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Abstract
Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipi-

tation, and provides a potential alternative source for precipitation data allowing researchers

to better understand patterns of precipitation over ungauged basins. However, the absence of

calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measur-

ing Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 product over high lati-

tude areas beyond the TRMM satellites latitude band (38°NS). This study attempts to

statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from

numerous weather stations in 1998–2012. Comparative analysis at three timescales (daily,

monthly and annual scale) indicates that adoption of a monthly adjustment significantly im-

proved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always ex-

hibits a slight overestimation that is most serious at a daily scale (the absolute bias is

103.54%). Moreover, the performance of TMPA data varies across all seasons. Generally,

TMPA data performs best in summer, but worst in winter, which is likely to be associated with

the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algo-

rithms. Temporal and spatial analysis of accuracy indices suggest that the performance of

TMPA data has gradually improved and has benefited from upgrades; the data are more reli-

able in humid areas than in arid regions. Special attention should be paid to its application in

arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibra-

tion can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-

covered area is about a third as much as that in no-TRMM area for monthly and annual pre-

cipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader un-

derstanding of satellite-based precipitation estimates, and these data are important for the

rational application of TMPAmethods in climatic and hydrological research.
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Introduction
Precipitation is a key variable for the Earth’s water cycle and energy balance, also plays a major
role in monitoring water-related natural hazards and water resource management. Currently,
many global climate models have predicted that climate change will alter the spatial patterns of
precipitation at a global scale and have showed a general change will occur in the timing and
amount of a given daily precipitation [1–3]. Precipitation exerts major effects on the earth’s
ecosystem [4] and hydrological cycle. Accurate measurement of precipitation is essential to in-
vestigate spatial pattern of rainfall at regional scale. Having accurate rainfall data will improve
our understanding of the effect of precipitation on hydrology and climate change. Traditional-
ly, rain gauge is a main or even the only means of obtaining detailed rainfall data. However, the
limitations of rain gauge measurement restrict our understanding of precipitation: one is the
insufficient spatial representation [5], which means that direct measurements of rainfall at an
single station were generally not very useful in making estimates of areal rain and spatial distri-
bution of rainfall over large areas; the other is sparse distribution over mountainous areas and
unavailability over the oceans [6, 7]. A long history of the development in the estimation of
precipitation data based on satellite data has culminated in sophisticated satellite instruments
and techniques that can be used to combine information from multiple satellites to produce
long time series products that are useful for climate monitoring [8].

Currently, many operational satellite-based precipitation products have been available at a
global scale, e.g., TMPA 3B42 [9], Precipitation Estimation from Remotely Sensed Information
Using Neural Networks [10, 11], the Climate Prediction Center Morphing Method [12]. These
products have potential application in climate change and hydrological models, as well as rain
regime and weather forecasting. However, the resulting precipitation estimates suffered from
various types of errors, namely: non-negligible bias, random errors associated with inadequate
sampling, algorithm errors, and the indirect nature of the physical relationship between precip-
itation and the observations [6, 13]. These errors associated with precipitation tend to propa-
gate in climate or hydrological models, and lead to convey some misleading information for
decision-makers. Hence, the evaluation of precipitation estimates is a prerequisite work to its
utilization in practical applications.

This study focuses on the evaluation of TMPA, a quasi-global precipitation product. A wide
range of studies have evaluated TMPA worldwide, such as studies in Asia [5, 14, 15], South
America [16–19], North America [20, 21], Europe [22], Africa [23]. Generally, two main meth-
ods have been employed to evaluate the accuracy of satellite-based precipitation estimates: a di-
rect comparison of rain gauge data and satellite data [5, 15, 17, 24–26], and an indirect analysis
of derivation variable outputting from models, e.g., hydrological [27–31] and crop yield models
[32] that are driven by precipitation data. However, most numerical models are rife with
sources of uncertainty [33–35]. When the latter method is adopted to assess satellite-based pre-
cipitation data, this inevitably results in much more biases and further reduced reliability.
Therefore, an analysis that directly compares various precipitation data would be an effective
method that should provide a reasonable evaluation of quality of precipitation data. When
these studies related to the evaluation of TMPA were reviewed, their performances were incon-
sistent and varied from place to place. In addition, numerous previous studies focused on low
latitudes regions within 40°N-S, to our best knowledge, few studies have been conducted in
mid-high latitudes regions [27]. Hence, work in mid-high latitudes regions is urgently needed
to provide a comprehensive insight into the accuracy of TMPA and allow its extensive applica-
tion in science community.

