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Abstract

Introduction: Histopathological images have rich structural information, are 
multi‑channel in nature and contain meaningful pathological information at various 
scales. Sophisticated image analysis tools that can automatically extract discriminative 
information from the histopathology image slides for diagnosis remain an area of 
significant research activity. In this work, we focus on automated brain cancer grading, 
specifically glioma grading. Grading of a glioma is a highly important problem in 
pathology and is largely done manually by medical experts based on an examination of 
pathology slides (images). To complement the efforts of clinicians engaged in brain cancer 
diagnosis, we develop novel image processing algorithms and systems to automatically 
grade glioma tumor into two categories: Low‑grade glioma  (LGG) and high‑grade 
glioma (HGG) which represent a more advanced stage of the disease. Results:  We 
propose novel image processing algorithms based on spatial domain analysis for 
glioma tumor grading that will complement the clinical interpretation of the tissue. 
The image processing techniques are developed in close collaboration with medical 
experts to mimic the visual cues that a clinician looks for in judging of the grade of the 
disease. Specifically, two algorithmic techniques are developed: (1) A cell segmentation 
and cell‑count profile creation for identification of Pseudopalisading Necrosis, and 
(2) a customized operation of spatial and morphological filters to accurately identify 
microvascular proliferation (MVP). In both techniques, a hierarchical decision is made 
via a decision tree mechanism. If either Pseudopalisading Necrosis or MVP is found 
present in any part of the histopathology slide, the whole slide is identified as HGG, 
which is consistent with World Health Organization guidelines. Experimental results 
on the Cancer Genome Atlas database are presented in the form of:  (1) Successful 
detection rates of pseudopalisading necrosis and MVP regions, (2) overall classification 
accuracy into LGG and HGG categories, and (3) receiver operating characteristic curves 
which can facilitate a desirable trade‑off between HGG detection and false‑alarm rates. 
Conclusion: The proposed method demonstrates fairly high accuracy and compares 
favorably against best‑known alternatives such as the state‑of‑the‑art WND‑CHARM 
feature set provided by NIH combined with powerful support vector machine classifier. 
Our results reveal that the proposed method can be beneficial to a clinician in effectively 
separating histopathology slides into LGG and HGG categories, particularly where the 
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INTRODUCTION

The advent of computer‑aided diagnosis dates 
back to 1980s with the emergence of digital 
mammography.[1] Since then, many advances in 
automated image processing with applications in medical 
imaging have been developed. For instance, development 
of quantitative image analysis tools as a complement 
to the effort of pathologists is an active research 
direction.[2‑4] There is an increasing need for automated 
diagnosis to assist the pathologist by differentiating 
obviously diseased cases from benign or negative ones. 
A potential benefit may be to allow the pathologist more 
time to focus on more complicated cases that are not as 
easily diagnosable.

Histopathological images provide an informative view 
of the underlying tissue since the structure of the tissue 
is preserved in the preparation process. Moreover, the 
diagnosis from histopathology images is considered to 
be the “gold standard” in diagnosing a large number 
of diseases including, but not limited to many types of 
cancer.[5]

Recent work has shown the necessity of quantitative 
analysis of histopathological images, specifically analysis 
of spatial structure of histopathology imagery. Structural 
analysis of these images can be tracked back to the work 
of Weind et  al.[6] and Bartels et  al.[7] and continued by 
Doyle et  al.[8] who introduced graph‑based features to 
exploit spatial structure inherent in images. Later, a 
hybrid classification method has been developed that 
combines structural and statistical information obtained 
from images.[9] Furthermore, histopathological databases 
are investigated using patch‑based analysis methods to 
decompose whole slide images of histology sections into 
distinct patches for genomic data analysis.[10‑12] Recently, 
Srinivas et  al. used a simultaneous sparsity model for 
histopathological image representation and classification 
for the purpose of disease detection.[13,14]

