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Abstract

High-throughput RNA sequencing (RNA-Seq) provides single-nucleotide information that makes 

it a powerful tool for prediction of RNA editome. A new method, GIREMI, predicts RNA 

editomes (mainly A-to-I editing) accurately and sensitively using a single RNA-Seq data set, 

which does not require sample-specific genome sequence data or high sequencing depth. Using 

GIREMI, we observed prevailing tissue-specificity of RNA editing and interesting evolutionary 

patterns of editing sites in human population.

Accurate identification of RNA editome is central to better understand the diversity of gene 

expression and related functional implications1-3. Recently, there has been an extraordinary 

growth of application of RNA-Seq to identify RNA editing sites (summarized in4). 

However, many challenges still exist, one of which being the requirement of genome 

sequence data in order to discriminate RNA editing sites from genomic SNPs. Even with 

whole-genome sequencing data, some SNPs may still escape identification possibly due to 

non-uniformity in sequencing coverage or other issues. Thus, it is highly desirable to 

develop novel methods to predict RNA editomes independent of genome sequencing. Here, 

we report what is, to our knowledge, the first method to identify RNA editome accurately 

independent of genome sequence using a single RNA-Seq data set of modest sequencing 

depth.

The method, GIREMI (Genome-independent Identification of RNA Editing by Mutual 

Information), builds upon analysis of allelic linkage between single nucleotide variants 

(SNVs) and further extends the predictive power with generalized linear models. In a typical 

RNA-Seq data set, there often exists reads (or read pairs in paired-end mode) containing 

multiple SNVs that may correspond to genomic SNPs, RNA editing sites or experimental 

errors. A pair of SNPs harbored in the same read maintains the same haplotype in the RNA 
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as in the genomic DNA (Fig. 1a). In contrast, a SNP and an RNA editing site exhibit 

variable allelic linkage since RNA editing occurs post-transcriptionally to either copy of the 

gene randomly (unless allele-specific editing exists, which is presumably rare and out of the 

scope of this study). Similarly, the allelic linkage in RNA-Seq reads for a pair of RNA 

editing sites may also appear random, although processive editing does exist5 that may lead 

to allelic bias of multiple editing sites. To examine whether allelic linkage may enable a 

discrimination of RNA editing sites from SNPs, we calculated the mutual information (MI) 

associated with SNPs or RNA editing sites in RNA-Seq reads (Online Methods). Indeed, MI 

values associated with the two types of variants demonstrated a striking difference (Fig. 1b, 

Supplementary Fig. 1a, Supplementary Note 1), reflecting the discriminative power of this 

approach. Based on this rationale, the GIREMI method calculates MI of publicly available 

SNPs (dbSNP) and uncharacterized RNA variants expressed in a given RNA-Seq data set, 

which is then utilized to predict RNA editing sites and further parameterize a generalized 

linear model (GLM) for enhanced performance (Supplementary Fig. 1, Online Methods).

As a proof of concept, we first applied GIREMI to a deeply sequenced ENCODE RNASeq 

data set derived from the GM12878 cell line that has associated genome sequencing data6. 

Overall, 31,660 RNA editing sites (99.6% being the A-to-G type) were predicted by the MI 

step and 5,117 additional putative A-to-G editing sites were identified by GLM. Since the 

genome of GM12878 has been well-studied, most of the SNPs in this cell line are already 

included in dbSNP, which afforded an advantage in predicting RNA editing sites. Thus, to 

evaluate the performance of GIREMI, we assumed a fraction (10-90%) of the GM12878 

SNPs were unknown (Fig. 1c). Strikingly, the false discovery rate (FDR, % GM12878 SNPs 

in predicted editing sites) was only 3% when 30% of GM12878 SNPs were assumed to be 

unknown (Fig. 1c). The FDR only increased to 7.6% if assuming 90% of SNPs were 

unknown, which is an extreme overestimate of the % unknown SNPs in a common human 

sample given the recent expansion of dbSNP. This performance did not change substantially 

when a different read mapping method was used (Supplementary Fig. 2, Supplementary 

Note 2). It should be noted that the FDR defined here assumes that SNPs are the only source 

of error, without including other possible artifacts, e.g., due to alignment mistakes. Applied 

to other data sets, GIREMI also outperformed previous methods7 in sensitivity and accuracy 

(Supplementary Fig. 3, Supplementary Table 1).

