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Abstract

Advanced glycation end products (AGEs) are an abnormal modification of the collagenous matrix 

in bone, and their accumulation contributes to alteration of mechanical properties. Using a mouse 

model of focal external radiotherapy, we quantified the time-dependent changes in the glycation of 

bone collagen following unilateral hindlimb exposure to 4 daily fractions of 5 Gy. Fluorometric 

analysis of decalcified femurs demonstrated a significant and transient increase in the quantity of 

pentosidine, pyridinolines, and non-specific AGEs per unit of collagen at one week post-radiation. 

These differences did not persist at 4, 8, 12, or 26 weeks post-radiation. Radiation had no effect on 

bone collagen content. We hypothesize that following the transient increase in glycation products, 

these cross-links are then removed as a result of increased post-radiation osteoclast activity and 

continued mineralization of the bone.

INTRODUCTION

Although fragility fractures are a frequent complication associated with radiation therapy for 

soft tissue sarcoma, there are currently no viable prevention strategies. Mechanical testing 

and computational modeling indicate that decreased strength in irradiated bone cannot be 

explained by changes in mineral density or bone quantity alone but are also likely due to 

embrittlement of the bone tissue (1). There is substantial laboratory and epidemiological 

evidence for the role of material properties in regulation of bone mechanical properties, 

including increased fragility associated with diabetes and age (2–20).

The organic matrix, consisting primarily of type I collagen, contributes extensively to the 

mechanical integrity of bone (20). Modification of collagen can occur through glycosylation, 

cross-linking, and fibril fragmentation (3, 21). Enzymatic cross-linking of collagen is 

typically biologically regulated and indicative of tissue maturity, while non-enzymatic cross-

links are influenced by the local microenvironment and closely associated with aging and 

disease processes (16, 20). One factor contributing to altered matrix mechanical properties 

may be the accumulation of advanced glycation end products (AGEs). AGEs are naturally 

occurring non-enzymatic modifications of proteins. Matrix cross-links resulting from 

formation of AGEs can alter matrix integrity, cell-matrix signaling, and rates of tissue 

turnover (16, 17, 22–24).
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We hypothesize that radiotherapy induces increased accumulation of AGEs in bone. 

Modification of bone collagen by accumulation of AGEs would provide a potential 

explanation for the altered material properties of bone post-radiation. The aim of this study 

was to quantify accumulation of advanced glycation end products in bone following 

radiotherapy using a mouse model.

METHODS

Hindlimb Irradiation

Female BALB/F mice aged 12 weeks (Taconic, Germantown, NY) were anesthetized and 

their hindlimbs extended for unilateral localized irradiation (RTx) at a dose of 20 Gy 

delivered as four consecutive daily 5 Gy fractions (4×5 Gy) (n=6/group/time point). The 

body and contralateral hindlimb of each animal was covered with lead shielding, allowing 

the non-irradiated hindlimb to serve as an internal non-irradiated control (0 Gy). The BED 

(Biologically Effective Dose) was calculated to be 57.5 Gy2.8, with an EQD2 Gy (Equivalent 

Dose in 2 Gy Fractions) of 32.5 Gy2.8/2 (or ~16 fractions of 2 Gy each) where:

and

In this case, n is the number of fractions, d is the dose per fraction (here, d = 5 Gy), and α/β 

= 2.8 Gy for bone, which is considered a normal and therefore late-responding (non-tumor) 

tissue (25–27). All methods were approved by the SUNY Upstate Medical University 

Committee for the Humane Use of Animals.

Analysis of Cross-Links

Tibias were harvested at 1, 2, 4, 8, and 26 weeks post-RTx, cleaned of soft tissues, and 

wrapped in saline-soaked gauze for storage at −20°C until processing. The tibias were then 

decalcified with 30% formic acid in 20% aqueous sodium citrate for 24 hours (Cat #399388 

and #W302600, Sigma-Aldrich, St. Louis, MO, USA) and lyophilized (17). This was 

followed by digestion in collagenase Type II (3 mg/ml at 37°C, Cat #LS004176, 

Worthington Biochemical, Lakewood, NJ, USA) with homogenization (Polytron 

Kinematica, Lucerne, Switzerland). Insoluble organic material was removed by 

centrifugation. The extent of collagen cross-linking was determined by autofluorescence of 