The main objective of our study is to assess the accuracy of TMPA 3B42 V7 (hereinafter re-
ferred to as TMPAV7) data over the mid-high latitudes region of China. This region is situated
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beyond the nominal coverage (38°NS) of the TRMMMicrowave Imager (TMI) and Precipitation
Radar (PR) [36]. As Huffman et al. [9] discussed, the TRMMCombined Instrument (TCI) that
combines data from TMI and PR is an important data source that can be used to calibrate the
two main input data sources, including microwave and infrared satellite observations, for pro-
cessing a TMPA product. Because these necessary calibration data are lacking beyond 40°NS, the
calibration coefficients for low latitudes regions must be used to this special region [9]. Obviously,
large biases and errors would exist over this region. In addition, various climate zones character-
ize this region. Therefore, northern China serves as a unique place that can provide an opportu-
nity to assess the accuracy of TMPA under different climatic conditions and geographical
features. First, this study adopts some common accuracy indices to provide a quantitative de-
scription of TMPA V7 in terms of error in precipitation amount and in detecting the occurrence
of precipitation events. Then, the accuracy of TMPA at multiple timescales (daily, monthly and
annual scale) is assessed separately. In addition, spatial and temporal trends in the accuracy indi-
ces are also examined to show how the performance of TMPA changes over time and space.

Materials and Methods

Study area
Fig. 1 shows the longitudinal region between 40 and 50°N. This region spans from northeast to
northwest China in the mid-high latitudes ranging from 73.25°E to 135.25°E. The topography

Fig 1. Geographical location of study area within China and the spatial distribution of meteorological station. The study area lies within the shaded
region between 40° and 50°N. Also, three regions are filled with red.

doi:10.1371/journal.pone.0120026.g001
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varies remarkably in the study area, forming a more complex terrain in the western part than
the eastern part of this region (Fig. 2A). Mountains dominate in the western part with a mean
elevation above 3000 m, while the eastern part features flat plains. Most precipitation falls as
snow with the typical low temperatures over this region from the end of October to March in
next year. The rainy season normally lasts 4 months stretching from June through September.
However, the precipitation and temperature vary spatially and significantly in this region
(Fig. 2B and C). Generally, precipitation increases from northeast to northwest between 0 and
1000 mm annually, and mean annual temperature decreases from south (16 °C) to north
(−4 °C). In addition, this region is characterized by a mixed climate zone, from a humid
region in the northeastern part to an arid region in the northwestern part.

Data source
The new version TMPA V7 data, after retrospective reprocessing, released in December 2012,
is available with a spatial resolution of 0.25° and a temporal resolution of 3 h within 50°N and

Fig 2. The spatial distribution of terrain and elevation, mean annual precipitation andmean air temperature during 1990–2012 across the study
area: (a) terrain and elevation, (b) precipitation and (c) air temperature. Shuttle Radar Topography Mission (SRTM) DEM with spatial resulution of 90
meters is resampled to 0.02 ° to represent terrain. Kriging method is used to interpolate observations from 169 weather stations during 1990–2012 to maps of
precipitation and temperature.

doi:10.1371/journal.pone.0120026.g002
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50°S global latitude from 1998 to present. This product has undergone several updates, includ-
ing incorporating additional satellite observation data, improved algorithms, and adopting
newly advanced gauge analysis [21]. Chen et al. [37] provided detailed information on TMPA
V7. To be temporally consistent with the daily observation data (20:00-20:00 UTC+8), the
TMPA 3 h precipitation products have been accumulated into daily precipitation estimates
starting from 12:00 UTC in a previous day to 12:00 UTC in a current day. To compute the
daily rainfall from the TMPA rainfall rate, the rainfall rates at 12:00 UTC (previous day) and
12:00 UTC (current day) were accumulated for 1.5 h while rainfall at other times (i.e., 15:00,
18:00, 21:00, 00:00, 03:00, 06:00, and 09:00 UTC) were accumulated for 3 h. Then, satellite-
based precipitation estimates at monthly and annual timescales are derived from daily TMPA
V7 by a simple accumulation.

In this region, the observed precipitation dataset, prepared by the National Weather Depart-
ment of China, is consist of 198 weather stations during 1951–2012. Its spatial distribution is
rather homogeneous in the territory. Nevertheless, different stations have available time series
of data of different lengths (Fig. 3). Because some rain gauge measurement sites lie on the
boundary of TRMM grid box, determining which grid box a particular gauge belongs proved
difficult, this may increase error and uncertainty when making a comparison based on grid-
point. After excluding these gauges, the remaining 169 rain gauges that lie clearly within a
single grid box were selected for the comparative analysis discussed below (Fig. 1). Then
the observed monthly and annual precipitation time series were constructed based on daily
data.

