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Abstract

The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity 

and thereby assessment of PCB risks. A large number of reactive and stable metabolites are 

formed in the processes of biotransformation in biota in general and in humans in particular. The 

aim of this document is to provide an overview of PCB metabolism and to identify metabolites of 

*Corresponding author and complete contact info Larry W. Robertson, Ph.D., M.P.H., ATS, Professor, Department of 
Occupational and, Environmental Health, The University of Iowa, College of Public Health, 100 Oakdale Campus #219 IREH, Iowa 
City, Iowa 52242-5000, USA, Phone: 319-335-4346, Fax: 319-335-4290, larry-robertson@uiowa.edu. 

HHS Public Access
Author manuscript
Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

Published in final edited form as:
Crit Rev Toxicol. 2015 March ; 45(3): 245–272. doi:10.3109/10408444.2014.999365.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their 

hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. 

Potential intracellular targets and health risks are also discussed.
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Introduction

Polychlorinated biphenyls (PCBs) are a class of industrial chemicals that were mass-

produced globally from the late 1920s until their commercial production was banned, 

initially by the Toxic Substances Control Act (TSCA) in the United States in 1979, as a 

reaction to increasing numbers of reports of PCBs in humans and concern for adverse 

human health effects.

The commercial production of PCBs involved the batch chlorination of biphenyl with 

chlorine gas in the presence of a catalyst, resulting in the formation of complex mixtures 

containing a range of PCBs rather than just individual congeners (Erickson, 1997, Hansen, 

1999, Erickson and Kaley, 2011). Typically, these PCB mixtures were sold under various 

trade names (such as Aroclor in the U.S., Kanechlor in Japan, or Clophen in Germany), 

often with numerical designations indicating percent chlorine by weight (e.g., Aroclor 1254 

is 54% and Clophen A60 is 60%) (Silberhorn et al., 1990).

PCBs were used in a wide variety of applications that resulted in release to the environment. 

Open-ended applications included their uses as plasticizers in rubber and resins, in 

carbonless copy paper, in adhesives, in wax extenders, in dedusting agents, in paints, and in 

inks, while nominally closed system uses were in hydraulic fluids, heat-transfer fluids, and 

in lubricants. Finally, closed system uses of PCBs were primarily in capacitors and in 

transformers (Kimbrough et al., 1989). The estimated world production of PCBs has been 

variously estimated from about 1.2 million tons to 2 million tons, of which 0.2 to 0.4 million 

tons have become “environmentally available” (Tanabe, 1988, ATSDR, 2000). PCBs can 

now be detected all over the planet, from highly populated areas to the arctic region 

(Christensen et al., 2010, Gutleb et al., 2010, Macdonal et al., 2000, Ockenden et al., 2001, 

Wethington and Hornbuckle, 2005, Hu et al., 2010a). Although different for each congener, 

their resistance towards chemical and biological degradation explains their environmental 

persistence and omnipresence more than thirty years after their withdrawal from commercial 

mass production. From a public health perspective, this widespread distribution of PCBs 

indicates the need for a thorough understanding of the potential adverse effects associated 

with the parent congeners and their metabolites. This is of particular importance for 

populations living near, or eating fish from, PCB reservoirs such as the Great Lakes area, the 

Hudson River in New York or the area around Anniston, Alabama, a former Monsanto 

production site of PCBs (Custer et al., 2010, Fitzgerald et al., 2008, Goncharov et al., 2010, 

Goncharov et al., 2011, Silverstone et al., 2012).
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PCBs that are the substrates for metabolic attack in exposed individuals arise from two 

sources. The major source of PCBs for the general population is the food supply (Feinberg 

et al., 2011, Schecter et al., 2010). A second and often overlooked source of exposure to 

PCBs is city air and the air of buildings that were constructed using PCBs in sealants, 

caulking, and other building materials (Ludewig et al., 2008, Persoon et al., 2010). Among 

these airborne PCBs are also most of the recently discovered nonlegacy PCBs, PCBs that are 

unintentionally formed as by-products during the manufacture of paints and dyes that are 

currently sold (Hu and Hornbuckle, 2010, Rodenburg et al., 2010a, Grossman, 2013).

PCBs in the food supply tend to be more highly chlorinated and are therefore poorer 

substrates for metabolic attack, while airborne PCBs tend to be more volatile, and possess 

fewer chlorine atoms (McFarland and Clarke, 1989, Robertson and Ludewig, 2011). The 

former group is longer lived/ more persistent, while the latter one, often referred to as 

transient or episodic, is composed of PCBs with comparatively short half-lives that are 

relatively quickly metabolized (Hansen, 2001, Zhao et al., 2010, Robertson and Ludewig, 

2011). However, to date the metabolism of PCBs and the physiologic fate of the individual 

metabolites remain poorly understood.

