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Abstract

Motivation: Identifying disease associated taxa and constructing networks for bacteria interactions

are two important tasks usually studied separately. In reality, differentiation of disease associated

taxa and correlation among taxa may affect each other. One genus can be differentiated because it

is highly correlated with another highly differentiated one. In addition, network structures may vary

under different clinical conditions. Permutation tests are commonly used to detect differences be-

tween networks in distinct phenotypes, and they are time-consuming.

Results: In this manuscript, we propose a multilevel regularized regression method to simultan-

eously identify taxa and construct networks. We also extend the framework to allow construction

of a common network and differentiated network together. An efficient algorithm with dual formu-

lation is developed to deal with the large-scale n�m problem with a large number of taxa (m) and

a small number of samples (n) efficiently. The proposed method is regularized with a general Lp

(p 2 ½0;2�) penalty and models the effects of taxa abundance differentiation and correlation jointly.

We demonstrate that it can identify both true and biologically significant genera and network

structures.

Availability and implementation: Software MLRR in MATLAB is available at http://biostatistics.

csmc.edu/mlrr/.

Contact: liuzx@cshs.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Massive 16S rRNA and whole-metagenomic shortgun sequencing

data have been generated due to advances in next-generation

sequencing technologies. The goals of metagenomic research are to

investigate the host–microbiota associations and bacteria inter-

actions, and examine how changes in microbiota may affect

metabolic functions and human disease. Two crucial research prob-

lems, disease associated taxa (genera, operational taxonomic units

[OTUs]) selection and correlation network constructions, are usu-

ally studied separately. Both filter and model-based approaches have

been proposed to detect differences in bacteria composition and rela-

tive abundance. Filter-based statistical tests select disease-associated
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bacteria features one at a time (Alekseyenko et al., 2013; White

et al., 2009) and suffer from multiple comparisons problem. Model-

based approaches, on the other hand, identify disease-associated

taxa through building a sparse prediction model (Liu et al., 2011;

Tanaseichuk et al., 2013), and are efficient for explicitly evaluating

the predictive power of multiple taxa. However, these methods

mainly focus on differences in abundance without considering the

interactions among taxa.

Biological and taxa association networks have been constructed

with various methods (Horvath and Dong, 2008; Krämer et al.,

2009; Ruan et al., 2006; Xia et al., 2013). Such networks investigate

the interactions and causality among group of genes systematically.

Metabolic networks have also been proven to be powerful tools for

studying the physiological and biochemical characteristics of various

functional and evolutionary properties of a cell (Guimera and Nunes

Amaral, 2005; Kreimer et al., 2008). A local Poisson graphical (log-

linear) model and a Bayesian generalized graphical model have been

proposed recently for constructing association networks based on

RNA-seq data (Allen and Liu, 2013; Zhang and Mallick, 2013).

Among all the methods, various graphical models with L1 regular-

ization are perhaps the most common approach for graphical struc-

ture estimation (Banerjee et al., 2008; Liu and Ihler, 2011;

Meinshausen and Bühlmann, 2006; Peng et al., 2009; Yuan and Lin,

2007). L1 regularized approaches are based on neighborhood selec-

tion for each variable (gene) i. They build a L1-based sparse regres-

sion model for each xi, with the remaining variables

x�i ¼ fxjjj 6¼ ig, and determine the sparse graphical model with the

collected regression coefficients. They have also been extended to

dependency network construction with sparse Bayesian network

structure learning (Xiang and Kim, 2013). L1-based approaches

automatically identify a number of dependent genes and are compu-

tationally efficient for large-scale network construction, but these

approaches construct the network without considering differenti-

ation of the genes across different clinical conditions. In addition,

parameters estimated from L1 penalized regression are asymptotic-

ally biased and L1 does not always identify the true model consist-

ently (Zou, 2006). Therefore, elastic net with aL1 þ ð1� aÞL2

(0�a�1), which is equivalent to Lp (1�p�2), was proposed

for choosing highly correlated genes (Zou and Hastie, 2005),

and Lp (0 < p < 1) penalized regression was proposed for

reducing the biases of estimates (Liu et al., 2010b; Mazumder et al.,

2011).