It is known that identification of RNA editing sites depends closely on sequencing depth4, 7 

and the prediction accuracy may deteriorate with reduced depth. To examine this 

relationship, we repeated the analysis with down-sampled GM12878 data and with different 

levels of assumed unknown SNPs (Fig. 1d, Supplementary Fig. 3c, d). As expected, the 

number of RNA editing sites was lower as the sequencing depth decreased (Fig. 1d). 

Remarkably, the accuracy of GIREMI was not affected much by sequencing depth, with the 

FDR remained low (8.8%) even when the sequencing depth was very low (< 30 million 

singleton reads or 15 million pairs) (Fig. 1d). Robustness to sequencing depth is a highly 

desirable feature that has not been demonstrated for previous methods. Similar performance 

was observed for single-end data (Supplementary Fig. 4).

To further evaluate its performance, we compared GIREMI-predicted editing sites to those 

resulted from the “genome-aware” method that utilizes SNPs identified in whole-genome 
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sequencing data8 (Table 1, Supplementary Table 2, Supplementary Note 3). In addition, we 

included results of another genome-independent method, the “multiple data sets” method, 

that calls RNA editing using RNA-Seq data from multiple samples9. For two levels of 

assumed unknown SNPs (30% and 50%), GIREMI consistently showed higher number of 

predicted editing sites, higher accuracy (measured as 1-%SNPs among predicted editing 

sites), higher degree of overlap with the genome-aware method, and higher percentage of A-

to-G sites (%AG) than the “multiple data sets” method (Supplementary Note 3). Thus, the 

performance of GIREMI is highly superior while requiring only minimal data (one RNA-

Seq data set, no genome sequence).

Recent studies identified a large number of editing sites in Alu regions with high 

confidence10, 11. In contrast, accuracy of predicted non-Alu editing sites was relatively low, 

especially for those in coding regions9. GIREMI also demonstrated variable accuracy for 

different types of regions (Supplementary Table 2, Supplementary Notes 3 and 4). Overall, 

the sensitivity and accuracy of GIREMI are both high compared with existing genome-

independent method in pinpointing Alu and non-coding editing sites of non-Alu regions. 

This observation also applies to the results for a set of human brain RNA-Seq data 

(Supplementary Table 3), an application mimicking typical individual lab-based projects 

where a small number of samples were collected, with or without biological replicates.

Compared to non-coding sites, editing sites in coding regions are much less prevalent. 

Existing RNA-Seq-based methods suffer from low sensitivity and low accuracy in 

pinpointing non-Alu coding editing events9. On an initial examination, the accuracy of 

GIREMI is also low (~28% on average) for these sites in non-repetitive regions, although 

still higher than that of the “multiple data sets” method (5.3% on average, Supplementary 

Table 2). To gain a detailed evaluation, we examined whether GIREMI could identify 

previously reported recoding sites12. Since most of recoding sites are highly tissue-specific, 

we used RNA-Seq data sets derived from a panel of primary human tissues (Supplementary 

Note 5). Among the 47 recoding sites with adequate read coverage (≥ 5) in at least one 

sample, 43 were correctly identified by GIREMI, yielding an overall sensitivity of 91.5% 

and an average per-sample sensitivity of 71.4% (Supplementary Table 4). Given the high 

sensitivity, the expected small number of non-Alu coding sites, and the likely saturation of 

such sites in public databases, we can leverage the rapidly expanding sets of known coding 

sites to improve accuracy. For the GM12878 data, the accuracy in predicting non-repetitive 

coding sites was 67-80% if only known sites were considered (Supplementary Note 5).

Owing to the genome-independent nature of GIREMI, it can be applied to any RNA-Seq 

data set without restrictions. We first examined variation of editomes across human tissues, 

a fundamental question not yet addressed on the genome-wide scale. We used a panel of 38 

GTEx RNA-Seq data sets obtained from 5 human subjects and 8 primary tissue types (4 

brain regions, heart, skeletal muscle, thyroid, lung)13. The samples were chosen such that 

each individual had data from nearly all 8 tissues types (Supplementary Table 5). When 

clustered based on how RNA editing ratios correlate in pairwise comparisons, the samples 

segregated largely by tissues instead of individuals (Fig. 2a). Three major tissue groups were 

observed encompassing lung or thyroid, brain regions and muscle (heart and skeletal), 

respectively. Different brain regions were barely distinguishable based on their editing 
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profiles. This tissue-dominated clustering pattern is especially striking given that the number 

of predicted editing sites varied greatly across samples largely due to sequencing depth 

variation (Supplementary Fig. 5, Supplementary Table 6). This result is unlikely a by-

product of the expected tissue-dominated clustering of overall gene expression, as the 

editing ratios are not correlated with gene expression levels (Supplementary Fig. 6). Thus, 

our observation supports the existence of tissue-specific regulation of RNA editing. In 

addition, our result is consistent with a recent report of tissue-dominant clustering of editing 

sites in rhesus macaque14. Notably, in contrast to the previous study, our study only 

included shallowly sequenced RNA-Seq data (12.3-41.1 M mapped read pairs) without 

specific genomic data of the samples. This result again attests to the effectiveness of 

GIREMI.

