our model. The latter, for example, is some-
what short compared to experiments [44]. It would also be fruitful to explore non-reflex based
contributions to muscle activation, such as from central pattern generators [45].
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Second, we employed a simplified 2D sagittal plane musculoskeletal model for our analysis.
Although human walking is predominantly a sagittal plane motion, additional degrees of free-
dom in the coronal and transverse planes allow the pelvis to rotate around the stance leg con-
tributing to a longer stride [46] and permit the ankle to rotate providing additional ground
clearance for the foot during the swing phase [47]. Models with coronal and transverse plane
muscles would permit three-dimensional predictive simulations and provide the capability to
simulate pathological gaits that are characterized by significant out-of-plane motion [48, 49].
While 3D muscle-driven predictive models exist [17, 31], future studies could investigate if ex-
plicit reflex control laws can be developed for non-sagittal muscles and if they can improve the
quality of the predictions.

In addition, the non-convex nature of our optimization problem prevents us from asserting
that our predicted gait simulations are globally optimal. The results we presented correspond
to locally low-energy solutions, which could vary due to different initializations and the sto-
chastic nature of the CMA algorithm. Exploring the sensitivity of solutions to these factors is
an interesting direction for future work.

Conclusions

The predictive simulation approach presented in this paper was able to synthesize motions
with both visual and biomechanical fidelity for a range of loads and inclines. Improving the re-
liability of predictive simulation and validating predictions in more scenarios remain crucial
topics for research. Once the accuracy of predictive simulations are appropriately tested and
validated, the simulations provide a powerful framework for studying adaptations in kinemat-
ics, kinetics, and muscle coordination in a broad range of applications, from assistive device de-
sign to surgical planning.

Supporting Information

S1 File. Supplemental Video.
(MP4)

Acknowledgments

We thank Michael Sherman and Ajay Seth for their intuition and expertise with designing and
coding the musculoskeletal simulation architecture for this study, and Vladlen Koltun for early
conceptions and technical discussions. We also thank Anthony Schache and Marcus Pandy for
granting access to the experimental walking data used in this study.

Author Contributions

Conceived and designed the experiments: TWD JMW JLH SLD. Performed the experiments:
TWD JMW. Analyzed the data: TWD JMW JLH SLD. Wrote the paper: TWD JMW JLH SLD.

References

1. Hatze H. Computerized optimization of sports motions: An overview of possibilities, methods and re-
cent developments. J Sports Sci. 1983; 1(1):3—12.

2. Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL. Design of patient-specific gait modifi-
cations for knee osteoarthritis rehabilitation. IEEE Trans Biomed Eng. 2007; 54(9):1687-95. doi: 10.
1109/TBME.2007.907637 PMID: 17867361

3. Fey NP, Klute GK, Neptune RR. Optimization of prosthetic foot stiffness to reduce metabolic cost
and intact knee loading during below-knee amputee walking: a theoretical study. J Biomech Eng. 2012;
134(11):111005. doi: 10.1115/1.4007824 PMID: 23387787

PLOS ONE | DOI:10.1371/journal.pone.0121407  April 1,2015 14/16


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121407.s001
http://dx.doi.org/10.1109/TBME.2007.907637
http://dx.doi.org/10.1109/TBME.2007.907637
http://www.ncbi.nlm.nih.gov/pubmed/17867361
http://dx.doi.org/10.1115/1.4007824
http://www.ncbi.nlm.nih.gov/pubmed/23387787

@ PLOS | one

Predictive Simulation of Loaded and Inclined Walking

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of
human walking from experimental data. J Biomech. 2006; 39(6):1107—15. PMID: 16023125

Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software
to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007; 54
(11):1940-50. PMID: 18018689

Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG. Evaluation of predicted
knee-joint muscle forces during gait using an instrumented knee implant. J Orthop Res. 2009; 27-
(10):1326—31. doi: 10.1002/jor.20876 PMID: 19396858

Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: a simulation study. J Biomech.
2009; 42(9):1282—7. Epub 2009/04/28. doi: 10.1016/j.jbiomech.2009.03.009 PMID: 19394023

Steele KM, Demers MS, Schwartz MH, Delp SL. Compressive tibiofemoral force during crouch gait.
Gait Posture. 2012; 35(4):556—60. doi: 10.1016/j.gaitpost.2011.11.023 PMID: 22206783

Liu MQ, Anderson FC, Schwartz MH, Delp SL. Muscle contributions to support and progression over a
range of walking speeds. J Biomech. 2008; 41(15):3243-52. doi: 10.1016/j.jbiomech.2008.07.031
PMID: 18822415

Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running
speed on hip and ankle muscle performance. J Exp Biol. 2012; 215(Pt 11):1944-56. Epub 2012/05/11.
doi: 215/11/1944 [pii]. 10.1242/jeb.064527 PMID: 22573774