Many biologic effects of PCBs are receptor-mediated (Luthe et al., 2008), including the 

well-described characteristics of PCBs as inducers of xenobiotic metabolism (Parkinson et 

al., 1983, Safe et al., 1985). On the other hand, PCB metabolism is generally regarded as a 

detoxication process due to the fact that a large proportion of all hydroxylated PCB 

metabolites (OH-PCBs) being formed are excreted from the body as such or after 

conjugation (Birnbaum, 1983, Ohta et al., 2015). However, it has become apparent that a 

variety of PCB toxication processes involves or depends on the metabolism of parent PCBs 

or their metabolic progeny. Electrophilic metabolic intermediates such as arene oxides may 

cause harm through their reactions with protein, DNA, or lipids (Pereg et al., 2001, Morck et 

al., 2002). In the event that OH-PCBs are further oxidized to (semi)quinones, these highly 

reactive species may also form covalent adducts with proteins, DNA and other endogenous 

compounds (Lin et al., 2000, Pereg et al., 2001, Robertson and Gupta, 2000, Song et al., 

2009, Srinivasan et al., 2002, Amaro et al., 1996). Additionally, metabolites like OH-PCBs, 

PCB sulfates, and PCB methyl sulfones (MeSO2-PCBs) might be equally persistent as 

parent congeners and elicit their own toxicities.

In this review, we will attempt to emphasize the often overlooked issues of metabolism of 

PCBs and the role metabolism and metabolites play in toxication processes.

Environmental sources of PCBs

Traditional manufactured PCBs

Based on differences in their number of chlorine substituents, PCB congeners can be 

subdivided into semivolatile and relatively nonvolatile, with the higher chlorinated PCBs 

(HC-PCBs) typically being less volatile. These differences are also key determinants for 

their environmental availability and their routes of exposure. The majority of airborne PCBs 

found in major cities in the United States are lower-chlorinated ones (LC-PCBs) containing 

four or less chlorine substituents (Hu et al., 2010a, Persoon et al., 2010, Wethington and 

Grimm et al. Page 3

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hornbuckle, 2005). Both LC-PCBs and HC-PCBs were contained in traditionally 

manufactured commercial PCB products, however, HC-PCBs have a higher potential for 

bioaccumulation and biomagnification along the food chain (Barron et al., 1994, Troisi et 

al., 2001). As a result, human populations are typically exposed to less volatile, HC-PCBs 

via contaminated food, particularly fish (Domingo and Bocio, 2007, Weintraub and 

Birnbaum, 2008). Epidemiological studies have revealed a correlation between the 

consumption of contaminated fish and increased serum concentrations of such PCBs 

(Weintraub and Birnbaum, 2008).

Airborne PCBs

Although all PCBs are semivolatile, the LC-PCBs are most commonly reported. The highest 

concentrations of airborne PCBs are found in indoor air and in industrial and densely 

populated urban areas, for example in the cities of Chicago, Milwaukee, Toronto, 

Philadelphia and New York (Breivik et al., 2007, Hu et al., 2010a, Ockenden et al., 2001, 

Wethington and Hornbuckle, 2005, Sun et al., 2006, Du et al., 2009, Melymuk et al., 2012). 

The twenty most abundant of these airborne PCBs are summarized in Table 1. Volatilization 

of airborne PCBs is temperature dependent and can result in their release from 

environmental or industrial reservoirs, such as rivers, lakes, landfills or contaminated 

building materials (Persoon et al., 2010, Desborough and Harrad, 2011, Zhang et al., 2011, 

Simcik et al., 1999, Achman et al., 1993, Hsu et al., 2003, Rudel and Perovich, 2009).

Human populations are more likely being exposed to lower-chlorinated, airborne PCBs by 

inhalation, rather than by ingestion (Harrad et al., 2009, Robertson and Ludewig, 2011). 

Indoor inhalation exposure to PCBs is of concern in schools and other buildings that were 

built in the 1950s and 1960s, as demonstrated by a number of studies investigating indoor 

exposure to PCBs in the United States and Europe (Herrick, 2010, Herrick et al., 2004, 

MacIntosh et al., 2012, Gabrio et al., 2000, Jamshidi et al., 2007, Harrad et al., 2010, Zhang 

et al., 2011). During this time, the caulking and other building materials used in construction 

contained high levels of PCBs and affected buildings still represent a major source for 

chronic inhalation exposures. A German study reporting measurements of several indicator 

PCBs in indoor air of contaminated schools found high concentrations of the lower-

chlorinated PCB congeners 28 and 52 (Gabrio et al., 2000). Moreover, there was a 

significant correlation between PCB exposure and increased blood concentrations of PCBs 

in teachers who had worked in these contaminated school buildings. Another study reported 

a correlation between indoor PCB levels and serum PCB concentrations in residents in the 

Hudson River area (Fitzgerald et al., 2011). The public health relevance of indoor inhalation 

exposure is further highlighted by several studies indicating that indoor air concentrations of 

PCBs significantly exceeded those determined in their respective outdoor environments 

(Jamshidi et al., 2007, Menichini et al., 2007).