In examining the patterns of tissue-specific editing (TSE), we observed the largest difference 

in RNA editing between brain and muscle-related tissues, with up to 24% editing sites being 

specific to brain tissues (Supplementary Fig. 7a). In addition, muscle also demonstrated 

considerably less editing and lower editing levels compared to thyroid or lung 

(Supplementary Fig. 7b). The mRNA expression levels of ADAR1 (Supplementary Fig. 7a) 

approximately explained 77% of the variability in editing levels across tissues 

(Supplementary Fig. 8a). Similarly notable concordance was not observed for ADAR2 

(Supplementary Fig. 8b).

Overall, TSE sites are highly enriched in 3’ UTR regions compared to all editing sites (P < 

2.2×10−16, Fisher's Exact test, Supplementary Fig. 9a). Interestingly, higher sequence 

conservation was observed in 3’ UTR regions harboring TSE compared to those flanking all 

editing sites (Fig. 2b), supporting existence of selection pressure in TSE regions. We 

observed a number of distinctive genomic features of 3’ UTR TSEs and their associated 

genes (Supplementary Fig. 9). In addition, brain-specific editing sites were often in genes 

related to energy, cellular metabolism and apoptosis, whereas lung or thyroid-specific 

editing sites were found in genes related to signal peptide processing and response to stimuli 

(viral or inflammatory) (Supplementary Table 7).

We next examined the level of variability in the editome landscape across human 

individuals, a fundamental question that has not been addressed on a global scale. To this 

end, we analyzed RNA-Seq data of lymphoblastoid cells of 93 people in the 1000 Genomes 

project (GBR population)15. A total of 22,715 editing sites were identified. For each editing 

site covered by ≥ 10 total reads in ≥ 50% of individuals, we calculated the fraction of these 

individuals expressing the edited nucleotide. We used this value to represent the prevalence 

of an editing site in the population and observed that the majority of editing sites (88%) had 

a prevalence of at least 50% (Supplementary Fig. 10a). Levels of RNA editing varied 

considerably across the prevalence groups, with an overall trend of enhanced editing as 

prevalence increased (Supplementary Fig. 10b).

All prevalence groups consisted of editing sites enriched in 3’ UTRs relative to the general 

composition of the human transcriptome (Fig. 2c). Note that less intronic editing sites were 

observed here than in the GTEx data set (Supplementary Fig. 9a) possibly due to differences 

in RNA-Seq protocols. Intriguingly, the group of rare editing sites (the first bin in Fig. 2c) 
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showed a considerably higher enrichment in coding regions than other groups. In addition, 

rare editing sites occurred in higher conserved 3’ UTR regions than common editing sites 

(Fig. 2d, Supplementary Fig. 11). Although located in functionally important regions (i.e., 

coding and highly conserved 3’ UTRs), rare editing sites are unlikely functionally 

significant, given their low editing levels. Possibly, these editing sites represent random 

innovations of the transcriptome of few individuals that have not yet undergone long-term 

selection. Purifying selection may exist to prevent these sites from gaining higher editing 

levels or higher prevalence in the population.

In contrast, common editing sites were associated with relatively high editing levels. This 

observation argues against the possibility that these sites are randomly occurring 

transcriptome innovations. Rather, common editing sites should be associated with certain 

advantage such that evolution has preserved their prevalence. Since these sites are less 

conserved than TSEs, similarly as non-TSE sites (Fig. 2b vs. 2d), it is unlikely that most of 

the common editing sites are functionally critical. An alternative hypothesis is that many 

common RNA editing sites are by-products of the RNA editing machinery carrying out 

functions to mediate other aspects of gene expression, which is under selection and led to an 

apparent preservation of the RNA editing sites across population (see Supplementary Note 6 

for details).

In summary, we presented a powerful new method, GIREMI, for the identification of RNA 

editing independent of sample-specific genome sequences. The accuracy of this method is 

high even given low sequencing depth. Application of the method yielded novel insights 

about tissue-specific editing and evolutionary implications of RNA editing. We expect that 

GIREMI will be a powerful method in enabling new discoveries in RNA editing.