Hamner SR, Delp SL. Muscle contributions to fore-aft and vertical body mass center accelerations over
a range of running speeds. J Biomech. 2012. Epub 2012/12/19. doi: S0021-9290(12)00676-8 [pii]. 10.
1016/j.jpiomech.2012.11.024

DeMers MS, Pal S, Delp SL. Changes in tibiofemoral forces due to variations in muscle activity during
walking. J Orthop Res. 2014; 32(6):769—-76. doi: 10.1002/jor.22601 PMID: 24615885

Chow CK, Jacobson DH. Studies of human locomotion via optimal programming. Math Biosci. 1971;
10(3—4):239-306.

Yamaguchi GT, Zajac FE. Restoring unassisted natural gait to paraplegics via functional neuromuscu-
lar stimulation: a computer simulation study. IEEE Trans Biomed Eng. 1990; 37(9):886—-902. doi: 10.
1109/10.58599 PMID: 2227975

Taga G, Yamaguchi Y, Shimizu H. Self-organized control of bipedal locomotion by neural oscillators in
unpredictable environment. Biol Cybern. 1991; 65(3):147-59. PMID: 1912008

Taga G. A model of the neuro-musculo-skeletal system for human locomotion. Il Real-time adaptability
under various constraints. Biol Cybern. 1995; 73(2):113-21. PMID: 7662764

Anderson FC, Pandy MG. Dynamic optimization of human walking. J Biomech Eng. 2001; 123(5):381-90.
PMID: 11601721

Ogihara N, Yamazaki N. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-
skeletal model. Biol Cybern. 2001; 84(1):1—11. PMID: 11204394

Ackermann M, van den Bogert AJ. Optimality principles for model-based prediction of human gait.
J Biomech. 2010; 43(6):1055—60. Epub 2010/01/16. doi: S0021-9290(09)00721-0 [pii]. 10.1016/.
jbiomech.2009.12.012 PMID: 20074736

Miller RH, Umberger BR, Caldwell GE. Limitations to maximum sprinting speed imposed by muscle me-
chanical properties. J Biomech. 2012; 45(6):1092-7. doi: 10.1016/j.joiomech.2011.04.040 PMID: 22035638

van Werkhoven H, Piazza SJ. Computational model of maximal-height single-joint jumping predicts
bouncing as an optimal strategy. J Biomech. 2013; 46(6):1092—7. doi: 10.1016/j.jpiomech.2013.01.016
PMID: 23466176

Kaplan ML, Heegaard JH. Predictive algorithms for neuromuscular control of human locomotion. J Bio-
mech. 2001; 34(8):1077-83. PMID: 11448699

Ackermann M, van den Bogert AJ. Predictive simulation of gait at low gravity reveals skipping as the
preferred locomotion strategy. J Biomech. 2012. Epub 2012/03/01. doi: S0021-9290(12)00072-3 [pii].
10.1016/j.jpiomech.2012.01.029

Miller RH, Umberger BR, Hamill J, Caldwell GE. Evaluation of the minimum energy hypothesis and
other potential optimality criteria for human running. Proc Biol Sci. 2011.

Miller RH. A comparison of muscle energy models for simulating human walking in three dimensions.
J Biomech. 2014; 47(6):1373-81. doi: 10.1016/j.jpiomech.2014.01.049 PMID: 24581797

Geyer H, Herr H. A muscle-reflex model that encodes principles of legged mechanics produces human
walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng. 2010; 18(3):263-73.
Epub 2010/04/10. doi: 10.1109/TNSRE.2010.2047592 PMID: 20378480

Wang JM, Hamner SR, Delp SL, Koltun V. Optimizing locomotion controllers using biologically-based
actuators and objectives. ACM Trans Graph. 2012; 31(4).