While disease detection is a very challenging problem in 
histopathology, disease grading is critical to classifying 
various types of cancer.[8,15] In this paper, we address 
a disease grading problem in brain cancer through a 
customized development of quantitative algorithms 

rooted in spatial domain analysis. These algorithms are 
intended to assist the clinician who has already arrived at 
the diagnosis of glioma after reviewing the tumor sample. 
The grades of glioma that need to be distinguished from 
each other per World Health Organization  (WHO) 
designations are low‑grade glioma (LGG, WHO Grade II) 
and high‑grade glioma (HGG, WHO Grade  III or IV) 
which have some specific structural characteristics 
pertinent to each one, separately. Pathologists can generally 
discriminate WHO Grade  I astrocytomas  (Juvenile 
Pilocytic Astrocytomas) from the tumors that comprise 
WHO Grade  II–IV gliomas. In order to assist the clinical 
determination of glioma grade, we propose an image 
processing method to locate these characteristics in 
the tissue image. Figures  1 and 2 show two examples 
of LGG and HGG whole slide tissues (on the left). On 
the right‑hand side of these figures, we see a zoomed‑in 
view of the underlying tissue. Tissue images illustrated 
in this paper are obtained from Lawrence Berkeley Lab 
website.[16]

High‑grade gliomas include WHO grade  III 
and grade  IV tumors. Of these, the dominant 
histological types are anaplastic astrocytoma, 
anaplastic oligodendroglioma, and glioblastoma 
multiforme  (GBM). GBM is the most aggressive type 
of brain tumor in glial cells with an incidence of 
3.19/100,000 person‑years in the United States and very 
poor overall survival rate.[17] HGGs are characterized by 
the presence of two main hallmarks.[18] The first one is 
the existence of areas of necrotizing cells surrounded 
by lined‑up anaplastic cells called pseudopalisading 
necrosis  (hereafter referred to as necrosis). The second 
characteristic is the presence of proliferation of 

analysis of a large number of slides is needed. Our work also reveals that MVP regions 
are much harder to detect than Pseudopalisading Necrosis and increasing accuracy of 
automated image processing for MVP detection emerges as a significant future research 
direction.
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Figure 1: Example of high-grade glioma (HGG) whole slide images 
(a) and a zoomed in view of the HGG tissue (b)
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enlarged blood vessels in the tissue which is known as 
microvascular proliferation (MVP).

Necrosis forms because the tumor outpaces its blood 
supply as the tumor grows. As a result, cells in that 
particular area cannot survive, leaving behind an area 
devoid of cells which becomes enveloped by tumor cells 
in a radial manner. Figure  3a shows a representation 
of this phenomenon. The center of the image shown 
in this figure corresponds to the area devoid of cells, 
and this area runs sidelong across the tissue. Tumor 
cells surround this area and can be detected by their 
lined‑up structure. In fact, tumor cells arranging 
themselves radially around a cell‑devoid area are known 
as pseudopalisades.[19,20] The presence of necrosis region 
within the tissue immediately implies that the tissue 
belongs to a HGG case.

On the other hand, MVP results from the development 
of new blood vessels within a tumor due to the 
increased demand of blood by cancerous cells.[17,21] As 
this occurs, tumor cells surround the blood vessels, 
and the blood vessels form multiple endothelial layers. 
Figure  3b shows a tissue region containing multiple 
MVP regions. As one can see, the MVP regions are 
darker in color due to H  and  E staining method. As a 
consequence of MVP manifestation in the tissue, it is 
classified as HGG.

In contrast to HGG, LGG refers to a tumor that is 
hypercellular due to neoplastic cell proliferation relative 
to normal brain but lacks MVP or necrosis. In Figure 3c, 
an example of a portion of LGG tissue is shown.

From an image understanding standpoint, the image 
shown in Figure  3c has two structural and spatial 
characteristics. A  visual smoothness can be seen by the 
pinkish color throughout the image background, and the 
cells (represented by blue dots) are spread evenly throughout 
the tissue. In addition to these two characteristics, absence 
of necrosis region or MVP indicates a low‑grade tumor 
type. This is vastly different than HGG, which contains one 
or more necrosis or MVP regions or both.