Fig 3. Number of available weather stations within the study area during the period of 1950–2012.
Each dot represents the number of weather stations with complete data records for use during analysis for
one year.

doi:10.1371/journal.pone.0120026.g003
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Method
To present a quantitative evaluation of the accuracy of TMPA V7 data, a combination of con-
tinuous [38] and categorical statistical indices [39] were employed to assess the differences in
precipitation amounts between TMPA and rain gauge and the ability of detecting occurrence
of precipitation events. Continuous statistical indices consist of correlation coefficient (CC),
mean error (ME) and mean absolute error (MAE). CC is a good measure of the degree of agree-
ment between the two data sequences, that is, rain gauge observations and satellite-based pre-
cipitation data.ME andMAE were used to assess the average difference between the observed
and satellite-based precipitation and the average magnitude of the error, respectively. These in-
dices are defined as followings:

CC ¼

Xn

i¼1

ðObsi � ObsÞðSati � SatÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðObsi � ObsÞ2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðSati � SatÞ2
s ð1Þ

ME ¼ 1

n

Xn

i¼1

ðSati � ObsiÞ ð2Þ

MAE ¼ 1

n

Xn

i¼1

jObsi � Satij ð3Þ

where, Obsi and Sati is the ith of time series of precipitation obtained from rain gauge and satel-

lite, respectively; �Obs and �Sat denotes the mean of precipitation time series for the rain guage
and satellite, respectively; n is the total number of observed and satellite-based precipitation
data pairs.

Three widespread categorical indices, including probability of detection (POD), probability
of false detection (POFD) and equitable threat score (ETS), were used to assess the skill in de-
tection of precipitation events [39]. POD describes what fraction of the observed rainy events
were correctly forecasted. POFD is the fraction of the observed no rainy events were incorrectly
forecasted as rainy events. Both POD and POFD range from 0 to 1, with 1 being a perfect POD
and 0 being a perfect POFD. ETSmeasures how well the rainy days estimated from satellite
data can correspond to the observed rainy events, accounting for hits due to chance, and ranges
from a poor score (� 1

3
) to a best score (1). The numerical weather prediction community com-

monly use ETS as an overall skill measure, whereas POD and POFD provide complementary
information related to false detections and hits. Noted that, as suggested in many previous
studies [27, 40–42], the common threshold of 1.0 mm/day is adopted to compute three categor-
ical indices, shown in the following Equations.

POD ¼ h
hþm

ð4Þ

POFD ¼ f
f þ c

ð5Þ

ETS ¼ h� r
hþ f þm� r

; r ¼ ðhþmÞðhþ f Þ
n

ð6Þ
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where, h is the number of hits cases where observed rain was correctly detected by satellite;m
is the number of misses cases where observed rain was not detected; f is the number of false
alarms cases where rain was detected but not observed on the ground; c is the number of cor-
rection cases where no rain was observed nor detected by satellite.

Results

Overall comparison of the TMPA product against rain gauge
observations at various scales

Comparative analysis at daily, monthly and annual scales. An overall comparison of
daily precipitation between TMPA V7 and rain gauge during 1998–2012 is described in
Fig. 4A. A moderate correlation was observed between TMPA V7 and rain gauge with a CC of
0.63, indicating that these two datasets are in good agreement to some degree. This finding is
comparable to or even better than that observed in low latitudes regions [19, 43]. Results ofME
give an indication of a slight overestimation of daily precipitation, about 0.11 mm, by TMPA
during 1998–2012. Moreover, the absolute error between the two precipitation datasets is 1.18
mm on average over this region. Table 1 lists some basic statistics (Max, Min, Mean, Sd, Rbias,
and Abias) related to daily precipitation timeseries, it is indicated that there are some minor
differences between two data sources. In general, bias is not so large that TMPA V7 can repro-
duce daily precipitation well. Moreover, three categorical indices also have acceptable scores.
About 59% rainy events can be detected correctly by TMPA V7 among all the observed rainy
events. Yet, satellites still falsely detect a certain rain days, so, especially, it may be difficult to
make safe and reasonable decision related to reservoir regulation over regions with high density
of river during rainy season. Overall, TMPA V7 shows a desirable skill in detecting no rain or
rain event with ETS of approximately 0.32.

Compared to result based on daily precipitation, some changes in the values of statistical in-
dices were observed at monthly and annual scales (Fig. 4B and C). Clearly, correlation between
TMPA and rain gauge has improved greatly, with CC increasing from 0.63 at daily scale to a
value greater than 0.94 at monthly and annual scales. That is, TMPA V7 data are more

Fig 4. Density scatter plots of Tropical Multisatellite Precipitation Analysis (TMPA) versus rain gauge at three time scales: (a) Daily, (b) Monthly, (c)
Annual. The 1:1 line of perfect agreement (red dashed line) and the linear fit line (red solid line) are indicated on each plot. Some statistics computed are also
given on each plot. Note: correlation coefficient (CC), mean error (ME), mean absolute error (MAE), probability of detection (POD), probability of false
detection (POFD), and equitable threat score (ETS).

doi:10.1371/journal.pone.0120026.g004
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consistent with the observed precipitation at a larger timescale. In terms of the numerical dif-
ference between two data sources analyzed here, two statistical indices,ME andMAE, also
show a significant upward trend, meaning that the difference in precipitation between satellite
and rain gauge increases with a longer timescale. Because monthly and annual time series are
constructed by accumulating daily data, errors inherent in daily data could directly propagate
to such derivatives and cause a cumulative effect. In fact, judging from Rbias and Abias listed
in Table 1, the degree of overestimation of precipitation is not intensified by TMPA with simi-
lar Rbias and lower Abias at a larger scale.