Online Methods

Mapping of RNA-seq reads

RNA-seq reads were mapped to the reference human genome (hg19) and transcriptome 

(Ensembl release 71) using our previously published method8, 16. The method was designed 

to enable unbiased mapping of alternative RNA alleles corresponding to RNA editing or 

expressed single nucleotide polymorphisms (SNPs). Briefly, Bowtie17 and Blat18 were used 

to align all reads to the reference genome and Bowtie was used to align all reads to the 

transcriptome. Results from the three parallel mapping procedures were merged into a 

union. Final mapped reads were required to satisfy a dual-filtering scheme such that a read 

(or a pair of read in paired-end data) maps uniquely with up to n1 mismatches (per read) and 

does not map to any other regions with up to n2 mismatches (per read) (n2 > n1). For all data 

sets, n1 and n2 values were set to be about 5% and 12% of the read length, respectively. We 

previously showed that this mapping method effectively reduced the mapping bias to 

alternative alleles8, 16 and facilitated relatively accurate quantification of allelic ratios 

compared to other methods4.

All data sets from ENCODE cell lines, U87MG cells and GTEx human tissues were mapped 

in the same way as described above. For the 1000 Genomes data sets, we downloaded 

mapped reads (bam files) directly. However, we implemented an additional filtering step 
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using Blat to remove possible ambiguous mapping (such as those due to existence of 

pseudogenes or homologs), similarly as in19, 20.

Preprocessing to identify and filter mismatches in RNA-seq reads

The RNA-seq reads were piled up to identify mismatches relative to the reference human 

genome (hg19). All duplicate reads were removed within each RNA-seq library except the 

one with the highest-quality score at the mismatch position. Duplicate reads were defined 

here as (pairs of) reads mapped to exactly the same genomic locations. For each mismatch 

position, a total read coverage of ≥ 5 was required and the variant allele was required to be 

present in at least 3 reads. According to previous literature4, 7, 19-23, a number of filters were 

desirable to remove potential artifacts resulted from sequencing or mapping bias. We thus 

imposed additional procedures as described in our previous work4 to discard the following 

types of mismatches: those located in simple repeats regions or homopolymer runs of ≥ 5nt, 

those associated with reads substantially biased towards one strand, those with extreme 

variant allele frequencies (> 95% or < 10%), and those located within 4nt of a known 

spliced junction. To further reduce the impact of sequencing errors, we calculated a log-

likelihood ratio (LLR) to examine the likelihood of a mismatch being a sequencing error, as 

described in8. We only retained mismatches passing an LLR cutoff of 2.

The same procedures as described above (read mapping and mismatch filtering) were 

applied for all methods included in this study, i.e., the GIREMI, genome-aware, and 

multiple data sets methods. In addition, known SNPs (dbSNP) were excluded from predicted 

editing sites by the multiple data sets method.

GIREMI

The method GIREMI combines statistical inference of MI between pairs of single nucleotide 

variants (SNVs) in RNA-seq reads with machine learning to predict RNA editing sites. The 

input to GIREMI includes a list of SNVs (mismatches) derived from an RNA-seq data set 

and known SNPs in public databases such as dbSNP. The output is a collection of predicted 

RNA editing sites and their editing levels. Except public SNP information, GIREMI carries 

out all analyses using one RNA-seq data set of interest and does not rely on any other 

genomic or RNA-seq data sets.

Mutual information (MI) of SNVs and RNA editing prediction—As the first step of 

GIREMI, we identify known SNPs (dbSNP) in the list of SNVs derived from the RNA-seq 

reads. We then extract all RNA-seq reads that harbor the known SNPs and the subset of 

reads (or read pairs in paired-end RNA-seq; required ≥ 5 such reads) that cover more than 

one SNP. SNP pairs located in the same (pairs of) reads were retained for MI calculation. As 

an example, in the GM12878 data set, a total of 5,306 SNPs (out of 37,775 SNPs covered by 

≥ 5 RNA-seq reads) were involved in this calculation. In another less deeply sequenced 

RNA-seq data set (GTEx SRR595926, 31M mapped reads), 884 SNPs out of a total of 

10,590 RNA-seq-covered SNPs were used for this step. Although the % of SNPs used for 

the calculation of MI is not high, it is adequate to generate the reference MI distribution 

(such as that in Fig. 1b) for further prediction of RNA editing sites. The number of RNA 
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editing sites suitable for MI calculation is much larger than that of SNPs. For example, 

32,548 editing sites were used to generate the example distribution of MI (Fig. 1b).