the soluble matrix digest (Tecan Infinite M200, Research Triangle Park, NC). All samples 

were run in triplicate and four fluorescence reads were done per well. Three glycation 

products were quantified, including pentosidine (excitation/emission λ 335/385), 

pyridinolines (297/395), and non-specific AGEs (370/440 and 335/400). Pentosidine was 

quantified by comparison to a quinine sulfate standard curve (17). Results are expressed as 
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arbitrary units (AU, arbitrary fluorescence units as reported by the plate reader using a gain 

setting of 100), with the exception of pentosidine, which is expressed in relation to the 

quinine sulfate standard. Fluorescence values were normalized by the moles of collagen 

contained in the same sample volume. The resulting value reflects the degree of cross-

linking per collagen molecule, not the total number of cross-links in each bone sample. The 

collagen content of each sample was calculated by assuming collagen to contain 13.5% 

hydroxyproline by mass, and a molecular weight of 399 kDa (28, 29). When quantifying 

cross-links in bone, results are typically normalized to the collagen or hydroxyproline 

content of the sample, as collagen is the primary organic component of bone (3, 10, 11, 15, 

17–19, 23, 30–36).

Statistics

Data were analyzed with JMP software (SAS, Cary, NC) using a two-way ANOVA model 

including time, radiation dose, and their interaction as variables. Statistical significance was 

assumed at p ≤ 0.05. Post-hoc pairwise comparisons were conducted using Tukey’s post-hoc 

test, which accounts for multiple sampling errors.

RESULTS

One week after the last dose fraction, specimens subjected to 4×5 Gy demonstrated a 

significant increase in the extent of collagen glycation (number of cross-links per unit of 

collagen). Specifically, the quantity of pyridinolines (p = 0.008), pentosidine (p = 0.013), 

and non-specific AGEs (p = 0.020 for ex/em = 370/440 and p = 0.0196 for ex/em = 

335/400) accumulated by each molecule of collagen were elevated in irradiated samples 

compared to non-irradiated controls at one week (Figure 1A–C). There were no significant 

differences between treatment groups at any other time point. Pentosidine, pyridinolines, 

and non-specific AGEs were all significantly affected by time (p < 0.001), although there 

was no consistent positive or negative trend with increasing time. The interaction between 

radiation and time was not significant.

Radiation treatment did not significantly impact tibial collagen content (ug of collagen per 

mg of dry decalcified bone, p = 0.977, Figure 1D). Tibial collagen content was significantly 

affected by time (p < 0.001), with both control and irradiated groups demonstrating a 

significant increase in collagen content at two weeks compared to all other time points (p ≤ 

0.013). Collagen content at one week was significantly higher than at four (p < 0.001) and 

eight weeks (p = 0.020).

DISCUSSION

Previously, we have documented radiation-induced alterations in bone quality and 

microarchitecture, including loss of trabecular bone, thickening of cortical bone, increased 

mineral density, and transient increase in osteoclast numbers followed by loss of viable 

osteoclasts (1, 37–41). The overall increase in bone volume and mineral density following 

radiotherapy is accompanied by a decrease in mechanical strength, indicating that radiation 

induces alterations to the material properties of the bone matrix (1). The cause of the post-

radiation bone embrittlement is not yet fully understood, but there is evidence that 
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alterations to the organic matrix may contribute significantly to altered mechanical 

properties.

There is extensive evidence that cross-linking and glycation-associated changes to collagen 

are related to the biomechanical properties of bone, particularly in the context of aging and 

diabetic pathologies. Garnero et al. induced collagen cross-linking in ex vivo bovine cortical 

femur specimens, and found that increased pyridinolines and pentosidine per unit of 

collagen correlated with reduced compressive yield stress and post-yield energy absorption; 

stiffness remained unaffected (3). Similarly, Tang et al. found that AGE accumulation in 

cadaveric trabecular bone specimens correlated with decreased stiffness of individual 

trabeculae and overall decreases in post-yield strain energy and energy dissipation (15). 