For a detailed description of variation in precipitation data collected from rain gauge and
TMPA sources, two typical climatic regions were chosen for comparative analysis at regional
scale (Fig. 5). These two regions were Liaoning (a humid area) and Xinjiang (an arid area)
province, that experience significant differences in the amounts of precipitation (Fig. 2B and
Table 2). Generally, precipitation estimate based on TMPA exhibits a high level of correspon-
dence with the observation at monthly and annual scales. TheME for these two regions are all
larger than 0, indicating that TMPA overestimates precipitation for both the humid and arid
region (Table 3). This slight overestimation was 8.9% for Liaoning and 2.8% for Xinjiang.
Thus, TMPA are not greatly affected by climatic conditions and could capture seasonal cycles
and interannual variations in precipitation.

Seasonal analysis of accuracy indices. The seasonal characteristics of error were investi-
gated across this region (Fig. 6). Four seasons were defined as followings: spring, March
through May; summer, June through August; autumn, September through November; and
winter, December through February. Statistical indices did not have similar scores for all four
seasons (Fig. 6). The best CC score appeared in summer (about 0.63), but in winter it had the
lowest score (about 0.35). Except for spring, a moderate but good linear relationship was ob-
served between TMPA V7 and rain gauge for each season over the mid-high latitudes regions
with CC greater than 0.55.

To assess the difference in the amount of precipitation (Fig. 6),ME andMAE were calculat-
ed based on daily data for respective season. These two indices do not give similar patterns
among the four seasons, withME ranging from 0.06 to 0.20 mm andMAE ranging from 0.35
to 2.56 mm. The largest value for these two indices appeared in summer. Across this region,
the rainy season occurs in summer, accounting for more than 60% of total annual precipita-
tion. However, due to limited temporal sampling of satellite sensors, it has a large possibility of

Table 1. Summary of basic statistics for TMPA and rain gauge at different timescales.

– (Rain Gauge, TMPA) –

Timescale Max (mm) Min (mm) Mean (mm) Sd (mm) Rbias (%) Abias (%)

Day (317.70,255.14) (0,0) (1.07,1.15) (5.03,4.91) 7.48 106.54

Month (840.80,659.78) (0,0) (32.11,34.64) (49.15,49.35) 7.88 31.64

Year (1765.50,1742.25) (3.40,9.99) (385.31,415.66) (245.07,254.71) 7.87 16.63

Spring (116.90,107.32) (0,0) (0.74,0.79) (3.18,3.30) 6.76 118.92

Summer (317.70,255.14) (0,0) (2.54,2.70) (8.55,8.11) 6.30 98.03

Autumn (230.70,123.67) (0,0) (0.78,0.84) (3.54,3.66) 8.97 108.97

Winter (43.90,60.03) (0,0) (0.16,0.23) (0.89,1.28) 43.75 187.5

Note: Max, Min, Mean, and Sd represent maximum, minimum, mean value and standard deviation of precipitation time series at various timescales for

Tropical Multisatellite Precipitation Analysis (TMPA) and rain gauge, respectively. Rbias is the relative bias, which is the ratio of ME to the mean value of

time series from rain gauge at respective timescale; Abias is the absolute bias, which represents the ratio of MAE to the mean value of time series from

rain gauge at respective timescale.

doi:10.1371/journal.pone.0120026.t001
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missing some rainy events characterized as short duration and high intensity so that larger er-
rors were expected in summer. Even though small errors appear in winter, relative and absolute
biases during the winter are largest among seasons, 43.75% and 187.5%, respectively (see
Table 1). Obviously, overestimation of precipitation by TMPA was observed to be weak for the
other three seasons, with smaller relative and absolute bias.

In terms of skill in detection of precipitation events, TMPA still does not have similar per-
formance among seasons (Fig. 6). Summer had the best POD score, and the lowest one appears
in winter again. This indicates that TMPA data are more useful in capturing rain events than

Fig 5. Variation of precipitation data from rain gauges and TMPA averaged over Liaoning ((a) and (c)) and Xinjiang province ((b) and (d)).Monthly
and annual precipitation are shown in the first two panels and last two panels, respectively.

doi:10.1371/journal.pone.0120026.g005

Table 2. Details description of three typical regions.