For each SNV si, we consider all possible nucleotides A, C, G, T as the four possible states 

of the variable si. Thus, for a joint variable representing a pair of mismatches (si, sj), a total 

of 16 states are possible. Although it is unlikely that all 16 states are present in one RNA-seq 

data set, we use this scheme because it is general and can accommodate possible existence 

of sequencing errors or other complexity. The probabilities of observing each state of si, sj or 

(si, sj) were calculated using the maximum likelihood method. A value of 0.01 was assumed 

for states that were not observed in the actual data considering existence of sequencing 

errors of all possible nucleotides and accounting for low sequencing depth in realistic data 

sets. Incorporation of this pseudo value led to an increase of MI of about 0.2 for both SNPs 

and editing sites (Fig. 1b), but the final editing predictions with or without this pseudo value 

are very similar (data not shown). The MI of (si, sj) is thus:

where N = {A, C, G, T} and ni and nj represent the states of si and sj, respectively. We used 

natural log for the above formula.

Then, the MI of a SNP si is defined as:

where S is the collection of other SNPs paired with si, and T is the total number of pairs in S.

As an example, the distribution of I(si) values for SNP pairs detected in the GM12878 data 

set is shown (Fig. 1b). In theory, the maximum MI should be log(2) = 0.7 for SNP pairs. 

However, in practice, larger values were sometimes observed, due to limited read coverage 

at each site and the numerical difference between joint probability and marginal probability 

of the states. The marginal probability was estimated using all reads covering the particular 

SNV, whereas the joint probability was estimated using reads covering both SNVs. Thus, 

the number of joint reads is often smaller than that of the marginal reads and the joint 

probability is less accurately estimated than the marginal ones. This discordance sometimes 

led to MI values larger than the theoretical upper bound.

For each RNA-seq data set, the MI of SNPs is calculated independently. Thus, a data set-

specific distribution of I(si, sj) is derived. Subsequently, for a SNV sx that is not a known 

SNP, an I(sx) value is calculated similarly as described above by examining its relationship 

with other SNVs (either known SNPs or otherwise). Based on the distribution of I(si) of 

known SNPs, a P value is calculated for sx to test the null hypothesis that I(sx) is not 

different from the distribution of I(si) for SNPs. A P value cutoff of 0.05 was used to call 

RNA editing sites. Correction of P values for multiple testing was not applied due to the 
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discovery nature of this test. As an example, we predicted 31,660 RNA editing sites (99.6% 

being the A-to-G type) in this step for the GM12878 data set.

Generalized Linear Model (GLM) for the prediction of RNA editing—As the 

second step of GIREMI, RNA editing sites identified by the MI approach are used to train a 

GLM to predict additional editing sites. The GLM incorporates two types of features that 

have discriminative power for SNPs and RNA editing sites. The first feature quantifies the 

deviation of the allelic ratio of the unknown SNV from an expected allelic ratio reflecting 

the allelic expression of the respective gene. The second type of features represents the 

sequence preferences of the neighborhoods of RNA editing sites (mainly A-to-G). It should 

be noted that the GLM step only analyzes A-to-G mismatches as candidate RNA editing 

sites, without including other types of SNVs.

To estimate the expected allelic ratio r of a gene g, we extract all expressed heterozygous 

known SNPs (S) (dbSNP) in gene g (read coverage ≥ 5). The allelic ratio r is calculated by 

maximizing the log-likelihood function logL(r | D), where D refers to the RNA-seq data for 

gene g. We assume reads covering a specific SNP sj in gene g follow a binomial 

distribution. Thus, the estimated allelic ratio r̂ that maximizes logL(r | D) of gene g is:

where m and n refer to the number of reads with alternative and reference alleles, 

respectively. In practice, the haplotype information for SNPs in S is not known. Thus, we 

arbitrarily assign msj as the read count for the major allele and nsj as that for the minor allele 

in the RNA-seq data. This assumption may cause a biased allelic ratio larger than the actual 

value. Nevertheless, the same directional bias exists in the allelic ratio for a specific SNV 

that is to be compared to r̂. Thus, the impact of this bias will be largely canceled out. In 

cases where no SNP is available in gene g, an expected ratio of 0.5 is used assuming the 

gene has no allelic expression bias.