Nonlegacy PCBs

The common perception that PCBs are long-banned industrial contaminants that are no 

longer produced is unfortunately misleading. In recent years, it has been conclusively shown 

that non-Aroclor, or nonlegacy PCBs contaminate the environment of homes and cities and 

accumulate in the bodies of exposed populations. In 2008, the Iowa Superfund Research 
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Program (ISRP) published the results of a large-scale air toxics monitoring program, 

demonstrating for the first time that PCB 11 (3,3’di-chlorobiphenyl), a non-Aroclor PCB 

that has been previously detected in New York/ New Jersey harbor surface and waste water 

(Litten et al., 2002), was ubiquitous in Chicago (Hu et al., 2008) and in Cleveland (Persoon 

et al., 2010) air. Since that initial discovery, researchers have reported the presence of 

nonlegacy PCBs in air samples around the world and it has been revealed that the most 

likely source of these contaminants is volatilization from common household paint (Basu et 

al., 2009, Choi et al., 2008). In 2010, a study of PCBs in pigments manufactured and sold as 

colorants in household paint revealed the presence of more than 50 nonlegacy PCBs (Hu and 

Hornbuckle, 2010). PCB 11 was the most commonly detected congener but many other 

PCBs, including several dioxin-like PCBs, were also highly abundant. Yellow, green, blue, 

and red pigments also contained PCB congeners, while white, black, and brown did not. The 

distinctive pattern of PCB congeners in the different pigments was an important clue to the 

chemical manufacturing processes that inadvertently produced these unwanted byproducts. 

Since then additional studies have shown the widespread presence of non-Aroclor PCBs in 

the environment and in consumer products. Their presence is most likely due to use of paint 

and pigments containing PCBs.

Even though they are only being discovered now, non-Aroclor PCBs have been present in 

the environment for at least 80 years, as evidenced by the presence of paint pigment derived 

PCBs in sediment core samples from the Great Lakes (Hu et al., 2011). As opposed to the 

Aroclor PCBs, however, PCB congeners associated with pigments are not exhibiting strong 

declines in the environment. And unlike Aroclors, these PCB congeners are still legally 

produced and distributed in the public. At this point, it has become clear that pigments are 

an important source of PCBs into the environment, especially into air but there are probably 

other sources. Theoretically, PCBs can be unintentionally produced from any chemical 

process that involves carbon, chlorine, and elevated temperatures or catalysts (Rudel and 

Perovich, 2009, Erickson, 2001). Consequently, many consumer products, including 

building materials that have been manufactured involving these chemical processes, might 

be tainted with PCBs which are eventually released into the environment (Rodenburg et al., 

2010b, Shang et al., 2014).

Despite this knowledge, human uptake, metabolism and toxic response to PCB 11 and other 

nonlegacy PCBs remains poorly understood. Initial laboratory studies with animals and 

plants have demonstrated the potential of PCB 11 to become bioavailable to humans through 

inhalation and to be accessible for biotransformation (Hu et al., 2013, Zhu et al., 2013, Hu et 

al., 2012, Hu et al., 2010b, Hu et al., 2014). In 2013, PCB 11 was reportedly detected in 

human serum for the first time, thereby further emphasizing the need for a better 

understanding of the exposure, metabolism and toxicities of nonlegacy PCBs (Marek et al., 

2013b).

PCB metabolism and relevant classes of PCB metabolites

Nomenclature of PCB metabolites

PCB metabolite nomenclature is based on PCB structure as originally numbered by 

Ballschmiter and coworkers (Ballschmiter et al., 1993). The Ballschmiter system assigns 
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congeners in ascending numerical order according to their chlorination status beginning with 

monochlorinated PCBs and ending with the only decachlorinated congener, PCB 209. 

Accordingly, it is not possible to derive the nomenclature from the correct IUPAC name of 

the metabolite. A short stepwise guidance for abbreviations of hydroxyl, methylsulfonyl, 

sulfate, and glucuronic acid metabolites of PCBs can be derived from the nomenclature 

system originally proposed for OH-PCBs and MeSO2-PCBs (Maervoet et al., 2004). Step 1: 
Identify the Ballschmiter number of the PCB as if no substituents are attached to the 

molecule and note which one of the two phenyl rings is carrying the primed chlorine 

positions. Step 2: A functional group (e.g. hydroxyl (-OH), methylsulfonyl (-MeSO2) or 

sulfate (-OSO3
−)) is given a non-primed or a primed number depending on the position 

where it is attached to the biphenyl moiety. Examples of full metabolite nomenclature are 

given in Tables 2 and 3. Eight-hundred-thirty-seven mono-hydroxylated metabolites are 

theoretically possible from the 209 PCB congeners, and this would also be true of the 

analogous PCB sulfates and PCB glucuronides derived from OH-PCBs. These OH-PCB 

congeners are listed in Table 2. In Table 3, those OH-PCBs identified in human plasma are 

listed together with their suggested or experimentally determined parent PCB congeners 

(Sjödin et al., 1998).