Region Numbers of station Elevation (m) Temperature (°C) Annual precipitation (mm)

Liaoning 27 251.26 8.44 657.85

Xinjiang 45 1351.07 7.87 153.97

Shandong 16 91.93 13.48 695.91

doi:10.1371/journal.pone.0120026.t002
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snowfall. However, the score of POFD did not differ significantly among seasons, ranging from
0.08 to 0.15. For each season, TMPA data gave a similar false detection rate of precipitation
events, so POFD appears to be season-independent. Result of ETS was similar to that of POD.
Therefore, it is found that TMPA can be used most effectively to detect precipitation events
with high scores in summer. This provides some evidences for the potential application of

Table 3. Summary information for monthly and annual precipitation for five regions.

– Month (mm) Year (mm)

Region Mean* ME Mean* ME

Liaoning (54.97,59.84) 4.87 (659.62,718.13) 58.51

Xinjiang (15.79,16.24) 0.45 (189.53,194.85) 5.32

Shandong (59.10,60.75) 1.65 (709.19,729.01) 19.82

20-40 region (83.77,87.17) 3.40 (1005.21,1046.00) 40.79

40-50 region (33.00,36.23) 3.22 (396.04,434.72) 38.68

*: the format is a combination of data from Rain gauge and TMPA, e.g., (Rain gauge, TMPA).

doi:10.1371/journal.pone.0120026.t003

Fig 6. Density scatter plots of TMPA versus rain gauge at daily scale for four seasons: (a) Spring, (b) Summer, (c) Autumn, (d) Winter. The
definitions and acronyms presented in each plot are the same as those used in Fig. 4.

doi:10.1371/journal.pone.0120026.g006
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TMPA in a certain areas with insufficient historical observations from rain gauges, especially
in the analysis of the characteristics of precipitation during summer.

Furthermore, two typical regions (Xinjiang and Liaoning province) located in study area are
selected to gain an insight into how performance varied with season (Figs. 7 and 8). Compared
to other three seasons, winter always suffered from small CC, low scores of POD and ETS for
both regions. Because of many storms in rainy season,ME andMAE were relatively large in
summer, but summer still had the best scores of the other indices. Thus, precipitation could be
detected better by TMPA with a higher accuracy in summer than in winter. But it is noted that
there is a distinct difference in surface condition and climate condition between winter and the
other three seasons. It is characterized by low temperature and frequent snowfall events. This
maybe has a negative effect on detecting precipitation by satellite. Also, the flaws in precipita-
tion retrieval algorithms partly contribute to the worse performance in winter.

Temporal and spatial analysis of accuracy indices
Temporal variation. Fig. 9 presents the annual variation of accuracy indices in the period

of 1998–2012. Six accuracy indices were calculated based on daily precipitation time series for

Fig 7. Seasonal variation of statistical indices for Liaoning province: (a)CC, (b)ME, (c)MAE, (d) POD, (e) POFD, (f) ETS. Each point represents value
of accuracy index for one season in a given year. All daily data belonging to each season in one year is pooled together to calculate each index across this
region, respectively.

doi:10.1371/journal.pone.0120026.g007
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each individual station for each year, separately. Then, the average value of the respective indice
for all stations for each year was used for analysis of annual variation. Overall, in terms of CC,
POFD, POD and ETS, the performance of TMPA has been improved in some degree. CC, POD
and ETS exhibited an increasing trend over time, but POFD had a decreasing trend during
1998–2012. It suggested that the correlation between TMPA and rain gauge became stronger,
and TMPA data could be more effective in detecting precipitation events with the improved
statistical scores during 1998–2012. In terms ofME andMAE, errors in TMPA fluctuate with
an insignificant trend in the period of 1998–2012. The improvement in TMPA V7 makes great
contribution to the changing in performance. A sophisticated Global Precipition Climatology
Center full gauge analysis with improved climatology and anomaly analysis was considered for
TMPA V7, which had a positive effect on the accuracy of TMPA data in predicting precipita-
tion, especially in complex terrain [37]. More satellite observations were merged into the new
version of TMPA, including 0.07° NCDC Grisat-B1 infrared data and SSMI/S, which improved
the resolution and areal coverage over the infrared data (1°, 24-class histograms) used in the
V6 algorithm. In addition, TMPA data benefits from the enhanced TRMM L2 PR product
[44]. Judging from Fig. 9, the difference in precipitation amount between TMPA and rain
gauge remained steady, but the detection of precipitation events by TMPA becomes more accu-
rate. Usually, occurrence of precipitation events identified correctly is crucial to weather fore-
casting and agricultural management. The improved performance causes TMPA data to hold
great promise for practical application.