A heterozygous SNP is expected to have an allelic ratio that is largely consistent as the 

allelic ratio of the gene. In contrast, RNA editing sites may have allelic ratios that 

substantially deviate from that of the gene. Thus, we use the absolute difference (d) between 

the allelic ratio of the unknown SNVs and the estimated r̂ of the gene as one feature in the 

GLM. This feature has the discriminative power for SNPs and RNA editing sites 

(Supplementary Fig. 1c), but exceptions do exist. For example, it cannot identify editing 

sites with editing levels similar to allelic ratios of genetic SNPs in the same gene. In 

addition, a minor fraction of SNPs may have allelic ratios largely different from that of the 

entire gene if allele-specific splicing or other local RNA processing events affect the allelic 

expression of the SNPs16.

To increase the discriminative power, we incorporated sequence-based features into the 

GLM. Importantly, these features are not based on sequence motifs built from a priori 
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knowledge regarding RNA editing. Instead, they were derived using editing sites predicted 

by the MI step of GIREMI. Thus, the features are specific to the data set of interest without 

any a priori assumptions. To this end, we generate a positional weight matrix (PWM) for the 

sequence neighborhood of the predicted editing sites (Supplementary Fig. 1d). For an 

unknown SNV, a composite sequence score was calculated using its -1 and +1 nucleotides 

according to the PWM. It should be noted that putative editing sites predicted by the MI-

based approach are mostly (> 97%) of the A-to-G type. Thus, the sequence features derived 

here largely reflect those of A-to-I editing that is known to demonstrate nucleotide 

preferences at the -1 and +1 positions8.

Together, for each unknown SNV of the A-to-G type, the GLM estimation is:

where d represents the difference between the allelic ratio of the SNV and the estimated r̂ of 

the gene and c denotes the composite score for the sequence features. β0, βd and βc are the 

respective coefficients of the GLM, which are solved using a binomial link function.

The GLM of each RNA-seq data set was trained using the putative editing sites predicted by 

the MI approach. In addition, a leave-one-out scheme was applied where the genetic allelic 

ratio was estimated using all expressed heterozygous SNPs except one per gene. These 

randomly excluded SNPs were used as training data together with the putative editing sites. 

The training data was then separated into two random subsets of the same size. The first 

subset was used to parameterize the GLM model. The recall and precision of the predictive 

model were evaluated using the second subset. To reach a tradeoff between the recall and 

precision, an F measure was calculated as follows:

In the above F measure, we set β to be 0.5, which puts more emphasis on precision than 

recall. Finally, a cutoff for the predicted probability of a site being an RNA editing site was 

chosen to achieve an F measure of 0.75.

It should be noted that, although GLM was designed to predict A-to-G sites only, the MI 

method was not restricted to identification of A-to-G sites alone. Thus, other types of RNA-

DNA mismatches do exist in the final results, but with the vast majority being A-to-G. The 

biological credibility of the other types of RNA-DNA mismatches is still under debate, 

which is not a focus of this work.

The two steps in GIREMI demonstrate different efficacies for different types of editing sites. 

The MI step is most effective for editing sites in close proximity with other editing sites or 

SNPs (such as A-to-I editing in Alu regions that are known to cluster together). Its 

sensitivity is lower in predicting editing sites in isolation. In contrast, the GLM step, 

although contributing a relatively small number of additional sites overall as a second step 
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of GIREMI, is an important procedure to ensure high sensitivity in identifying recoding 

sites. Thus, both steps are essential for our method.

Code availability

GIREMI was implemented using a combination of R, Perl and C codes. The package is 

available at https://www.ibp.ucla.edu/research/xiao/GIREMI.html.

RNA-seq and SNP data sets

ENCODE RNA-seq data sets were downloaded from the UCSC Genome Browser (http://

genome.ucsc.edu/ENCODE/). In this study, we used the data sets derived from cytosolic 

polyadenylated RNA. U87MG RNA-seq data (wildtype and ADAR1 knockdown) were 

obtained from our previous study8. GTEx RNA-seq data sets were downloaded from dbGAP 

with permission. The 1000 Genomes RNA-seq data were downloaded from the Geuvadis 

project (http://www.geuvadis.org). SNPs derived from genome sequencing data were 

obtained from the 1000 Genomes project for GM12878 and a genome sequencing project for 

U87MG cells24. Public SNP data were obtained from dbSNP (version 137).

Tissue-specific editing (TSE)

In the analysis of the GTEx data, we compared the editomes of any pair of tissues included 

in this study. Each editing site was required to have a read coverage of at least 10 reads in ≥ 

75% of samples (i.e., individuals) in either tissue under comparison. A moderated t-test25 

was applied to determine whether the editing levels were significantly different across the 

two tissues (using samples that meet with the read coverage cutoff; FDR < 5%). Editing 

sites that passed this test were defined as TSEs.