PCB metabolism

The rate and extent of PCB metabolism depends on the number and positions of chlorines in 

the molecule (Kato et al., 1980, Matthews and Anderson, 1975, Mills et al., 1985, 

Schnellmann et al., 1985). Overall, the fewer number of chlorine atoms on biphenyl, the 

faster the metabolism. Also, availability of vicinal non-chlorine substituted positions, 

especially in meta- and para-positions of the biphenyl core, increases the chances of 

cytochrome P450 (CYP) mediated transformation (Mills et al., 1985). Consequently, the fate 

of individual PCBs within the human body depends on their structural properties. 

Conventional HC-PCBs are fairly resistant towards biotransformation reactions and due to 

their high lipophilicity, they tend to be retained in adipose tissues or in plasma where they 

can be frequently detected at high concentrations of more than 10 µg/g lipid weight 

(Fangstrom et al., 2002, Kutz et al., 1991). LC-PCBs, by contrast, are often transiently 

detected in serum and their rapid disappearance is assumed to be related to their higher 

susceptibility for metabolic conversion (Robertson and Ludewig, 2011, Hansen, 1999)

The main pathways for PCB metabolism are shown in Figure 1 (Safe, 2001, Letcher et al., 

2000), with enzymes involved suggested. The initial step includes the oxidation of PCBs to 

OH-PCBs by hepatic cytochromes P-450 (CYP) enzymes (Bergman et al., 1994b, Matthews 

and Kato, 1979). Structurally different PCB congeners may be metabolized by different 

enzymes of the CYP superfamily. Non-ortho substituted (so called co-planar or dioxin-like) 

PCB congeners are metabolized predominately by CYP1A enzymes, while multiple ortho-

substituted PCBs are substrates for CYP2B enzymes (Kaminsky et al., 1981, Lu et al., 2013, 

Lu and Wong, 2011, McGraw and Waller, 2006, Waller et al., 1999, Warner et al., 2009). 

These observations are also confirmed by more efficient binding of structurally related 

PCBs to appropriate cytochrome P-450 isoforms (Hrycay and Bandiera, 2003, Kania-

Korwel et al., 2008a).
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Depending on the PCB congener, the initial CYP-dependent monooxygenation can result 

from direct electrophilic addition of oxygen or may involve the formation of a transient 

reactive arene oxide (Guengerich, 2001, Jerina and Daly, 1974, Preston et al., 1983). In fact, 

OH-PCBs are most easily formed from PCBs with 2,3-, 2,5- and 2,6-dichlorination or 2,3,6-

trichlorination patterns or PCB epoxides where the phenyl ring has none or a lower number 

of chlorine atom substituents in any position except the 4-position. PCB congeners with 4-, 

3,4-, 3,5-, 2,4,5-, 2,3,4,6- or 2,3,5,6- chlorine substitutions are less efficiently metabolized 

and they tend to form epoxides between a chlorine substituted carbon and an unsubstituted 

carbon. Each of the epoxides will yield two isomeric OH-PCBs. While OH-PCBs with at 

least one unsubstituted carbon next to the phenol group appear to be rapidly eliminated from 

organisms, including humans, the chlorine may undergo a 1,2-shift (Guroff et al., 1967) 

yielding rearranged polychlorobiphenylols. OH-PCBs with neighboring chlorine substituted 

carbons to the phenol group are retained in the blood (Letcher et al., 2000).

Transient PCB epoxides may also form adducts with biomacromolecules, isomerize to 

mono-hydroxy PCBs or hydrolyze to form PCB dihydrodiols (McLean et al., 1996b, 

McLean et al., 1996a, Kaminsky et al., 1981). Alternatively, PCB epoxides may react with 

glutathione (GSH) to form a dihydro-glutathione-hydroxyl-substituted PCB metabolite that 

can form a fully aromatic PCB glutathione conjugate through the loss of water (Figure 1) 

(Letcher et al., 2000, Bakke et al., 1983, Bakke et al., 1982). Each PCB undergoing this type 

of metabolism will yield two PCB glutathione conjugates. These GS-PCBs are degraded in a 

stepwise fashion to the corresponding cysteine conjugates that may be N-acetylated to form 

mercapturic acids, a route of degradation known as the mercapturic acid pathway (Bakke et 

al., 1982, Letcher et al., 2000). The corresponding PCB thiols are formed via cysteine S-

conjugate β-lyase catalyzed cleavage of the C-S bond in the cysteine conjugate. The PCB 

thiols are methylated and oxidized in two steps to sulfoxides and finally to the 

corresponding MeSO2-PCBs, highly hydrophobic Lewis bases (Kallenborn and Huhnerfuss, 

2001).

OH-PCBs have also been shown to undergo multiple oxidation reactions leading to more 

than a single hydroxyl substituent on the biphenyl structure (Bergman et al., 1994b, James, 

2001). Alternatively, the formation of dihydroxylated PCB metabolites can be directly 

catalyzed from parent PCBs by CYP2B enzymes (Lu et al., 2013, McLean et al., 1996a, 

Waller et al., 1999). Dihydroxylation can result in the formation of catechols and other 

hydroquinones (McLean et al., 1996a), that possess toxicological relevance in that they 

promote oxidative stress (Song et al., 2008b). OH-PCBs also represent substrates for 

conjugation reactions catalyzed by sulfotransferases (SULTs) or UDP-glucuronosyl 

transferases (UGTs) to yield their respective sulfate or glucuronic acid conjugates (Daidoji 

et al., 2005, Dhakal et al., 2012, Matthews and Kato, 1979).