In this article, we develop sparse multilevel models for simultan-

eous gene selection and network construction, and simultaneous

common and differentiated network construction under different

clinical conditions. An efficient algorithm with duality and a general

Lp (p 2 ½0; 2�) penalty is also developed to deal with the n�m prob-

lem efficiently. We also propose a novel criteria entitled mean par-

ameter difference (MPD) for k and p selection. Our methods will be

evaluated with simulated and real metagenomic count data. Since

the variance of metagenomic counts depends on the mean count, the

data are first transformed to a normal distribution using the arcsin

and log-ratio variance-stability methods (Friedman and Alm, 2012;

Liu et al., 2011). We demonstrate that the proposed approaches suc-

cessfully identify true and biological important taxa and network

structures associated with the disease.

2 Methods

Given n samples with phenotype y ¼ ½y1; . . . ; yn�
T , our goal is to

identify phenotype associated taxa and simultaneously detect the

network structure of those species. We are also interested in

detecting network differences associated with distinct clinical

conditions. For each sample, we have multiple metagenomic count

features including the number of 16S rRNA clones assigned to a spe-

cific taxon, or the number of shotgun reads mapped to a specific

biological pathway or subsystem. The data structure can be

represented as:

X ¼

x11 x12 . . . x1m

x21 x22 . . . x2m

: : . .
.

:

xn1 xn2 . . . xnm

2
6666664

3
7777775
; and y ¼

y1

y2

:

yn

2
666664

3
777775
;

where X is the metegenomic count matrix with n samples and m fea-

tures, xkj denotes the total number of reads of feature j in sample k,

and y is a binary vector that indicates clinical conditions. A multi-

class y will be encoded with the one-versus-rest or one-versus-one

scheme. There are two standard approaches to model metagenomic

count data. One is to model the sequencing counts directly with

zero-inflated Poisson or negative binomial regression (Greene, 1994;

Lambert, 1992; Mullahy, 1986). However, this approach is compu-

tationally intensive especially for high-dimensional data. Building a

network of decent size requires hours or even days. In addition, the

joint likelihood is hard to estimate, so many likelihood-based vari-

able selection criteria such as cross-validation and AIC cannot be

applied. We, therefore, will adapt the computationally more effi-

cient approach by first normalizing data through transformation,

and then applying the machine learning or statistical tools. Data

transformation has also been proposed for analyzing similar RNA-

seq count data (Zwiener et al., 2014). To adjust for the read-depth

differences in sequencing, the metagenomic count matrix X is first

transformed into a proportion matrix P ¼ ½pkj�, where pkj ¼ xkj=P
j xkj and

P
j pkj ¼ 1. To overcome variance heterogeneity

with compositional data, the proportion matrix P is then converted

into a normally distributed matrix Z ¼ ½zkj� with the arcsine or log-

ratio transformation. zkj ¼ 2arcsin ð ffiffiffiffiffiffipkj
p Þ (Liu et al., 2011;

Sherbecoe and Studebaker, 2004). For the log-ratio transformation,

there may be zeros in the proportion matrix. Therefore, we first

replace

pkj ¼
dkj if pkj ¼ 0

ð1�
X

ijpki¼0
dkiÞpkj if pkj > 0

;

8<
:

where di¼kj is a small imputed value for pkj. Then the log-ratio trans-

formation yields

Z ¼ ½zkj�n�m; zkj ¼ log
pkj

pkm
;

where pkm is the value in the last column of the P matrix (Neocleous

et al., 2011). Usually, the values in the last column are the number

of sequences that were not assigned to any known taxon with the

RDP classifier (rdp.cme.msu.edu), or the sum of sequencing counts

in OTU clusters where the total number of counts is below a given

threshold.