PLOS ONE | DOI:10.1371/journal.pone.0121407  April 1,2015 15/16


http://www.ncbi.nlm.nih.gov/pubmed/16023125
http://www.ncbi.nlm.nih.gov/pubmed/18018689
http://dx.doi.org/10.1002/jor.20876
http://www.ncbi.nlm.nih.gov/pubmed/19396858
http://dx.doi.org/10.1016/j.jbiomech.2009.03.009
http://www.ncbi.nlm.nih.gov/pubmed/19394023
http://dx.doi.org/10.1016/j.gaitpost.2011.11.023
http://www.ncbi.nlm.nih.gov/pubmed/22206783
http://dx.doi.org/10.1016/j.jbiomech.2008.07.031
http://www.ncbi.nlm.nih.gov/pubmed/18822415
http://dx.doi.org/215/11/1944 [pii]. 10.1242/jeb.064527
http://www.ncbi.nlm.nih.gov/pubmed/22573774
http://dx.doi.org/S0021-9290(12)00676-8 [pii]. 10.1016/j.jbiomech.2012.11.024
http://dx.doi.org/S0021-9290(12)00676-8 [pii]. 10.1016/j.jbiomech.2012.11.024
http://dx.doi.org/10.1002/jor.22601
http://www.ncbi.nlm.nih.gov/pubmed/24615885
http://dx.doi.org/10.1109/10.58599
http://dx.doi.org/10.1109/10.58599
http://www.ncbi.nlm.nih.gov/pubmed/2227975
http://www.ncbi.nlm.nih.gov/pubmed/1912008
http://www.ncbi.nlm.nih.gov/pubmed/7662764
http://www.ncbi.nlm.nih.gov/pubmed/11601721
http://www.ncbi.nlm.nih.gov/pubmed/11204394
http://dx.doi.org/S0021-9290(09)00721-0 [pii]. 10.1016/j.jbiomech.2009.12.012
http://dx.doi.org/S0021-9290(09)00721-0 [pii]. 10.1016/j.jbiomech.2009.12.012
http://www.ncbi.nlm.nih.gov/pubmed/20074736
http://dx.doi.org/10.1016/j.jbiomech.2011.04.040
http://www.ncbi.nlm.nih.gov/pubmed/22035638
http://dx.doi.org/10.1016/j.jbiomech.2013.01.016
http://www.ncbi.nlm.nih.gov/pubmed/23466176
http://www.ncbi.nlm.nih.gov/pubmed/11448699
http://dx.doi.org/S0021-9290(12)00072-3 [pii]. 10.1016/j.jbiomech.2012.01.029
http://dx.doi.org/S0021-9290(12)00072-3 [pii]. 10.1016/j.jbiomech.2012.01.029
http://dx.doi.org/10.1016/j.jbiomech.2014.01.049
http://www.ncbi.nlm.nih.gov/pubmed/24581797
http://dx.doi.org/10.1109/TNSRE.2010.2047592
http://www.ncbi.nlm.nih.gov/pubmed/20378480

@ PLOS | one

Predictive Simulation of Loaded and Inclined Walking

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

Nubar Y, Contini R. A minimal principle in biomechanics. Bull Math Biophys. 1961; 23(4):377-91.

Ghosh TK, Boykin WH Jr.. Analytic determination of an optimal human motion. J Optim Theory & App-
lic. 1976; 19(2):327—46. doi: 10.1098/rsif.2011.0581 PMID: 22012971

Beckett R, Chang K. An evaluation of the kinematics of gait by minimum energy. J Biomech. 1968; 1-
(2):147-59. PMID: 16329302

Mordatch I, Wang JM, Todorov E, Koltun V. Animating human lower limbs using contact-invariant opti-
mization. ACM Trans Graph. 2013; 32(6).

Lay AN, Hass CJ, Gregor RJ. The effects of sloped surfaces on locomotion: a kinematic and kinetic
analysis. J Biomech. 2006; 39(9):1621-8. doi: 10.1016/j.jpiomech.2005.05.005 PMID: 15990102

Lay AN, Hass CJ, Richard Nichols T, Gregor RJ. The effects of sloped surfaces on locomotion: an
electromyographic analysis. J Biomech. 2007; 40(6):1276—85. doi: 10.1016/j.jbiomech.2006.05.023
PMID: 16872616

Silder A, Besier T, Delp SL. Predicting the metabolic cost of incline walking from muscle activity and
walking mechanics. J Biomech. 2012; 45(10):1842-9. Epub 2012/05/15. doi: 10.1016/j.jpoiomech.2012.
03.032. S0021-9290(12)00229-1 [pii] PMID: 22578744

Silder A, Delp SL, Besier T. Men and women adopt similar walking mechanics and muscle activation
patterns during load carriage. J Biomech. 2013; 46(14):2522—-8. Epub 2013/08/24. doi: 10.1016/].
jbiomech.2013.06.020. S0021-9290(13)00294-7 [pii] PMID: 23968555

Geyer H, Seyfarth A, Blickhan R. Compliant leg behaviour explains basic dynamics of walking and run-
ning. Proc Biol Sci. 2006; 273(1603):2861—-7. Epub 2006/10/04. doi: 840P203468357466 [pii]. 10.
1098/rspb.2006.3637 PMID: 17015312

Hunt K, Crossley F. Coefficient of restitution interpreted as damping in vibroimpact. ASME J Appl
Mech. 1975; 42:440-5.

Sherman M, Seth A, Delp SL. Simbody: Multibody dynamics for biomedical research. IUTAM: Sympo-
sium on Human Body Dynamics2011.