Chirality of PCB metabolites

Nineteen PCBs and their metabolites are optically active (or chiral) because they exist as 

stable rotational isomers, called atropisomers, that are non-superimposable mirror images of 

each other (Lehmler et al., 2010, Mannschreck et al., 1985, Püttmann et al., 1989, Püttmann 

et al., 1986). Only non-coplanar PCBs with three or four ortho-chlorine substituents possess 
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sufficient torsional strain to facilitate the formation of stable atropisomer pairs that can be 

separated chromatographically (Kaiser, 1974, Norstrom et al., 2006, Haglund, 1996). PCBs 

84, 91, 95, 132, 136, 149, 174 and/ or their metabolites have been shown to accumulate 

enantioselectively in mammalian tissues (Lehmler et al., 2010), in birds (Jörundsdottir et al., 

2006), in plants (Zhai et al., 2011) and in humans (Ellerichmann et al., 1998, Hovander et 

al., 2004).

Theoretically, 456 of the 837 possible mono-hydroxylated PCB metabolites are chiral 

(Nezel et al., 1997). These atropisomers may or may not be generated in a 1:1 ratio, but the 

metabolites, like PCB atropisomers, seem to have different half-lives in animal tissues and 

in biota (Püttmann et al., 1989, Larsson et al., 2004, Larsson et al., 2002, Chu et al., 2003a). 

The atropselective formation of chiral OH-PCBs has been shown both in vivo (Kania-

Korwel et al., 2008b, Kania-Korwel et al., 2012) and in vitro (Kania-Korwel et al., 2011, 

Wu et al., 2011, Lu et al., 2013, Wu et al., 2013a, Wu et al., 2014, Wu et al., 2013b, Zhai et 

al., 2013b). The recently identified OH-PCB metabolites of five chiral PCBs, PCB 91, 95, 

132, 136, and 149, are chiral themselves, but were not previously identified in 

environmental samples, including human blood, due to the lack of authentic standards. The 

atropselective formation of these OH-PCBs results in changes of enantiomeric fractions of 

the parent compound (Warner et al., 2009). It was demonstrated using pure atropisomers, 

that biotransformation of (−)-PCB 136 leads to the formation of single enantiomer of 5-OH-

PCB 136, while the biotransformation of (+)-PCB 136 results in the formation of the other 

enantiomer of that major metabolite (Wu et al., 2011). Considering that pure PCB 

atropisomers can elicit different toxicological responses (Pessah et al., 2009, Lehmler et al., 

2005, Yang et al., 2014), these findings may have implications for risk assessment 

associated with those metabolites. Optically active MeSO2-PCBs identified in humans and 

laboratory animals to date are atropisomers of 5’-MeSO2-PCB 132 and 3-MeSO2-PCB 149 

(Ellerichmann et al., 1998, Norstrom et al., 2006).

Reactive (epoxide and (semi)quinone) PCB intermediates

Hepatic microsomes are capable of metabolizing lower chlorinated biphenyls, mono-, di-, 

and trichlorobiphenyls to catechols and hydroquinones (Robertson and Gupta, 2000, 

McLean et al., 1996a, Oakley et al., 1996). Likewise, the potential for microsomal formation 

of PCB catechols derived from penta- and hexachlorinated PCBs (e.g. PCB 136) was 

demonstrated (Lu et al., 2013, Wu et al., 2013a, Wu et al., 2014). One-electron oxidation of 

a PCB hydroquinone or catechol, or single-electron reduction of a PCB quinone, results in a 

semi-quinone radical with subsequent formation of reactive oxygen species (e.g. superoxide 

anion radical, hydrogen peroxide, and hydroxyl radical) and the PCB quinone (Song et al., 

2008a, Song et al., 2008b). In addition to the potential for generation of toxic oxygen 

species, the metabolic pathways of PCBs may include the formation of electrophilic PCB 

arene oxides and quinones that may bind to nucleophilic sites on cellular macromolecules 

(Robertson and Gupta, 2000, Lin et al., 2000, Qin et al., 2013, Wangpradit et al., 2009, 

James, 2001). In fact, a large number of in vitro studies have demonstrated adduct formation 

of PCBs and their metabolites, in particular PCB quinones, to proteins, RNA, DNA or lipids 

(Robertson and Gupta, 2000, Morck et al., 2002, Ludewig, 2001, Klasson Wehler et al., 

1989, Klasson Wehler et al., 1993, Zhao et al., 2004).
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Even though most evidence of PCB adduct formation points towards a primary involvement 

of LC-PCBs, there is limited evidence available supporting the potential of HC-PCBs for 

adduct formation with DNA/RNA and/or protein. An in vivo study in mice demonstrated 

covalent binding of 2,2’,3,3’,6,6’-hexachlorobiphenyl (PCB 136) to RNA, proteins, and 