2.1 Multilevel regularized methods
Given normalized Z ¼ ½zkj�n�m and binary clinical output y, the task

is to identify taxa that are different between clinical conditions, and

identify correlation structures among taxa. We propose multilevel

neighborhood selection methods that incorporate both Z and y.
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Three different levels of distributions under different conditions are

proposed:

ðIÞ : PðzijQiÞ ¼ Pðzijy;Z�iÞ ¼

Pðzijy; z1; z2 . . . zi�1; ziþ1 . . . zmÞ;

ðIIÞ : PðzijQiÞ ¼ PðzijZ�i; yZ�iÞ ¼

Pðzijz1 . . . zi�1; ziþ1 . . . zm; z1y . . . zi�1y; ziþ1y . . . zmyÞ;

ðIIIÞ : PðzijQiÞ ¼ Pðzijy;Z�i; yZ�iÞ ¼

Pðzijy; z1 . . . zi�1; ziþ1 . . . zm; z1y . . . zi�1y; ziþ1y . . . zmyÞ;

for i ¼ 1; . . . ;m and yzj ¼ y� zj is an element-wise multiplication. For

each taxon i, PðzijQiÞ is the conditional probabilities given a different

set of variables. Assuming PðxijQiÞ is a Gaussian distribution, the con-

ditional probabilities in Models (I)–(III) can be inferred by different lin-

ear regression models, where each zi is a linear combination of Qi.

zi ¼ aiyþ bT
i Z�i þ �i ¼ aiyþ

Xm

j ¼ 1

j 6¼ i

bijzj þ �i; for ðIÞ; (1)

zi ¼ bT
i Z�i þ cT

i yZ�i þ �i ¼

¼
Xm

j ¼ 1

j 6¼ i

bijzj þ
Xm

j ¼ 1

j 6¼ i

cijyzj þ �i; for ðIIÞ; (2)

zi ¼ aiyþ bT
i Z�i þ cT

i yZ�i þ �i ¼

¼ aiyþ
Xm

j ¼ 1

j 6¼ i

bijzj þ
Xm

j ¼ 1

j 6¼ i

cijyzj þ �i for ðIIIÞ: (3)

Equation (3) is the most general model conditional on the rest of

the taxa X�i, phenotype y and their interactions. Equation (3) reduces

to Equation (2) and Equation (1), and Model (III) becomes Models

(II) and (I), respectively, when setting ai¼0 or ci ¼ 0. In the rest of

this article, we will explore algorithms only for Equation (3). The

same computational approach can be used for Equations (2) and (1).

In Model (3), the parameter ai represents the associations between xi

and y; ai 6¼ 0, indicates that taxon zi is differentiated under different

clinical conditions (y). The value of bi measures the direct dependency

between taxon zi and the remaining taxa, and bij 6¼ 0 shows there is a

correlation between zi and zj given all other variables. In addition, ci

determines correlation changes across different clinical conditions,

and cij 6¼ 0 suggests that there is a differentiation in correlation be-

tween case and control. Therefore, depending on the problem under

study, we can simultaneously identify the differentiated taxa and con-

struct a common and a differentiated network using ai, bij and cij, re-

spectively. Because it is common that n�m in genomic and

metagenomic data, learning the local graphical structure is usually

based on L1. More generally Lp (p�2)-based regularized regression

for each zi to minimize the following error function:

Eðai; bi; ciÞ ¼
1

2

�����

�����aiyþ
Xm

j ¼ 1

j 6¼ i

zjbij þ
Xm

j ¼ 1

j 6¼ i

yzjcij � ziÞ
�����

�����
2

2

þ

. . . þ k
2
jaijp þ

Xm

j ¼ 1

j 6¼ i

jbijjp þ
Xm

j ¼ 1

j 6¼ i

jcijjp

2
666664

3
777775
:

(4)

This will yield a sparse solution with a small number of nonzero

parameters when p 2 ½0;2Þ. With the ordinary lasso (p¼1), the error

function E will be convex. An unique solution can be found for a

given k, but the estimation is biased toward zero. On the other hand,

the solution will have the attractive oracle property with p<1. Lp re-

gression selects the correct models by producing nearly unbiased esti-

mates for the non-zero parameters while forcing the other parameters

to zero. However, the error function E is not convex when p<1.

Even though there are efficient algorithms with L1 for high-dimen-

sional data, efficient algorithms with general Lp penalized regression

are less well developed. Based on our previous work for survival ana-

lysis (Liu et al., 2010b), we propose an expectation maximization

(EM)-like algorithm to deal with the high-dimensional problem.