The heatmap of editomes of different tissues (Fig. 2a) was generated based on Pearson 

correlation of pairs of samples. For each sample pair, only RNA editing sites with adequate 

read coverage (≥ 10 reads) in both samples were included. Hierarchical clustering was used 

to generate the clusters.

Conservation analysis of regions flanking editing sites

The same method as in our previous work8 was used to evaluate the conservation level of 

each editing site and their flanking regions. Briefly, with the 46-way multiz alignments from 

the UCSC browser26, we focused on the 10 primates, including Human, Chimp, Gorilla, 

Orangutan, Rhesus, Baboon, Marmoset, Tarsier, Mouse lemur, and Bushbaby. Based on the 

multiple sequence alignments, the percent identity at each nucleotide position of interest was 

calculated, together with a 95% confidence interval.

Gene Ontology (GO) analysis

GO analysis was conducted similarly as in27. Briefly, the GO terms of each gene were 

obtained from Ensembl. To identify GO categories that are enriched in a specific set of 

genes, the number of genes in the set with a particular GO term was compared to that in a 

control gene set. The control gene set was constructed so that the randomly picked controls 

and the test genes have one-to-one matched transcript length and GC content. Based on 
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10,000 randomly selected control sets, a P value for enrichment of each GO category in the 

test gene set was calculated as the fraction of times that Ftest was lower than or equal to 

Fcontrol, where Ftest and Fcontrol denote, respectively, the fraction of genes in the test set or a 

random control set associated with the current GO category. A P value cutoff (the smaller of 

1/10,000 or 1/total number of GO terms considered) was applied to choose significantly 

enriched GO terms.

Comparison of TSEs with binding sites of RNA binding proteins (RBPs)

Publicly available CLIP-Seq data were collected for hnRNP A1, A2/B1, F, M, U28, hnRNP 

H29, hnRNP C30, AGO2, IGF2BP1, QKI, PUM231, DGCR832, ELAVL133, EWSR1, FUS, 

TAF1534, LIN2835, MOV1036, PTB37, SFRS138, TDP4339, TIA1 and TIAL140. CLIP tag 

clusters were directly downloaded from the above publications or generated using our in-

house pipeline. TSEs in 3’ UTRs were then examined for their overlap with CLIP clusters of 

the above proteins collectively, similarly for non-TSEs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The GIREMI method
(a) RNA-Seq reads harboring multiple SNPs and/or RNA editing sites. The allelic 

combinations of two SNPs in the same reads are the same as their DNA haplotypes. In 

contrast, a SNP and an RNA editing site (or a pair of RNA editing sites) exhibit variable 

allelic linkage. (b) Distributions of MI associated with SNPs and RNA editing sites, 

respectively, estimated using GM12878 RNA-Seq data (ENCODE, cytosolic, polyA+) and 

its associated genome sequencing data. Our previous genome-dependent method was 

applied to identify RNA editing sites8. (c) Predicted RNA editing sites by GIREMI in the 

GM12878 data. Different fractions of genomic SNPs of GM12878 were assumed as 
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unknown by excluding them from dbSNP. For each fraction, the SNPs were selected 

randomly and the procedure was repeated 9 times. Results shown here are averages of the 9 

randomized trials. Gray bars: percentage of GM12878 SNPs among all single-nucleotide 

mismatches in the mapped RNA-Seq reads after filtering for artifacts (Online Methods). 

Orange bars: percentage of false positives (GM12878 SNPs) among all predicted editing 

sites (i.e., FDR). The number of predicted editing sites and % A-to-G editing are shown in 

orange. (d) Performance of GIREMI at different sequencing depth (down-sampled 

GM12878 data). Number of mapped reads (singletons) is shown along the x-axis. Fifty 

percent of the GM12878 SNPs were assumed to be unknown. Labels are similar as in (c).
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Fig. 2. RNA editomes of human tissues and individuals
(a) Comparison of RNA editing sites across human tissues. Hierarchical clustering of 

Pearson correlation coefficients is shown (calculated for editing ratios of all editing sites that 

are present in 35 samples). Samples are labeled by the rows with indicated color codes for 

individuals and tissues, respectively. Different brain regions are represented in the same 

color given their highly similar editing profiles. (b) Conservation of the immediate 

neighborhood of tissue specific editing (TSE) sites in 3’ UTRs. Sequence conservation 

(percentage of sequence identity in primates) of each position flanking editing sites (position 

0) is shown. Shaded regions represent 95% confidence interval. A similar plot for non-TSE 

sites is included for comparison purpose. (c) Distribution of editing sites of 93 human 

individuals in different types of intragenic regions. Editing sites were grouped according to 

their prevalence values in this population. “Noncoding” refers to noncoding genes or 

noncoding transcripts of coding genes. Regional distribution of nucleotides in the entire 

transcriptome of coding genes (without introns) is shown as a reference (rightmost bar 
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labeled as T). (d) Conservation of 3’ UTR regions flanking two groups of editing sites with 

different prevalence levels (solid lines), similar as in (b). Dashed lines correspond to the 

sequence identity if Gs in other genomes were assumed as a conserved base given a 

reference nucleotide A in human8.