DNA in liver, muscle, and kidneys and of 2,2’,4,4’,5,5’- hexachlorobiphenyl (PCB 153) to 

RNA and proteins in liver (Morales and Matthews, 1979). Another study showed binding of 

PCB 153 to nuclear proteins and DNA in livers of treated rats (Daubeze and Narbonne, 

1984). Further evidence of the presence of reactive intermediates of PCBs forming reaction 

products with biomolecules is the observation that non-extractable residues are present after 

exposure to radiolabeled PCBs (Pereg et al., 2001, Klasson Wehler et al., 1989, Klasson 

Wehler et al., 1993, Morck et al., 2002, Tampal et al., 2003). However, the identity of these 

adducts have so far only been poorly characterized, although two classes of PCB 

electrophiles, arene oxides and (semi)quinones, appear to be involved. The binding to lipids 

appears to involve phospholipids (Morck et al., 2002).

The ability of eight mono- to hexachlorinated biphenyls to form DNA adducts following 

bioactivation with hepatic microsomes from different species (rat, mouse, and human) was 

investigated (Pereg et al., 2002). Interestingly, only the lower chlorinated congeners with up 

to three chlorine atoms were capable of DNA adduction. Based on structural identification 

of PCB adducts to DNA, the suggested formation of DNA adducts involves PCB quinone 

metabolites (Zhao et al., 2004).

Binding indices have shown 15- to 30-fold greater binding of PCBs to peptides than to DNA 

(Pereg et al., 2001). Protein adduction is initiated through a reaction of the PCB metabolites 

with nitrogen and sulfur nucleophiles (Amaro et al., 1996). Sulfur nucleophiles are much 

more reactive with PCB-derived electrophiles than nitrogen nucleophiles. Therefore one 

would predict that protein sulfhydryls would be a preferred target (both on the basis of 

reactivity and abundance). In addition, using glutathione (GSH) as a target peptide, two 

distinctive, structure-dependent mechanisms by which PCB quinones are capable of forming 

protein adducts were revealed (Song et al., 2009). While PCB quinones without chlorine 

substituents in the quinone ring typically undergo a Michael addition to form a GSH adduct, 

GSH adduction of PCB quinones with chlorine substituents in the quinone ring tends to 

involve nonenzymatic displacement of such chlorines. Lin et al. reported an implied 

involvement of reactive quinones in the liver and brain of rats exposed to 2,2’,5,5’-

tetrachlorobiphenyl (PCB 52) (Lin et al., 2000). The adducts seemed to be unstable in vivo 

since the estimated half-life of the adducts was 2.5-fold shorter than the turnover rate of 

liver cytosolic protein.

Altogether, it is evident that PCBs are precursors of biomacromolecule adducts. This has 

most clearly been shown for the lower chlorinated biphenyls, but a number of studies on 

higher chlorinated biphenyls confirm the possibility of adduct formation. This is mediated 

by the metabolic formation of reactive intermediates, arene oxides, and (semi)quinones.

Hydroxylated PCB metabolites

Some OH-PCBs are stable (and extractable) metabolites that are retained in the body. 

Approximately 40 different OH-PCBs have been identified in human blood as first reported 
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by Bergman (Bergman et al., 1994a) and thereafter in a series of other studies (Marek et al., 

2013b, Quinete et al., 2014, Park et al., 2008, Park et al., 2007, Park et al., 2009), as well as 

in blood from wildlife (Fängström et al., 2005a, Letcher et al., 2000, Gutleb et al., 2010). 

There are 837 possible OH-PCB congeners (Table 2); the chemical structures of several that 

have been commonly detected in human blood (Table 3) are shown in Figure 2. All of these 

have 5 or more chlorines. Human plasma or serum concentrations of these most abundant 

OH-PCB congeners, as determined in human populations from Canada, the Faroe Islands, 

Latvia, the Netherlands, Nicaragua, Russia, Slovakia, and Sweden, are given in Table 4. All 

studies, except for the study of humans from the Russian Arctic, provided comparisons with 

PCB 153, the most abundant PCB congener. The OH-PCBs are present in concentrations 

similar in range as many PCB congeners, except for those PCBs that are the most prevalent/

persistent. Since OH-PCBs in the blood are reversibly bound to proteins, their accumulation 

is not lipid dependent (Gutleb et al., 2010, Purkey et al., 2004). Therefore it is more correct 

to report concentrations in serum or plasma on the basis of fresh weights. However, for 

comparative reasons the concentrations are often provided based on lipid weight. It was 

shown that the OH-PCB congener concentrations may reach median concentrations of 2–

300 ng/g fat, with individual levels up to 940 ng/g lipid weight (Table 4). Comparisons with 

plasma levels of PCB 153 indicate the high prevalence of various OH-PCBs. In fact, plasma 

concentrations of the most abundant OH-PCB congeners reach about 30% of those 

determined for PCB 153, with a variation among studies of 11–82%. The practical 

implication is that OH-PCBs present at the highest concentrations always exceed the 

concentrations of a large number of individual PCB congeners.