2.2 Efficient EM-like algorithm for Lp penalized

regression
Let

Qi ¼ ½y;Z�i; yZ�i�n�2m�1

8 i ¼ 1; . . . ;m. We drop the sub-index i in zi and Qi for simplicity.

An EM-like algorithm for a generic Q ¼¼
qT

1

:

qT
n

2
664

3
775 and z can be de-

veloped as follows. Given the parameters h ¼ ½h1;. . .h2m�1�T , where

h1 ¼ ai; ½h2; . . . ; hm�T ¼ bi, and ½hmþ1; . . . ; h2m�1�T ¼ ci, the error

function to minimize is

EðhÞ ¼ 1

2
jjz�Qhjj22 þ

k
2

Xm
j¼1

jhjjp ¼
1

2

Xn

k¼1

ðzk � qT
k hÞ2 þ k

2

X2m�1

j¼1

jhjjp

¼ 1

2

Xn

k¼1

ðzk � qT
k hÞ2 þ k

2

X2m�1

j¼1

jhjj2

jhjj2�p
;

(5)

where k > 0 is the penalty term and n�m. By introducing an auxil-

iary vector u ¼ ½u1; u2; . . . ; u2m�1�T , we may rewrite Equation (4) as

EðhÞ ¼ 1

2

Xn

k¼1

ðzk � qT
k hÞ2 þ k

2

X2m�1

j¼1

jhjj2

jujj2�p
; and u ¼ h: (6)

With Equation (5), we can estimate the M step by first minimiz-

ing EðhÞ (maximizing �EðhÞ) by taking the first order derivative and

setting it to zero.

@EðhÞ
@h

¼ kh� juj2�p �
Xn

k¼1

ðzk � qT
k hÞqk ¼ 0;

where � indicates element-wise division. So

h ¼ 1

k

Xn

k¼1

ðzk � qT
k hÞqk � juj

2�p:

Instead of finding the high-dimensional (2m� 1) primal param-

eters h directly, we introduce n-dimensional dual variables

a ¼ ½a1; a2; . . . ; an�T , so we have

h ¼ 1

k

Xn

k¼1

ðzk � qT
k hÞqk � juj

2�p ¼
Xn

k¼1

akqk � juj
2�p ¼ QT

u a; (7)

where

QT
u ¼ ½q1 � juj

2�p; q2 � juj
2�p; . . . ; qn � juj

2�p�ð2m�1Þ�n; (8)
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and

ak ¼
1

k
ðzk � qT

k hÞ: (9)

By substituting the primal variables h ¼ QT
u a into Equation (9),

we have

ak ¼
1

k
ðzk � qT

k QT
u aÞ ¼ 1

k
ðzk � kT

k aÞ; (10)

where

kT
k ¼ qT

k QT
u ; and let Ku ¼ QQT

u ¼

k
T
1

:

kT
k

:

kT
n

2
666666664

3
777777775

n�n

:

Ku is a much smaller n�n symmetric matrix and is predeter-

mined as long as u is given. The dual variables a can be calculated in

matrix form as follows:

a ¼ ðKu þ kIÞ�1z: (11)

The primal variables h can then be updated explicitly with a sim-

ple matrix computation.

h ¼ QT
u a (12)

The expectation step is simply u ¼ h. Therefore, we have the EM

algorithm for each xi and Qi with the local graphical model:

The EM algorithm is highly efficient when n�m, because it

uses the inverse of ðKu þ kIÞn�n matrix instead of the inverse of

ðQTQÞð2m�1Þ�ð2m�1Þ, as in ordinary regression. Compared with one

with dimension of ten-thousands, inverting a matrix with hundreds

of dimensions is very fast. As discussed earlier, this algorithm will

converge to a global optimum with a p¼1, because the error func-

tion is convex. A local minimum is guaranteed with p<1.

Computational experiences with Lp suggest that it converges to a

unique solution for p	0:6, when the error function is nearly convex.

To construct a local graphical network, we run the EM-like algo-

rithm m times for each fzi;Qig; i ¼ 1; . . . ;m. The non-zero hijs indi-

cate a dependency between taxa i and j. Models for each node can

be estimated independently and in parallel using appropriate

computational power.