Main Contributions
The main contributions of this paper are:
•	 Development of an automated cancer grading system 

for classifying HGG and LGG types via image analysis 
of the digital histopathology slides. This algorithm is 
designed to complement the clinical interpretation 
of diseased tissue in which the underlying diagnosis 
of glioma has already been made

•	 The development of novel, customized image 
features for accurately identifying MVP and necrosis 
regions based on spatial domain processing and 
morphological transforms. While necrosis region 
identification in histopathology images has been 
studied in recent work,[10,11] to the best of our 
knowledge, ours is one of the earliest attempts to 
characterize MVP regions

•	 A new hierarchical mechanism inspired by clinician 
assessment of tissue imagery which involves: (1) A “big 
picture” analysis of the structural information in 
a tissue followed by (2) a “detailed” decision tree 
mechanism which makes the final determination of 
whether the region is necrotic, has MVP or neither.

•	 Extensive experimental validation on the well‑known 
the Cancer Genome Atlas  (TCGA) database which 
contains labeled LGG and HGG image data of brain 
tissue. Favorable comparisons are shown against 
state‑of‑the‑art image classification toolkits such as 
the NIH WND‑CHARM.

MATERIALS AND METHODS

The presence of either Necrosis or MVP forms a definite 
indicator of HGG. In this section, we develop a set of 

Figure 2: Example of low-grade glioma (LGG) whole slide images 
(a) and a zoomed in view of the LGG tissue (b)
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Figure 3: Example images of brain tissue (a) low-grade glioma, (b) necrosis region  and (c) microvascular proliferation as two main hallmarks 
of high-grade glioma
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analytical methods that can automatically find and 
identify necrosis and MVP regions from an analysis of the 
tissue images. For each histopathology slide image, a set 
of smaller sub‑images known as regions of interest (ROI) 
is first extracted from the whole slide image and fed to 
necrosis and MVP detection algorithms below. These 
ROIs can be extracted manually/automatically by tiling 
the tissue image carefully or by using a random tiling of 
overlapping rectangular regions. However, blank regions 
surrounding the tissue specimen as well as artifacts 
such as tissue folds and pen marks, used by pathologists 
while they were studying the slide, can cause unexpected 
results. As a result, we extracted ROIs from the whole 
slide images in order to avoid selection of these 
regions.[13,22]

Necrosis
In this part, we propose a method to identify necrosis 
regions within a tissue image by trying to simulate the 
visual appearances of necrosis regions within tissue. 
A  necrosis region typically involves a large number of 
lined‑up cells that form a ring around the area which is 
devoid of viable cells. The essence of our method lies in 
cell segmentation, followed by creation of a “cell‑count 
profile” which is subsequently used for necrosis detection. 
A  step‑by‑step description of our algorithmic procedure 
is provided as a flowchart in Figure  6 under “Necrosis 
Detection.” The algorithm has two major steps: First, 
using a cell segmentation and a cell count profile, we 
investigate the whole image and find candidate regions 
that may exhibit necrosis. This step can be seen as an 
overall investigation of the tissue or a “big picture” 
analysis. The candidates’ regions found are then passed on 
to the decision stage where detailed investigation of the 
region is performed to verify the presence or absence of 
necrosis.

Cell Segmentation
Automated cell segmentation in histopathology is generally 
difficult due to the large variability in images  (different 
microscopes, stains, cell types, cell densities, etc). 
However, the vast majority of cell segmentation methods 
are based on intensity thresholding, feature detection, 
morphological filtering, and region accumulation.[23] Our 
cell segmentation method is based on the combination of 
intensity thresholding and a sequence of morphological 
filtering operations. We perform an adaptive intensity 
thresholding on increased‑contrast image  (by gamma 
transform) and then apply a sequence of adaptive opening 
operators on the binary image to reduce the noise in the 
binary image and also enhance the segmented image by 
overcoming the under‑segmentation problem.