OH-PCBs are efficiently transferred from the maternal to the fetal blood via the placenta 

(Guvenius et al., 2003, Meerts et al., 2002, Morse et al., 1996, Soechitram et al., 2004). In 

fact, the transplacental transfer seems to be more efficient for the OH-PCBs (Lucier et al., 

1978) than for the PCBs (Gallenberg et al., 1990, Ring et al., 1988) themselves. This is most 

likely due to a lower relative lipid content in the blood of the fetus. It is also necessary to 

consider this difference in maternal-fetal transfer from a risk perspective. On the other hand, 

basically no, or a very limited, transfer of OH-PCBs occurs from mothers to their nursing 

children via the milk, which was shown both in laboratory animals (Meerts et al., 2002, 

Morse et al., 1996) and in humans (Malmberg et al., 2004, Fangstrom et al., 2005, Guvenius 

et al., 2002). The concentrations of PCB 153 in mother’s milk have been shown to be almost 

three orders of magnitude higher than those determined for 4-OH-PCB 187, the most 

common OH-PCB. This partitioning behavior is presumably due to the more polar and less 

lipophilic characteristics of the OH-PCBs.

To date, the in vivo formation of OH-PCBs from LC-PCBs has not been extensively 

characterized and deserves further scientific attention. Initial studies using rats exposed to 

PCB 11 by inhalation exposure, however, clearly indicate their rapid hydroxylation and 

subsequent elimination (Hu et al., 2014, Hu et al., 2013). While many OH-PCB metabolites 

are good substrates for conjugation reactions (James, 2001), the ease of formation of 

glucuronic acid and sulfate conjugates is highly structure-dependent, an observation that is 

supported by the persistence of certain OH-PCBs in serum (Tampal et al., 2002, Liu et al., 

2009, Bergman et al., 1994b, Gutleb et al., 2010). In addition, both conjugation reactions, 
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glucuronidation and sulfation, may be inhibited by OH-PCBs (Ekuase et al., 2011, James, 

2001, Kester et al., 2000, Liu et al., 2006, Liu et al., 2011, Liu et al., 2009, Schuur et al., 

1998b, van den Hurk et al., 2002, Wang et al., 2006).

PCB methyl sulfones

About 60 MeSO2-PCBs have been detected in environmental samples (Letcher et al., 2000). 

The precursor PCB congeners are well known for all MeSO2-PCBs that so far have been 

identified in humans and in wildlife. All the 22 MeSO2-PCB metabolites that have been 

structurally identified, and their parent PCB congeners, are listed in Table 5. In addition, 

recent data show the occurrence of up to fifty or more MeSO2-PCB congeners in human 

serum, but so far the majority of these are still not structurally identified (Hovander et al., 

2006). Studies on the formation and retention of MeSO2-PCBs in humans and wildlife 

published through 1999 were reviewed in detail by Letcher and co-workers (Letcher et al., 

2000).

Given their neutral lipophilic character, MeSO2-PCBs are present primarily in body lipids. 

In humans, MeSO2-PCBs that have been identified are generally present only at low 

concentrations, 1% or less compared to the PCB concentrations. They accumulate with high 

selectivity in certain tissues, such as liver and lung (Letcher et al., 2000, Bergman et al., 

1979, Larsson and Bergman, 1998). The MeSO2-PCB concentrations are notably high in the 

liver of mammals (Larsson and Bergman, 1998, Bergman et al., 1994b) and likewise, human 

livers have been shown to accumulate MeSO2-PCBs (Weistrand and Noren, 1997, 

Ellerichmann et al., 1998). The majority of these metabolites have the MeSO2 substituent in 

the meta-position of their respective biphenyl ring. The binding characteristics of MeSO2-

PCBs in liver tissue have not been elucidated, but 4-MeSO2-PCBs that accumulate in lung 

bronchial epithelium of rodents were specifically located in non-ciliated cells, the Clara 

cells, which contain uteroglobin, alternatively known as PCB binding protein (Lund et al., 

1985, Lund et al., 1987). This accumulation in the lung may be seen as an excretion pathway 

for the MeSO2-PCBs. However, if transported up the airways they may be swallowed and 

possibly reabsorbed from the gut. Data on human concentrations of MeSO2-PCBs are 

summarized in Table 6.