Negative correlations between genes are difficult to confirm and

seemingly less ‘biologically relevant’ (Lee et al., 2004). Negative cor-

relation can be introduced when count data are transformed into

proportions. For example, transforming two random samples with

zero correlation into proportions will lead to a perfect r¼ –1

negative correlation, which does not seem biologically sensible. Our

approach can be adapted to study positive dependency only by set-

ting hðh < 0Þ ¼ 0 in the M-step of EM algorithm.

2.2.1 Determination of k and p

Both k and p determine the sparsity of the model. k 2 ½10�4; kmax

¼ max ðjQizijÞ� is partitioned into 100 equal intervals in a log scale,

and p is chosen from 0 : 0:1 : 2 in this article for simplicity. The

regularization parameter k and p are determined through cross-val-

idation. We build regression models with 100 different ks and 20

different ps, the optimal k and p are then selected with either the

minimal mean squared error (MSE) of the test data or the most sta-

ble parameter (edge) estimation with k-fold cross-validation. Other

criteria such as AIC and BIC can also be used to find the optimal k
and p. Although cross-validation with MSE is straightforward, sta-

bility selection chooses an optimal k with the minimal mean differ-

ence of the estimated parameters. Mathematically, we first estimate

k sets of parameters fhig; i ¼ 1; . . . ; k with k-fold cross-validation,

and the MPD for given k and p is defined as

MPD ¼

Xk

i¼1
jhi � hj
k

; where h is the average of hi:

MPD is similar to the stability selection (StARS) approach which

identifies the most stable set of parameters with cross-validation

(Liu et al., 2010a). Because MSE is known as a loose criteria for L1,

and MPD is a more conservative measure tending to select less vari-

ables, the optimal p chosen with MPD is usually larger than 1,

whereas the optimal p with MSE is less than 1. In addition, a node

(taxon) will be dropped out when the test MSE is larger than a pre-

determined threshold.

3 Results

3.1 Simulation data
Count data for simulation are generated with Poisson distributions

and known correlation structure (Zhang and Mallick, 2013). The

count xij has a Poisson distribution PoisðsijÞ with mean sij, and log

sij has normal distribution Nðl;RÞ with mean l and covariance R.

An adjacency matrix can be measured by A ¼ R�1. We simulated

data with two groups, with the number of nodes (variables) of

m¼200, and sample size n¼20, 40 and 60 for each group, respect-

ively. The mean li (i¼0, 1) for each group is l0 ¼
½2;2;2; 2; 2;2. . .2�T and l1 ¼ ½4;4;4; 4; 4;2; . . . ; 2�T , respectively, so

the generated data only have the first five features differentiated.

Therefore, we have a binary class problem with y ¼ ½y1; . . . ; yn�T ,

where yk ¼ 0 if sample k 2 group 0 and yk¼1 for sample k 2 group

1. Three different network structures were incorporated in the data:

(i) a common network structure A, where A is a band matrix with

bandwidth 1 and each node only connects to its neighborhood

nodes, (ii) a common network structure A, where A is a band matrix

with bandwidth 2 and (iii) different network structures with A0

being an adjacency matrix of bandwidth 1 for class 0, and A1 being

an adjacency matrix of bandwidth 2 for class 1. After we generated

the count matrix X with known network structure A and class infor-

mation y, Equation (1) was used to detect differentiated features and

the common network structure simultaneously with the first two

datasets. We simulated these data 100 times. The generated count

data were then transformed with proportion and arcsin transform-

ations. The log-ratio transformation yields similar performance, so

only results with proportion and arcsin transformations are reported

in this article. Five-fold cross-validation was used to determine the

EM-like Algorithm

Given a k; p 2 ½0;2�, small numbers e and e, and training

data fz;Qg,
Initializing h ¼ randð2m � 1;1Þ,
While jh� uj > e,

E-step: u ¼ h
M-step: QT

u ¼ ½q1 � juj
2�p ;. . .; qn � juj

2�p �ð2m�1Þ�n ;

Ku ¼ QQT
u ; and a ¼ ðKu þ kIÞ�1z; and h ¼ QT

u a:

END

hðjhj < eÞ ¼ 0.
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optimal parameters k and p. The area under ROC curves (AUC) was

used to evaluate the performance of detecting proposed network

structures, where the sensitivity for a network is the proportion of

edges that are correctly identified, whereas the specificity for a net-

work measures the proportion of no-edges that are correctly de-

tected. The ROC curve and AUC were then calculated accordingly.