In Figure  4a, we demonstrate an example of an ROI 
containing a Necrosis region. We use our segmentation 

Figure 4:  An example of flow of procedures in Necrosis detection 
algorithm. (a) Region of interest (b) Segmented image (c) Cell-
count profile obtained from segmented image (d) Horizontal view 
of cell-count profile
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Figure 5: An example of flow of procedures for MVP detection algorithm on a small ROI. (a) sample ROI (b) The output image after applying 
median filter (c) filtered image by mean filter (d) detected valley in the image showed as a red dot (e) segmented potential MVP region
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technique and obtain Figure  4b which is the segmented 
image in binary format. In the binary image, cells can be 
seen as white blobs while the black region corresponds to 
background non‑cell region.

Cell‑count Profile
The next step is to find a cell‑count profile 
from the segmented image. In order to obtain such a 
profile, we perform a cell counting on a fixed‑size window 
on the segmented image and roll over the window around 
the image with a fixed step size to find the number 
of cells in each window. A  profile generated by this 
algorithm from analyzing Figure 4b is shown in Figure 4c. 
Experimentally, we chose a window size to be 50 pixels 
and step size as 30 pixels.

Decision Tree
In Figure  4c, the area of dead cells with increased 
cellularity around corresponds to the blue “valley” in 
the center surrounded by red high altitudes  (“peaks”). 
Our algorithm searches for such structure throughout 
the tissue by finding the local minima in the cell‑count 

profile. An example of local minima is illustrated in 
Figure  4d. Once such a pattern is found, it is marked as 
a potential candidate for Necrosis. We use a hierarchical 
decision structure via a “Decision Tree” to further 
validate if the pattern corresponds to a necrosis region. 
The usage of the decision tree allows for transparency in 
the decision‑making process and is particularly helpful 
to a clinician when providing an informed decision. 
The structure  (topology) of the tree is based on domain 
knowledge and clinician input. This structure is illustrated 
in Figure  7a. Each region that has been found from the 
cell‑count profile and valley detection is processed via the 
tree. On each node of the tree a case‑specific criterion is 
checked and based on the result, we proceed to the next 
level of the tree. These criteria are as follows: Number 
of cells inside dead region, number of cells around dead 
region on the peaks, ratio of the two numbers, area of 
the dead region, etc., As can be seen from Figure  7a, 
there are some design‑specific parameters, t1., t5, that are 
learned using the training  (see section Training vs. Test) 
and also based on the inputs from the clinician to obtain 

Figure 6: Pipeline of procedures for each method
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the best results. Once the decision tree confirms the ROI 
to be necrotic, the histopathology image is identified as 
HGG.

Microvascular Proliferation
Another phenotypic hallmark to identify a case as HGG 
is the presence of MVP, which is essentially an increased 
number of hypertrophic endothelial cells in tumorous 
tissue. An MVP region is characterized by the presence 
of hypertrophic endothelial cells in the tissue with 
different color shading and thick layers of cell rings 
inside the vessel. Therefore, we propose an algorithm 
that can automatically capture the same characteristics 
through a set of spatial and morphological filters. 
A detailed explanation of each piece is given below and is 
summarized in Figure 6 under “MVP detection.” Similar 
to Necrosis detection, MVP detection algorithm also has 
two major steps: First, a “big picture” analysis is made 
by using morphological and spatial domain information 
to investigate the whole image and find candidate MVP 
regions. Any candidate who is found will be passed on 
to the decision stage for further investigation and to 
verify the presence or absence of MVP. A  more detailed 
explanation follows.