Stiffening of the collagenous matrix is strongly associated with accumulation of cross-links 

in bone, contributing to increased skeletal fragility and fracture risk (17, 34). Elevated 

pentosidine content in diabetic rats has been correlated with decreased modulus, energy 

absorption, and peak load in three-point bending (11). Viguet-Carrin et al. demonstrated no 

direct association between collagen cross-links and compressive mechanical properties 

(stiffness, failure load, work to fracture) for intact cadaveric vertebral bodies. Bivariate 

analysis of their data, however, indicated a significant association between increased failure 

load and high bone mineral density and low pentosidine content (35). There is also evidence 

that the type of cross-links accumulated in collagen may be important. Enzymatic and non-

enzymatic cross-links may have differential effects in determining mechanical properties of 

bone (9, 20, 32, 42).

Reports of post-radiation changes to the organic matrix of bone suggest multiple factors may 

contribute to modification of collagen integrity. Specifically, it has been suggested that 

radiation induces increased collagen fragmentation, but not tissue collagen content. Açil et 

al. reported radiation-induced collagen fragmentation following irradiation of porcine 

mandibles ex vivo (21). Our data demonstrate no radiation-dependent changes in overall 

bone collagen content. This is consistent with the observations of Açil et al. in bone (murine 

model, 9.5 Gy focal hindlimb), Sassi et al. in skin (breast cancer patients, 30–56 Gy), and 

Lindburg et al. in cultured articular cartilage explants (porcine, 2 Gy) (43–45).

Documentation of radiation effects on collagen cross-linking and glycation in vivo is 

particularly sparse. Açil et al. treated rat hindlimbs with a single 9.5 Gy radiation exposure 

(BED = 42.8 Gy2.8, equivalent to 12 fractions of 2 Gy each, as calculated by us) and 

evaluated hindlimbs at 14 and 100 days post-RTx for hydroxyproline, lysylpyridinoline, and 

hydroxylysylpyridinoline content. The only radiation-associated effect was a decrease in 

lysylpyridinoline quantity per mg of bone at 14 days post-RTx, which returned to control 

levels by 100 days post-RTx (43).

In this study, we demonstrate an early, transient increase in both enzymatic (pentosidine, 

non-specific AGEs) and non-enzymatic (pyridinolines) cross-linking of bone collagen 

following focal radiation therapy. These data are consistent with our Raman spectroscopic 

results using this mouse model of focal radiotherapy (4×5 Gy), showed significantly 

increased collagen crosslink ratios, significantly decreased matrix depolarization ratios, and 

early decreased mineral depolarization ratios in irradiated tibias beginning at one week post-
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RTx (46). The current results also provide a potential at least partial explanation for the 

findings of Wernle et al., who subjected irradiated mouse femurs (single fraction doses of 0, 

5, and 20 Gy) to compressive mechanical testing (1). Failure load was significantly 

increased in irradiated samples at 1 week, falling below that of controls at 12 weeks. 

Temporally this correlates with our findings of increased collagen glycation at 1 week post-

RTx and fits with the wider body of literature documenting the roles of collagen glycation 

and cross-linking in regulating bone mechanical properties. Although Wernle et al. 

documented radiation-associated morphological changes, finite element modeling indicated 

that morphology alone insufficiently explained the altered mechanical properties. 

Incorporation of an embrittled failure model improved the predictive strength of the 

computation models, suggesting that material properties play a significant role in 

determining the mechanical integrity of bone post-radiation (1).

We hypothesize that accumulation of advanced glycation end products in irradiated bone 

may contribute to embrittlement of the collagenous matrix and thereby increase fracture risk. 

Equilibration of glycation product levels beyond the one-week time point in this animal 

model is likely the result of increased osteoclastic bone resorption that follows radiation 

exposure (beginning 2 to 4 weeks post-RTx) and continued deposition of new mineral (41, 

47). Longer term, radiation induced bone fragility may be regulated by the interaction of 

altered bone morphology, vascularity, biochemical matrix alterations, and cellular activity. 

Future investigations will pursue identification of specific biological mechanisms 

contributing to post-radiation bone embrittlement, including the role of reactive oxygen 

species, cell-mediated matrix remodeling, and potential therapeutic interventions.
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Figure 1. 
Degree of collagen glycation following radiation (4×5 Gy) treatment (average ± SD, n = 4–6 

per treatment per time point). Data are expressed as quantity of cross-links per picomole of 

collagen. At 1 week post-radiation, irradiated samples had significantly elevated content of 

(A) pentosidine, (B) pyridinolines, and (C) non-specific AGEs compared to controls. * 

denotes significantly different compared to non-irradiated controls at the same time point (p 

< 0.020). # denotes significantly different from all other time points (p < .013).
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