Fig 8. Seasonal variation of statistical indices for Xinjiang province. The legend is the same as Fig. 7.

doi:10.1371/journal.pone.0120026.g008
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Boxplots describe the statistical distribution of respective indices for all stations for each
year (Fig. 10). The distribution of accuracy indices for each year was close to a Gaussian distri-
bution. However, note that many so called “outliers” exist in some stations for all year, such as
low CC, abnormal under- or overestimation of precipitation, or a low hit rate but a high detec-
tion false rate. The spatial analysis of indices discussed below provides some clear reasons
for this.

Spatial analysis. In addition to the analysis of temporal variation, detailed spatial distribu-
tion of accuracy indices were also explored (Fig. 11). CC exhibited a distinct spatial pattern
across the study area with an upward trend from west to east ranging from 0.17 and 0.75
(Fig. 11A). In the western part, it is an arid area characterized as scarce precipitation, high alti-
tude and mountainous area, only a weak correlation was observed between TMPA and rain
gauge. Particularly, TMPA always suffers from a low CC that is smaller than 0.5 in Xinjiang
Province. However, the value of CC was improved greatly in the eastern part, especially in Liao-
ning Province where it was almost larger than 0.63. A histogram (see the inset in Fig. 11A) also
indicated that the value of CC between 0.5 and 0.7 accounts for more than 70%, indicating a
moderate correlation tends to predominate over this mid-high latitudes region. Generally, the
value of CC is sensitive to range of the amount of precipitation. It is evident that there is a dis-
tinct difference in precipitation regimes between the eastern and western part. Rare big convec-
tive storms occur in the western part, and the precipitation rate is small, compared to the
eastern part. Thus, this may partly result in a smaller CC in the western part.

Fig. 11B and C show two quantitative statistics,ME andMAE, used for evaluating the
amount of precipitation. The spatial distribution ofME was relatively homogeneous over this

Fig 9. Annual variation in the six accuracy indices: (a)CC, (b)ME, (c)MAE, (d) POD, (e) POFD, (f) ETS. Each point indicates the mean of respective
indice for all stations for each year.

doi:10.1371/journal.pone.0120026.g009
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region. Even though the geography of the western and eastern parts of the study area differ sig-
nificantly,ME still show a similar pattern in both regions. Therefore, this suggests the pattern
ofME is not dependent on geographical characteristics. Under- and overestimation of precipi-
tation by TMPA coexist over this region (Fig. 11B), and overestimation plays a dominant role.
TMPA generally tends to slightly overestimate precipitation, by less than 0.47 mm, over this re-
gion. Adequate attention should be paid to this problem when a TMPA product is used to
drive climate/hydrological models. ForMAE, there is a significant spatial pattern increasing
from west to east. This trend agrees well with the spatial distribution of precipitation. The east-
ern part is rich of precipitation with heavy intensity. By contrast, precipitation is rare with low
intensity and few occurrences in the arid western part. Due to limitation of satellite sensor dis-
cussed above, TMPA has a large possibility of giving larger errors in precipitation in the eastern
part than the western part. Fortunately, the absolute error in precipitation is not large, within
2.61 mm.

In order to understand how well TMPA can detect precipitation events, spatial distribution
of three categorical statistics, POD, POFD and ETS are illustrated in Fig. 11D-F. Compared to
POD and ETS, POFD did not show a significant difference in spatial pattern, but had a distinct

Fig 10. Boxplots of the six accuracy indices used in this study: (a)CC, (b)ME, (c)MAE, (d) POD, (e) POFD, (f) ETS. Each box shows the 25th and 75th
percentiles of distributions of each accuracy index. The horizontal line shows the median of the distributions, and the whiskers extend out to largest and
smallest values within 1.5 times the interquartile range. And the circle represents outliers.

doi:10.1371/journal.pone.0120026.g010
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Fig 11. Spatial distribution of accuracy indices based on daily precipitation data during 1998–2012: (a)CC, (b)ME, (c)MAE, (d) POD, (e) POFD, (f)
ETS. Each point is the center of one TMPA grid box which includes at least one rain gauge. The shaded region indicates precipitation during summer
and winter.

doi:10.1371/journal.pone.0120026.g011
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homogeneous nature over the entire study area (Fig. 11E). Apparently, POFD was independent
of geographical characteristics, the nearly same score is over the western and eastern part.
Lower POFD scores of less than 0.15 dominated the spatial pattern of POFD, in particular,
POFD less than 0.1 could account for more than 79% among all rain gauges. This suggests that
TMPA generally tends to have a low probability of false detection. Nevertheless, the other two
categorical indices exhibit a similar spatial pattern with an upward trend from west to east. Vi-
sual comparison between POD and POFD (Fig. 11) suggest that TMPA usually performed bet-
ter in the eastern part with larger POD but similar POFD, especially POD almost were greater
than 0.59 around the Bohai Sea. For example, scores of POD were 0.67 and 0.47 averaged over
Liaoning and Xinjiang province, but these two areas had the same POFD with 0.09. Spatially,
lower POD scores were mainly distributed in semi-arid and arid areas in the western part (in
western Inner Mongolia, to northwestern Gansu, to Xinjiang). In these areas, the intensity of
precipitation is so low that satellite sensors often fail to detect it as a result of the limitation of
minimal detectable signals [5]. Therefore, a decrease in correctly detecting precipitation events
by TMPA resulted in lower POD scores. Besides, Fig. 11F shows a significant spatial pattern for
ETS. The score of ETS increased from west to east, ranging from 0.07 to 0.42. Apparently,
TMPA provides better scores in the eastern part than that in the western part.