Spatial and Morphological Transforms
We propose to apply a set of morphological and spatial 
filters to find and identify MVP regions within the tissue. 
The motivation for applying spatial filters is to enhance 
MVP regions within the image while at the same time 
blend‑in non‑MVP regions, whereas morphological 
transformations are applied to accurately find and label 
regions correspond to MVP. To achieve these goals, we first 
make use of order statistics filters such as the median filter 
and filter the input ROI image, recursively. Then, we apply 
mean filter to obtain a smooth image. This procedure 
makes the non‑MVP regions to blend in and pronounce 
MVP regions as was desired. In the next step, because 
of color differences between MVP regions and non‑MVP 
regions we desire to have different color shadings in the 
smoothed image such that MVP regions have darker pixel 
intensities and non‑MVP regions are relatively brighter. 
This motivates us to find the points within the ROI that 
have relatively lower pixel intensity by applying a local 
minima finder (“valley detection”) throughout the filtered 
image. We define these lower intensity regions  (darker 
areas) to be a “valley” surrounded by brighter pixel 
intensity regions. Hence, the problem of finding potential 
MVP regions reduces to first identifying “valleys.”

In parallel to these spatial filters, a sequence of 
morphological transformations[24,25] is applied on the 
input ROI to find areas of potential MVP. This sequence 
of filters is shown in Figure  6, and their output will be a 
binary image that segments the regions in the image that 
have a similar structure. These regions are then verified to 
be potential MVP regions by checking whether the “valley” 

obtained from spatial filters lies inside the region or not. 
An example of how these procedures can help is shown in 
Figure  5 for a small sample ROI. As it can be seen from 
the Figure, the valley detected lies inside segmented region 
and will be considered to be a potential MVP.

Decision Tree
We further investigate the potential MVP regions  (white 
region) in the binary image as a possible MVP to determine 
whether it indeed corresponds to an MVP region or not. 
Similar to Necrosis detection, this is done by a “Decision 
Tree” structure based on the features extracted from 
white region  [Figure  5e] as a possible MVP. Again, this 
tree is built based on our prior knowledge of the problem 
and is inspired by the clinician input. The potential MVP 
regions found in the previous step are passed on to the 
decision tree to obtain the final decision. The structure 
of the decision tree is depicted in Figure  7b. On each 
node of the tree, a set of specific criteria is checked 
which are mainly based on the following measurements: 
Equivalent diameter of the region, area of the region, 
perimeter, major axis length, etc., Likewise, Necrosis 
detection, design parameters  (s1,…, s10) are optimized 
in training  (see section Training vs. Test). Eventually, 
once it is confirmed from the decision tree that potential 
region is indeed an MVP region; the whole ROI will be 
identified as HGG.

While presence of MVP or Necrosis implies an HGG 
decision on the sample tissue, absence of both means 
an LGG case. In the next section, we present the 
experimental results of the aforementioned methods.

EXPERIMENTAL ANALYSIS

In this section, we present a set of experimental results 
on the brain cancer histopathological images obtained 
from TCGA database provided by the National Institutes 
of Health.[26] A brief description of this database is given 
in the next subsection.

Database
The Cancer Genome Atlas is a comprehensive effort to 
increase our understanding of cancer through cellular 
and molecular analysis, and its goal is to improve the 
ability to diagnose, treat, and prevent cancer.[27] TCGA 
project is producing large multimodal datasets containing 
histopathology images, radiology, genomic, and clinical 
reports for  >20 types of cancer and many subtypes. 
There are >500 sample images for each type of tumor in 
TCGA database which makes it a high impact database 
in cancer diagnosis and treatment.[26]

Training Versus Test
Success of the proposed classification algorithms is based 
on accurate learning of model parameters in the training 
phase. These model parameters are learned based on 
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the clinician input and using a set of 10 training ROIs 
from each class representing Necrosis, MVP, and LGG. 
In particular, a nested cross‑validation scheme[28,29] that 
divides the available training images into two parts for 
coarse learning and fine tuning of parameters is employed 
to efficiently learn the model parameters. The same set 
of training ROIs was later used for training the support 
vector machine (SVM) classifier.

For the experiments to follow, a set of 51 HGG and 87 
LGG cases was chosen from the TCGA database for 
further investigation from which a set of ROI of size 3000 
by 3000 pixels  (clinician input) were extracted. Then 
each ROI was investigated via the proposed algorithms. 
Among 51 provided HGG cases, 21  cases were manually 
labeled as containing Necrosis regions by the clinician 
and 32 as MVP, which means 2  cases had both MVP 
and Necrosis regions. The LGG cases do not contain any 
traces of Necrosis or MVP.