Moreover, the performance of feature selection is defined as the

number of times that the first five features are correctly identified.

AUC for validating the network structures and the number of times

that the first five true features are selected are reported in Tables 1

and 2, respectively.

Our methods identified the true differentiated features and net-

work structures as shown in Tables 1 and 2. Overall, the predicted

AUCs become larger when the sample size increases. In addition,

minimizing MPD performs better than minimizing test MSE.

Compared with the average AUCs of 0.83, 0.94 and 0.97 with MSE

for band 1 network, the corresponding AUCs with MPD are 0.89,

0.97 and 0.99 for n¼20, 40 and 60, respectively. Similar results

were achieved for band 2 network with different sample sizes and

optimal parameters. With n¼20, 40 and 60, respectively, out of

100 simulations for band 1 network, more than 40, 46 and 70 times

of five differentiated features were appropriately identified with

MSE, whereas more than 70, 91 and 92 times of the five features

were correctly selected with MPD. MSE identified at least 30, 48

and 78 times of five differentiated features correctly for band 2 net-

work, whereas MPD accurately selected the five features at least 82,

91 and 95 times, indicating that MPD is more accurate. The accur-

acy of feature identification increases with sample size. Five features

were identified correctly over 92 and 95 times with MPD and the

sample size of 60 for band 1 and 2 networks, respectively, whereas

the average false-positive rates (AFPR) were all under 5%.

The comparison between our approach and Student’s t-test with the

same data is reported in Supplementary Appendix S1. Student’s t-

test leads to high FPRs and fails to identify the true features even

with the conservative Bonferroni correction. Feature selection with

network correction is important, and the proposed approach pro-

vides an efficient way to accomplish it.

Differentiated features, and common and differentiated network

structures can also be identified simultaneously with Equation (3).

Simulated data were generated with the Poisson distribution with

known means and network structures. Data for class 0 is again gen-

erated with mean l0 and a band 1 network and for class 1 is gener-

ated with l1 and a band 2 network, respectively. So the class output

y is defined similarly as the previous simulations, and the common

network to detect is the band 1 network the differentiated network

to identify is the differential structure between band 1 and 2 net-

works. Equation (3) is used to evaluate the performance. Predictive

performance of proposed method is shown in Figure 1:

Differentiated features, and the structures of common and differenti-

ated networks were detected with high accuracy. Because MSE usu-

ally has the best performance when p<1, and MPD has the best

performance when p>1, we define a new integrated performance

measure that chooses the optimal k ¼ ðkMSE þ kMPDÞ=2 in roman>

for variable selection. AUC for differentiated features (bottom panel

Fig. 1) can be identified perfectly (AUC¼1) with a larger sample

size (n¼40) for each group. The common network structure (top

panel of Fig. 1) can be detected with over 0.91 AUC, while distin-

guishing the differentiated structure is more difficult with the test

AUC of over 0.74. In addition, AUCs increase as the sample size be-

comes larger. Finally, the performances with L1 and Lpðp ¼ 11Þ
penalties are quite similar with the integrated measure, indicating

that it is possible to achieve a good performance with L1 regularized

regression with an appropriate measure.

3.2 Benchmark metagenomic data
A metagenomic dataset was generated from research findings in our

own group (Tong et al., 2013). A recent analysis of microbial co-oc-

currence in the HMP cohort revealed significant relationships across

many body compartments, including 3005 edges and 67 edges

among microbiota of all body sites and the gut (fecal compartment),

respectively. The differences (if any) may be due to healthy only sub-

jects, different cohorts and fecal (versus mucosal wash compart-

ments). There are in total 299 samples with 76 inflammatory bowel

disease (IBD) subjects including Crohn’s disease (CD) and ulcerative

colitis (UC), and 223 non-IBD subjects. Out of 299 samples, 285

(72 IBDs and 213 controls) have metagenomic count data available.