Pozzo T, Berthoz A, Lefort L. Head stabilization during various locomotor tasks in humans. I. Normal
subjects. Exp Brain Res. 1990; 82(1):97—106. PMID: 2257917

Hansen N, Muller SD, Koumoutsakos P. Reducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES). Evol Comput. 2003; 11(1):1-18. Epub 2003/06/
14. doi: 10.1162/106365603321828970 PMID: 12804094

Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model
of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990; 37-
(8):757—67. PMID: 2210784

Li X, Zhou P, Aruin AS. Teager-Kaiser energy operation of surface EMG improves muscle activity
onset detection. Ann Biomed Eng. 2007; 35(9):1532—-8. PMID: 17473984

Anderson FC, Pandy MG. Individual muscle contributions to support in normal walking. Gait Posture.
2003; 17(2):159-69. PMID: 12633777

Zehr EP, Stein RB. What functions do reflexes serve during human locomotion? Prog Neurobiol. 1999;
58:185-205. PMID: 10338359

Dzeladini F, van den Kieboom J, ljspeert A. The contribution of a central pattern generator in a reflex-
based neuromuscular model. Front Hum Neurosci. 2014; 8:371. doi: 10.3389/fnhum.2014.00371
PMID: 25018712

Lamoth CJ, Beek PJ, Meijer OG. Pelvis-thorax coordination in the transverse plane during gait. Gait
Posture. 2002; 16(2):101—14. Epub 2002/09/26. PMID: 12297252

Brown C. Foot clearance in walking and running in individuals with ankle instability. Am J Sports Med.
2011; 39(8):1769-76. Epub 2011/06/21. doi: 10.1177/0363546511408872 PMID: 21685315

Rodda J, Graham HK. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis
for a management algorithm. Eur J Neurol. 2001; 8:98—108. doi: 10.1046/].1468-1331.2001.00042.x
PMID: 11851738

Rethlefsen SA, Kay RM. Transverse plane gait problems in children with cerebral palsy. J Pediatr
Orthop. 2013; 33(4):422-30. Epub 2013/05/09. doi: 10.1097/BPO.0b013e3182784e16 PMID:
23653033

PLOS ONE | DOI:10.1371/journal.pone.0121407  April 1,2015 16/16


http://dx.doi.org/10.1098/rsif.2011.0581
http://www.ncbi.nlm.nih.gov/pubmed/22012971
http://www.ncbi.nlm.nih.gov/pubmed/16329302
http://dx.doi.org/10.1016/j.jbiomech.2005.05.005
http://www.ncbi.nlm.nih.gov/pubmed/15990102
http://dx.doi.org/10.1016/j.jbiomech.2006.05.023
http://www.ncbi.nlm.nih.gov/pubmed/16872616
http://dx.doi.org/10.1016/j.jbiomech.2012.03.032. S0021-9290(12)00229-1 [pii]
http://dx.doi.org/10.1016/j.jbiomech.2012.03.032. S0021-9290(12)00229-1 [pii]
http://www.ncbi.nlm.nih.gov/pubmed/22578744
http://dx.doi.org/10.1016/j.jbiomech.2013.06.020. S0021-9290(13)00294-7 [pii]
http://dx.doi.org/10.1016/j.jbiomech.2013.06.020. S0021-9290(13)00294-7 [pii]
http://www.ncbi.nlm.nih.gov/pubmed/23968555
http://dx.doi.org/840P203468357466 [pii]. 10.1098/rspb.2006.3637
http://dx.doi.org/840P203468357466 [pii]. 10.1098/rspb.2006.3637
http://www.ncbi.nlm.nih.gov/pubmed/17015312
http://www.ncbi.nlm.nih.gov/pubmed/2257917
http://dx.doi.org/10.1162/106365603321828970
http://www.ncbi.nlm.nih.gov/pubmed/12804094
http://www.ncbi.nlm.nih.gov/pubmed/2210784
http://www.ncbi.nlm.nih.gov/pubmed/17473984
http://www.ncbi.nlm.nih.gov/pubmed/12633777
http://www.ncbi.nlm.nih.gov/pubmed/10338359
http://dx.doi.org/10.3389/fnhum.2014.00371
http://www.ncbi.nlm.nih.gov/pubmed/25018712
http://www.ncbi.nlm.nih.gov/pubmed/12297252
http://dx.doi.org/10.1177/0363546511408872
http://www.ncbi.nlm.nih.gov/pubmed/21685315
http://dx.doi.org/10.1046/j.1468-1331.2001.00042.x
http://www.ncbi.nlm.nih.gov/pubmed/11851738
http://dx.doi.org/10.1097/BPO.0b013e3182784e16
http://www.ncbi.nlm.nih.gov/pubmed/23653033