Results
We present three sets of results in this section. First, 
we validate our proposed method for Necrosis detection 
within the tissue, then MVP detection algorithm is 
validated and finally, we aggregate the results of both 
algorithms to obtain classification results of LGG cases 
versus HGG which is the main goal of this paper. Finally, 
we present the sensitivity analysis of our proposed method 
and present the receiver operating characteristics  (ROC) 
curves which will be briefly described later.

Necrosis Detection
We applied our proposed algorithm for detecting and 

identifying Necrosis regions within the histopathology 
image slide. There are 21  cases with Necrosis region and 
117 without any necrosis region, and Table 1 summarizes 
the obtained result. It is readily apparent from Table  1 
that necrosis detection accuracy is quite high 95%. 
Likewise, a non‑necrotic case is confused to be a Necrosis 
region only about 17% of the time.

Micro‑Vascular Proliferation Detection
Table  2 similarly presents the confusion matrix for 
detecting MVP regions. We applied our proposed 
method on a set of 32 MVP cases and 106 cases without 
any MVP within the tissue slide image. Table  2 also 
demonstrates promisingly high accuracy and results may 
be interpreted in a manner similar to Table  1. Note, 
however, that MVP detection accuracy is not as high as 
comparable rates for necrosis detection. This is because 
MVP detection is inherently harder than necrosis 
detection due to structural complexity of MVP regions. 
In particular, the cell structure and morphological 
features of cells are more likely to be confused in MVP 
versus non‑MVP regions. While these numbers in Table 2 
demonstrate the promise of our method, the results also 
underline a future research direction in improving MVP 
detection accuracy by use of more sophisticated image 
representation techniques.

High‑grade Glioma Versus Low‑grade Glioma
Here, we optimize MVP and necrosis detection algorithms 
in order to get the best classification results for LGG 
versus HGG cases. As mentioned previously, there are 51 
HGG cases versus 87 LGG cases and the results are given 

Figure 7:  Decision Trees (a) Necrosis Decision Tree (b) MVP Decision Tree

ba



J Pathol Inform 2015, 1:15	 http://www.jpathinformatics.org/content/6/1/15

Table 1: Recognition rate (%) of our proposed 
method for necrosis detection

Tissue type Necrosis Not necrosis

Necrosis 95.2 4.8
Not necrosis 17.1 82.9

Table 2: Recognition rate (%) of our proposed 
method for MVP detection

Tissue type MVP Not MVP

MVP 75.0 25.0
Not MVP 26.4 73.6

MVP: Micro‑vascular proliferation

Table 3: Recognition rate (%) for HGG versus 
LGG classification

Tissue type HGG LGG Method

HGG 66.6 33.4 SVM + WND‑CHARM
88.2 11.8 Proposed method

LGG 29.9 70.1 SVM + WND‑CHARM
17.2 82.8 Proposed method

HGG: High‑grade gliomas, LGG: Low‑grade gliomas, SVM: Support vector machine

in Table 3 that is showing significant accuracies in HGG 
versus LGG classification problem.

We also compare our results against WND‑CHARM 
features[30,31] which is known to be a state of the art 
tool for interpreting and classifying medical images 
and has been applied successfully in the past to 
many histopathology classification problems.[32] After 
extracting WND‑CHARM features, an SVM classifier 
with polynomial kernel is used for decision‑making. 
Regarding feature selection from the WND‑CHARM 
set, we picked the most relevant features to 
histopathology offered by[33] including histogram 
information, morphological features and statistics, 
wavelet coefficients, image statistics, etc., The source 
code for WND‑CHARM is made available online by the 
National Institutes of Health at: http://ome.grc.nia.nih.
gov/wnd-charm/

Comparison of our methods’ performance with 
SVM  +  WNDCHARM firmly establishes the merits 
of our proposed algorithms. Note that the overall 
classification accuracy using WNDCHARM features 
combined with SVM is 68.8% while our method accuracy 
is 84.7% which is a significant improvement for this 
relatively new line of investigation.