There were a total of 5648 OTUs available. We merged OTUs at the

genus level. Then genera with high abundances were selected for fur-

ther study after discarding those genera with less than five reads on

average. Data were then normalized with the proportion and arcsin

transformation. The class y is a binary vector with yk¼0 for non-

IBD, and yk¼1 for IBD samples or vice versa. The input Z is the

normalized taxa matrix. To identify differentiated genera and posi-

tive correlations in whole, IBD and non-IBD populations, we run

the program for Equation (3) two times with 0/1 values flipped.

Five-fold cross-validation and MPD were used to find optimal

ðk
; p
Þ. Our program (mlrr) identified the optimal parameter pair

ðk
; p
Þ and determined the best model automatically. Genes with

higher abundance in IBD and non-IBD are reported in Table 3.

Eight identified genera have higher abundance in IBD, whereas 20

have higher abundance in non-IBD, indicating less bacterial diversity

in IBD patients. Common and differentiated networks are shown in

Table 1. Predicted AUCs with different network structures and

parameters

Sample

size

Band 1 network Band 2 network

n MSE : p̂ ¼ 0:8 MDP : p̂ ¼ 1:1 MSE : p̂ ¼ 0:9 MPD : p̂ ¼ 1:2

20 083ð60016Þ 089ð60013Þ 070ð60010Þ 076ð60012Þ
40 094ð60007Þ 097ð60007Þ 074ð60012Þ 083ð60010Þ
60 097ð60007Þ 099ð60006Þ 079ð60013Þ 087ð60010Þ

Notes: Data were simulated with m¼ 200, and n¼ 20, 40 and 60,

respectively.

Table 2. Frequencies of correctly identified features and average

false-discovery rate over 100 simulations

Feature Band 1 network (n) Band 2 network (n)

MSE : p̂ ¼ 0:8 MDP : p̂ ¼ 1:1 MSE : p̂ ¼ 0:9 MPD : p̂ ¼ 1:2

20 40 60 20 40 60 20 40 60 20 40 60

1 51 81 90 83 93 100 53 79 100 100 100 100

2 42 60 73 80 93 94 49 67 85 90 100 98

3 40 46 70 84 91 92 35 48 93 82 91 96

4 59 62 75 70 93 97 30 56 78 94 96 96

5 80 94 99 93 95 99 40 58 91 89 96 95

AFPR

(%)

2.7 1.7 1.4 0.36 0.03 0 3.5 2.7 2.1 3.8 3.5 2.8

Notes: Only the first five features are truly differentiated.
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Figures 2 and 3, respectively. Several important findings are demon-

strated with Table 3, Figures 2 and 3 together. Genera Klebsiella has

higher abundance in IBD with the largest estimated parameter

(0.0626). It also has the highest degrees of 13 and 7 in common and

control network, respectively. Klebsiella is probably harmful, be-

cause it loses its connections (co-occurrences) with other genera and

has higher abundance in IBD. Disease status is determined by both

the relative abundance of Klebsiella and its co-occurrence patterns

with other genera. In fact, Klebsiella is a well-studied IBD-associated

bacteria. It is a likely triggering factor associated with the initiation

and development of IBD (Rashid et al., 2013; Sanchez et al., 2013).

On the other hand, genera Faecalibacterium has higher abundance

in non-IBD (lower abundance in IBD) with the largest parameter

0.0319. It also has the largest degree of 13 in the common network,

and is connected to Ruminococcus in the IBD network. This may

indicate that Faecalibacterium is a protective genera and its lack

may contribute to IBD. The fact that Ruminococcus and

Faecalibacterium link to each other and both have lower abundance

in IBD suggests that the co-abundance of Ruminococcus and

Faecalibacterium may be useful for IBD diagnosis. The association

between Faecalibacterium and IBD has been an active topic of re-

search recently in the literature (Lopez-Siles et al. 2014; Machiels

et al., 2013). Investigators have shown that Faecalibacterium is rele-

vant to the etiology and pathogenesis of IBD both in clinical and la-

boratory investigations. However, the role of Ruminococcus and

its co-abundance with Faecalibacterium in IBD has not been

Fig. 1. Performance base on AUC for common and differentiated networks and differentiated features with P ¼1 and 1.1, respectively. Top panel: AUC for com-

mon network detection, middle panel: AUC for differentiated networks and bottom panel: AUC for feature selection