The difference in performance between TRMM covered and no TRMM
covered area
Furthermore, a preliminary analysis on the effect of calibration on performance is conducted
over TRMM-covered (latitude between 20 and 40°N in China, hereinafter “20-40 region”) and
no TRMM-covered region (40-50°N in China, hereinafter “40-50 region”). Also the other two
special areas are selected to provide some detailed information: one is Shandong province lo-
cated in TRMM coverage; the other is Liaoning province located in no TRMM coverage. They
have similar geographical and climatic characteristics, as listed in Table 2. TMPA shows a con-
sistent behavior for all selected regions, it can capture variation and trend in monthly and an-
nual precipitation well (Figs. 12 and 13). There is a slight difference in monthly precipitation
during rainy season. However, an apparent systematic overestimation by TMPA is shown for
all four regions (Fig. 13). It is noted that the overestimation in TRMM covered area is smaller
than that in non-TRMM covered area with 4.06% and 9.77% for 20-40 region and 40-50 re-
gion, respectively. Thus, the calibration for input satellite for precipitation retrieval partly con-
tributes to the improved performance in 20-40 region covered by TRMM satellite.

Specifically, the performance of TMPA for two typical subregions (Shandong and Liaoning
Province) is examined. As shown in Fig. 12, the observed monthly precipitation could be de-
tected by TMPA with a considerable high degree of correspondence for both subregions. There
is no significant difference in performance of monthly precipitation for these two areas. How-
ever, TMPA showed a distinct behavior to capture annual precipitation (Fig. 13). Though the
variation and trend of annual precipitation were captured well by TMPA, TMPA overesti-
mated more heavily the amount of annual precipitation in Liaoning than Shandong province.
The result ofME also supported this, with 58.51 mm for Liaoning and 19.82 mm for Shandong,
as listed in Table 3. It is noted that the overestimation of annual precipitation in Liaoning
(8.87%) is about three times as many as that in Shandong (2.79%). Obviously, TMPA per-
formed worse in no-TRMM covered area.

In addition, the frequency distribution of statistical indices for Liaoning and Shandong was
also investigated to access TMPA’s performance in different areas (Fig. 14). Each statistical
indice was calculated based on daily precipitation for every year in individual station in each re-
gion. The frequency of six indices in Liaoning is similar to that in Shandong. Usually, TMPA
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got a good score with a high correlation, desirable POD and ETS. By contrast, the distribution
of statistical indices in Xinjiang was unique, except forME and POFD. Generally, a poor statis-
tical score dominated in this region, especially CC, POD and ETS. Thus, TMPA has a limited
accuracy to detect precipitation characteristic in arid area.

Discussion and Conclusion
TMPA has a general overestimation of precipitation amount (see in Figs. 5, 12 and 13). Previ-
ous studies in both low (Saudi Arabia [43]) and high (Laohahe basin in China [27]) latitudes
regions have provided some evidence related to the characteristics of the overestimation of pre-
cipitation. Our findings support this argument and also indicate that overestimation seems to
be inherent in TMPA products despite some improvements in the algorithm and use of addi-
tional data sources. It is possible that compared with rain gauge observation, this overestima-
tion of precipitation by TMPAmay be attributed to some limitations of the retrieval
algorithms (e.g., no physical relationship between rain rate and bright temperature in infrared
data and the effects of snow or ice on passive microwave data) and data quality. It is worth not-
ing that it would result in some unexpected peak flows while utilizing TMPA in hydrological
applications directly. Besides, in terms of CC, relative and absolute bias percentage, TMPA was
found to have the poorest performance at daily scale. The correlation improves significantly,
from 0.63 to 0.95, with an increased time scale. This trend is consistent with results reported in
the Central Andes region [45], the western part of Kenya [24] and the Zambezi River Basin

Fig 12. Variation of monthly precipitation from rain gauges and TMPA averaged over (a) 20-40°N region covered by TRMM, (b) 40-50°N region not
covered by TRMM, (c) Shandong province and (d) Liaoning province.