Zhang and Xiao Page 16

Nat Methods. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Xiao Page 17

T
ab

le
 1

Pe
rf

or
m

an
ce

 o
f 

G
IR

E
M

I 
co

m
pa

re
d 

w
ith

 o
th

er
 m

et
ho

ds
 a

pp
lie

d 
to

 th
e 

G
M

12
87

8 
da

ta
 (

cy
to

so
lic

, p
ol

yA
+

 R
N

A
-S

eq
)

G
en

om
e-

aw
ar

e8
G

IR
E

M
I

M
ul

ti
pl

e 
da

ta
 s

et
s 

m
et

ho
d9,

c

R
eg

io
n

N
um

be
r 

of
 s

it
es

%
A

G
N

um
be

r 
of

 s
it

es
%

A
G

A
cc

ur
ac

ya
O

ve
rl

ap
b

N
um

be
r 

of
 s

it
es

%
A

G
A

cc
ur

ac
ya

O
ve

rl
ap

b

A
ll

41
,0

27
98

.8
%

37
,5

91
98

.6
%

98
.1

%
90

.0
%

8,
30

7
90

.2
%

85
.0

%
18

.5
%

A
lu

39
,7

57
99

.7
%

36
,1

31
99

.0
%

99
.4

%
90

.4
%

7,
79

7
98

.5
%

87
.1

%
24

.9
%

R
ep

et
iti

ve
 n

on
-A

lu
26

0
88

.6
%

26
7

83
.7

%
84

.3
%

86
.4

%
26

65
.6

%
65

.4
%

14
.8

%

N
on

-r
ep

et
iti

ve
1,

01
0

73
.5

%
1,

19
3

82
.8

%
73

.8
%

87
.6

%
48

4
41

.0
%

55
.6

%
29

.2
%

a A
cc

ur
ac

y 
w

as
 d

ef
in

ed
 a

s 
(1

-%
 S

N
Ps

 a
m

on
g 

pr
ed

ic
te

d 
ed

iti
ng

 s
ite

s 
in

 e
ac

h 
ca

te
go

ry
);

 3
0%

 o
f 

G
M

12
87

8 
SN

Ps
 w

er
e 

as
su

m
ed

 to
 b

e 
un

kn
ow

n 
in

 a
pp

ly
in

g 
th

e 
G

IR
E

M
I 

an
d 

m
ul

tip
le

 d
at

a 
se

ts
 m

et
ho

ds
.

b O
ve

rl
ap

 w
as

 c
al

cu
la

te
d 

re
la

tiv
e 

to
 th

e 
re

su
lts

 o
f 

th
e 

ge
no

m
e-

aw
ar

e 
m

et
ho

d.

c R
es

ul
ts

 w
er

e 
de

ri
ve

d 
us

in
g 

tw
o 

da
ta

 s
et

s 
(G

M
12

87
8 

an
d 

Y
H

 R
N

A
-S

eq
, S

up
pl

em
en

ta
ry

 N
ot

e 
3)

. E
di

tin
g 

si
te

s 
w

er
e 

id
en

tif
ie

d 
in

 th
e 

tw
o 

da
ta

 s
et

s 
se

pa
ra

te
ly

, a
nd

 f
in

al
 G

M
12

87
8 

ed
iti

ng
 s

ite
s 

w
er

e 
ca

lle
d 

by
 

re
qu

ir
in

g 
th

ei
r 

pr
es

en
ce

 in
 Y

H
 r

es
ul

ts
. R

es
ul

ts
 o

f 
an

ot
he

r 
m

od
e 

of
 th

e 
m

ul
tip

le
 d

at
a 

se
ts

 m
et

ho
d 

(p
oo

le
d 

sa
m

pl
es

) 
ar

e 
in

cl
ud

ed
 in

 S
up

pl
em

en
ta

ry
 T

ab
le

 2
.

Nat Methods. Author manuscript; available in PMC 2015 October 01.