Sensitivity Analysis
Typically in medical image classification problems, 
pathologists desire to see a reduced probability of miss 
(i.e. classifying HGG cases as LGG in this case) while also 
having low false alarm  (falsely classifying LGG as HGG) 

rate. Hence, we present ROC curves which are capable of 
enabling a graceful trade‑off between false alarm rate and 
probability of miss in classification problems. In order to 
obtain ROC curves, a statistic of interest  (a function of 
algorithm parameters) is chosen from the problem and 
by sweeping this statistic over its range of possible values 
we can obtain different classification rates and plot the 
corresponding ROC.

In our analysis, a statistic of interest can be any of criteria 
in the decision trees like area, perimeter, number of 
cells, etc., or a combination of these. Figure 8 shows the 
ROC curves for MVP and necrosis detection algorithms 
as well as LGG‑HGG classification. For MVP detection 
algorithm, ROC curves are obtained using a weighted 
increment of two decision variables, that is, area and 
minor axis length. Essentially, we increased these two 
parameters simultaneously, from their minimum possible 
value to their maximum possible value and at each step 
we obtained the corresponding classification rates. The 
reason for having a weighted increment is because that 
these parameters do not have the same range, and we 
have to do a weighted increment to normalize these 
parameters. For necrosis detection, a weighted increment 
of area and the number of cells in the dead region are 
chosen to obtain ROC curve. We also used these decision 
statistics for plotting ROC curve of HGG‑LGG problem. 
Furthermore, in this case, the decision variable that is 
used for generating ROC curve of SVM + WNDCHARM 
is based on the margin between the two classes that SVM 
is maximizing as described.[13]

In the analysis of ROC curves, the best overall 
performance corresponds to the point that minimizes 
the sum of false alarm and misses probability. However, 
a clinician can choose a desirable probability of miss and 
corresponding false alarm rate depending on the intrinsic 
difficulty of the classification problem and severity of the 
penalty for misclassifying an HGG.

There are several other parameters in the model, and the 
overall performance of the whole algorithms is sensitive 
to the choice of those. Consequently, we present a 
set of experiments that shows the sensitivity of the 
overall accuracy with respect to the choice of a pair of 
parameters. There are many different pairs that can be 
chosen for this purpose, however, we carefully picked 
4 different pairs of parameters that are experimentally 
determined to most strongly effect on the output of 
the classifier. Figure  9 shows the sensitivity analysis 
for some of the parameters in the model. Essentially, 
we changed the value of parameters in the decision 
tree and for each set of new parameters we obtained 
the overall classification performance of our method 
and plot  (visualize) these results in Figure  9. Two key 
observations may be made from the plots in Figure 9: (1) 
White squares correspond to the parameters that lead 
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Figure 8: Receiver Operating Characteristics (ROC) curves for different methods. (a) ROC curve of the proposed method for MVP detection 
(b) ROC curve of the proposed method for Necrosis detection (c) HGG vs. LGG ROC curve

c
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Figure 9: Sensitivity of overall accuracy of the microvascular proliferation detection (a-c) necrosis detection (d) to the choice of parameters 
in the model. We deliberately chose the most influential parameters in the decision trees (s4, s8, s10, t4, t5) and evaluated the performance 
(overall classification accuracy) of each algorithm with respect to the change of these parameters. The white squares correspond to the 
higher overall accuracies while darker squares mean lower performance. The gray bar is showing the accuracies in percentage
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to the best overall accuracy and  (2) the accuracy varies 
gracefully over the range of parameter values indicating 
that the proposed method is robust to slight changes in 
parameter values.

Reproducibility
The results in this paper are entirely reproducible. The 
MATLAB code for the algorithms developed is posted 
online at: http://signal.ee.psu.edu/hgglgg.html.