doi:10.1371/journal.pone.0120026.g012
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[46]. The use of monthly rain gauge data for bias adjustment in TMPA contributes greatly to
this improvement [18]. Also, TMPA heavily overestimates precipitation at daily scale with a
similar relative bias (7.48%) but had the largest absolute bias (106.54%), whereas the relative
and absolute bias are 7.88% and 31.64% for monthly time series, 7.87% and 16.63% for annual
time series. Clearly, TMPA could be more suitable for reproducing a reasonable precipitation
time series at a larger timescale (month or year). The severe degree of overestimation in daily
TMPA data might be weakened by effective bias correction with adequate sub-daily or daily
observational data, which makes it possible to serve as an alternative daily precipitation data
source, especially for hydrological applications and weather forecasting in ungauged basins. In
addition, the result for TRMM-covered area indicates that the calibration indeed improves pre-
cipitation estimation. The overestimation of monthly and annual precipitation by TMPA in
TRMM-covered region would be roughly one third of that in no TRMM-covered area.

Also, the TMPA accuracy varies in different seasons. The correlation coefficient decreases
progressively from 0.66 in summer, to 0.62 in autumn, to 0.56 in spring, to the worst value of
0.33 in winter. The most heavy overestimation of precipitation occurred in winter compared to
other seasons. Most likely, this can be attributed to the distinct differences in surface conditions
during cold and warm season. Typically, the area in China between 40°N and 50°N has low
temperatures and frequent snowfall in winter. The surface is covered with ice or snow for long
time. According to precipitation retrieval algorithms, precipitation derived from microwave
data relies on scattering signals over land [19]. But frozen and icy surfaces cause strong

Fig 13. Variation of annual precipitation from rain gauges and TMPA averaged over four regions: (a) 20-40°N region covered by TRMM, (b) 40-50°N
region not covered by TRMM, (c) Shandong province and (d) Liaoning province.

doi:10.1371/journal.pone.0120026.g013
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scattering, which results in estimation errors in the cold season. This type of surface makes it a
tough and challenging work for satellites [21, 37]. Besides, Joyce and Arkin [47] reported that
infrared retrieved estimation of precipitation was also severely affected by snow cover and cold
air masses. Moreover, a good skill in detecting precipitation events also appears in summer
with the best scores of POD, POFD and ETS, but winter still gets the worst scores. Generally,
TMPA cannot provide a reasonable and reliable information regrading precipitation in winter,
thus driving snowmelt runoff model with TMPA would generate unrealistic runoff and be un-
able to forecast spring floods especially in snow dominated regions. Considering that snow or
ice has a severe impact on the accuracy of TMPA, research related to the elimination or reduc-
tion of the interference caused by noise signals should be implemented to enhance the physical
relationship between effective satellite signals and precipitation estimates.

The temporal variation of accuracy indices shows that it demonstrates a mild increasing
trend in performance of TMPA during 1998–2012. In fact, the orbital altitude of the TRMM
satellite was boosted from 350 to 402.5 km [48] in August 2001 for prolonging its lifetime,
which led to some changes in swath width and field-of-view size of the sensors. Many research-
ers have expressed concern about the accuracy of TMPA, but our results prove that potential
impacts of the orbit boost on precipitation estimates was not as serious as expected. Great effort
has been made by TMPA developers to eliminate this impact, resulting in an improved perfor-
mance of TMPA.

Fig 14. The frequency distribution of the six statistical indices for three regions during 1998–2012: (a)CC, (b)ME, (c)MAE, (d) POD, (e) POFD, (f)
ETS. Each statistical index is computed for individual rain gauge for each year.

doi:10.1371/journal.pone.0120026.g014
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According to spatial pattern of six indices, TMPA can perform better at capturing precipita-
tion events in the eastern part (such as Liaoning Province) than in the western part (especially
in arid area, such as Xinjiang Province). Accuracy indices shows a significant spatial pattern in-
creasing from west to east as followings:MAE (0.35–2.56 mm), POD (0.22–0.85) and ETS
(0.04–0.39). The spatial distribution of both POFD andME were relatively homogeneous, and
were independent of geographic features. Judging fromME, a slight overestimation of precipi-
tation (<0.47 mm) by TMPA prevails over this mid-high latitudes region. In semi-arid and
arid areas, TMPA does not show desirable performance, and this would directly hinder its ap-
plication to climatic and hydrological research, especially in ungauged regions. In the future,
more accurate satellite data are needed, they can be incorporated into processing a more accu-
rate precipitation product that can enhance the poor results of TMPA in semi-arid and arid
areas. Overall, TMPA is quite qualified for humid area. Consequently, TMPA are not suitable
for analyzing the characteristics of rainfall and could not serve as an alternative source of pre-
cipitation data to drive climatic or hydrological models in arid areas over mid-high latitudes re-
gions. The undesirable input data would result in misleading streamflow simulations.
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