Table 3. Identified Genera that are differentiated in relative abun-

dances across different clinical conditions

IBD non-IBD

Genera Parameters Genera Parameters

Acidaminococcus 0.0078 Bilophila 0.0020

Bacteroides 0.0091 Blautia 0.0011

Escherichia 0.0022 Clostridium 0.0014

Fusobacterium 0.0105 Collinsella 0.0010

Klebsiella 0.0626 Coprococcus 0.0057

Lactobacillus 0.0051 Desulfovibrio 0.0034

Mycoplasma 0.0022 Dorea 0.0013

Veillonella 0.0081 Eubacterium 0.0013

Faecalibacterium 0.0319

Haemophilus 0.0029

Holdemania 0.0012

Lachnobacterium 0.0013

Lachnospira 0.0040

Oscillospira 0.0028

Phascolarctobacterium 0.0021

Prevotella 0.0113

Pseudomonas 0.0013

Roseburia 0.0033

Ruminococcus 0.0042

Sutterella 0.0058

Notes: The estimated parameters are reported in columns 2 and 4, respect-

ively. The larger the parameter value, the more differentiated the genera.
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well studied. Another genera Haemophilus may also be important

for IBD. It has the degree of 9 and 4 in common and non-IBD net-

work, respectively, and has higher abundance in non-IBD. It loses its

co-abundance with several other genera in IBD. The other genera

such as Fusobacterium, Bacteroides, Veillonella, Lactobacillus and

Escherichia with high abundance in IBD may be potential gut patho-

gens and associated with IBD. On the other hand, the 20 identified

genera with higher abundance in non-IBD may be protective bac-

teria that are negatively associated with IBD. Moreover, genera such

as Bifidobacterium could be an important target for IBD, even if its

relative abundance does not vary between case and control.

Bifidobacterium has interactions with other genera in both common

and non-IBD networks, but does not have any connections in the

IBD network. The variation in co-occurrence networks may have

biological and clinical implications. Finally, less bacteria diversity

and interactions in IBD have been observed as shown in the genera

list and IBD network. Therefore, it is important to study variations

of relative abundance, and common (background) and differentiated

networks systematically. Our approach can identify IBD associated

bacteria and provide potential targets for further investigations.

4 Conclusions

We proposed a multilevel penalized regression method for simultan-

eous genera selection and network construction. We also developed

Fig. 2. Common network constructed across clinical conditions

Fig. 3. Differentiated networks: a) network solely for IBD and b) network solely for non-IBD control
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an efficient EM-like algorithm with dual-formulation for solving a

general Lp, p 2 ½0; 2� regularized problem. The proposed algorithm

includes L1 and elastic net kL1 þ ð1� kÞL2 penalties as special

cases, and efficiently deals with high-dimensional n�m problem.

The elastic net penalty is equivalent to a Lp with p 2 ½1; 2�. We com-

pared the performance of the proposed method with different p val-

ues. Different optimal ps can be selected from different performance

measures. A p < 1 usually has the best performance with a loose

MSE measure, while a p>1 will lead to the best performance with a

more conservative MPD criteria. LASSO achieves the best perform-

ance with the average of optimal ks from test MSE and MPD. We

tested our method with simulated and real rRNA 16S sequencing

data. Comparing with available methods for network construction

and feature selection in the literature, the proposed approach identi-

fies true features and biologically important genera, and constructs

common and differentiated networks jointly with high accuracy. It

provides a novel tool for studying correlation and differentiation

together, and is computational efficient for high-dimensional meta-

genomic data. Recent work has greatly expanded the cohort size co-

analyzed for microbial community structure in new-onset IBD

(PMID: 24629344). The present methodology offers a new perspec-

tive on disease association and community structure that would be

particularly valuable in tackling such extensive datasets. The pro-

posed approach can also be applied to most RNA-seq data directly

provided they are normalized.
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