DISCUSSION

We have developed a brain cancer grading method to 
classify HGG and LGG in H  and  E stained images of 
human brain and proposed a set of novel algorithms for 
identifying the most prominent features of HGG, that 
is, presence of MVP and Necrosis. The main novelty of 
our approach is that unlike previous studies on tumor 
grading, we developed a set of customized method that 
attempts to mimic the way a clinician looks for the MVP 
and necrosis regions in a tissue image. In our proposed 
algorithm, we first use coarse visual cues  (such as 
existence of areas with lower cellularity within the tissue) 
that the clinician searches for while looking for these 
regions, and find regions that may be potential candidates 
for MVP/necrosis regions. In this way, our algorithm will 
assist the clinician in arriving at the correct diagnosis. 
Once the pathologist has confirmed that the lesion in 
question is a glioma  (excluding other brain lesions such 
as meningioma, or WHO grade  I astrocytomas), the 
algorithm can be deployed to assist in grading the lesion. 
A  customized set of features and corresponding decision 
rules are developed for this problem based on trying to 
mimic the visual analysis and decision‑making process 
of a clinician. In particular, we first develop coarse visual 
cues (such as the existence of areas with lower cellularity 
within the tissue) to narrow down potential candidates for 
MVP/necrosis regions. Then, more detailed information is 
further investigated by means of a decision tree which is 
another key algorithmic contribution of our method.

Specifically, the central idea of our approach for necrosis 
detection is to exploit cell segmentation in the tissue 
and generate a cell‑count profile based on the segmented 
image. MVP detection is also accomplished by applying 
a set of spatial filters and analyzing the filtered image 
via morphological operators. In addition, a decision 
tree mechanism is used to verify whether a candidate 
sub‑region of a histopathology slide actually corresponds 
to MVP or Necrosis.

In this initial study of MVP and necrosis detection, we 
observed that promising results are obtained from our 
algorithms for both MVP and necrosis detection; however, 
there seems to be potential for further improvement 
on MVP detection performance. As stated before, MVP 
detection is an inherently difficult problem because 
of the complexity of cell structure and morphological 

features of the cells in MVP regions. Due to this, it is 
more likely that non‑MVP regions become confused 
with MVP regions by our algorithm and vice versa. 
Consequently, MVP detection emerges as a key future 
research direction. An additional area of improvement 
of this algorithm would be the ability to identify mitotic 
figures which are also a significant histologic feature that 
discriminates LGG from HGG. However, since TCGA 
database largely contains traces of MVP and Necrosis, we 
focused on these two abnormalities for identifying HGGs.

A potential limitation to our study is that the algorithms 
require an adequate sample to determine tumor grade. 
Similarly, a clinician would require enough tumor 
material to make the diagnosis. Because even a single 
focus of MVP or necrosis can result in the diagnosis of 
HGG, the algorithms can, therefore, assist the pathologist 
in arriving at the correct diagnosis.

By performing extensive experimental results on the 
TCGA database, we demonstrate the merit of our 
proposed method using a variety of figures of merit, 
namely: Confusion matrices, ROC curves, and sensitivity 
analysis. The confusion matrices reveal that our method 
achieves convincing results in terms of classification 
accuracies including “MVP as MVP,” “not‑MVP as 
Not‑MVP,” “Necrosis as Necrosis,” “Not‑Necrosis as 
Not‑Necrosis,” “LGG as LGG,” and “HGG as HGG” 
rates. For benchmarking, we compare the performance of 
our algorithm with the NIH’s well‑known WND‑CHARM 
software. Our classification rates compare favorably against 
WND‑CHARM and hence firmly establish the practical 
merits of our proposed image processing algorithm and its 
effectiveness in automated inference for grading glioma 
brain tumor. Finally, ROC curves and sensitivity analysis 
plots are presented that elaborate on parameter choices 
to achieve a desirable trade‑off between the probability 
of miss and false alarm. Our algorithm also exhibits 
robustness in the vicinity of optimal parameter choices, 
which is a key to practical deployment of any automated 
image analysis and disease grading technique.
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