PCB sulfates

A number of studies have been published that identified OH-PCBs as substrates and 

inhibitors for recombinant human sulfotransferases SULT1A1, SULT1E1, and SULT2A1 

(Ekuase et al., 2011, Kester et al., 2000, Liu et al., 2006, Wang et al., 2006). Moreover, the 

susceptibility of several OH-PCBs to serve as substrates or inhibitors for rat SULT1A1 and 

rat SULT2A3, the presumptive rat homolog for human SULT2A1, was assessed (Liu et al., 

2009). The majority of the OH-PCBs examined were found to be excellent substrates for 

certain SULT isoforms while being inhibitors for others. A general conclusion of these 

studies on structure-activity relationships was that 4’-hydroxylated PCBs without chlorine 

substituents in the adjacent 3’ or 5’ positions were typically substrates for SULT1A1 and 

inhibitors for SULT2A1, whereas OH-PCBs possessing the 3’,5’-dichloro-4’hydroxy 

substitution pattern were usually identified as substrates for SULT2A1 and inhibitors of 

SULT1A1. The latter group also constitutes the most potent inhibitors of SULT1E1 (Kester 
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et al., 2000). Based on the small number of OH-PCBs with only a single chlorine atom in a 

position ortho to the phenol that have been examined to date, they appear to have more 

subtle and complex interactions with family 1 and 2 SULTs that affect substrate/inhibitor 

specificities of the enzymes.

However, evidence for the formation of PCB sulfates in vivo was lacking until sulfate ester 

metabolites derived from PCB 3 were recently detected in serum and urine samples 

collected from male Sprague-Dawley rats exposed to PCB 3 by intraperitoneal injection or 

inhalation (Dhakal et al., 2013, Dhakal et al., 2012, Dhakal et al., 2014). Interestingly, PCB 

sulfates appeared to be major metabolites in these studies, far outweighing glucuronidation. 

Moreover, the most abundant PCB sulfate in serum was identified as 4’-OSO3
−-PCB 3 and 

its serum concentrations greatly exceeded those determined for 3’-OSO3
−-PCB 3 and 2’-

OSO3
−-PCB 3, thereby indicating the 4’ position on the unsubstituted aryl ring as a primary 

target for oxidation and subsequent sulfation reactions. In addition, serum concentrations of 

4’-OSO3
−-PCB 3 were approximately 60-fold higher than those of its hydroxylated 

precursor, 4’-OH-PCB 3. Thus, this indicated that sulfation is a major metabolic pathway for 

this lower-chlorinated OH-PCB in the rat. The presence of sulfate metabolites derived from 

PCB 3 has also been confirmed in poplar plants (Zhai et al., 2013a).

PCB metabolite associated toxicities

Despite the fact that xenobiotic metabolism is primarily regarded as a detoxication process, 

there is increasing evidence that various classes of PCB metabolites exhibit their own 

toxicities, including carcinogenic, neurologic and endocrine effects (Brouwer et al., 1999, 

Knerr and Schrenk, 2006, Silberhorn et al., 1990, Tilson and Kodavanti, 1998). These 

findings raise important questions such as whether many of the toxic effects previously 

attributed to parent PCBs are in fact caused by their metabolites. In this section, we attempt 

to summarize the scientific evidence for the involvement of PCB metabolites in PCB-

associated toxicities with an emphasis on carcinogenesis and thyroid disruption.

Reactive (epoxide and (semi)quinone) PCB intermediates

PCBs have recently been classified as “carcinogenic to humans” by the International 

Agency for Research on Cancer (IARC) (Lauby-Secretan et al., 2013). While this 

classification was based on positive correlation between PCB exposure and incidences of 

melanoma and limited evidence of an involvement in the development of breast cancer and 

non-Hodgkin lymphoma, exposure to PCBs has also been correlated with an increased 

incidence of other malignancies including hepatocellular carcinoma and lung cancer 

(Onozuka et al., 2009, Todaka et al., 2009). In addition, exposure to several Aroclor PCB 

mixtures resulted in the formation of thyroid neoplasms in male Sprague-Dawley rats, a 

finding that is in agreement with similar in vivo studies (Mayes et al., 1998, Vansell et al., 

2004). Although for a long time PCBs were thought to be strictly promoting carcinogens, a 

lower chlorinated congener (PCB3) was shown to induced point mutations in rat livers in 

vivo (Lehmann et al., 2007), and, in agreement with this, recent evidence suggests that 

particularly the lower-chlorinated congeners can be oxidized to genotoxic metabolites, such 

as arene oxides and quinone species (Espandiari et al., 2003, Espandiari et al., 2004, 

Robertson and Ludewig, 2011). In fact, the quinone metabolites of PCB3 increase gene 
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mutations in vitro at low micromolar concentrations (Zettner et al., 2007), induce strand 

breaks (Xie et al., 2010), bind to and inhibit the nuclear protein topoisomerase II (Bender et 

al., 2006, Bender and Osheroff, 2007, Srinivasan et al., 2001, Srinivasan et al., 2002) and 

reduce telomerase activity resulting in shortened chromosomal telomeres in cells in culture 

(Jacobus et al., 2008). Interestingly, only the para-dihydroxy metabolite of PCB3 induced 

polyploidization and only the ortho-dihydroxy metabolite caused sister chromatid exchanges 

(Flor and Ludewig, 2010) indicating a binding to other, so far unidentified cellular proteins, 

as mediators of these genotoxic effects. While adduction of PCB metabolites to DNA and 

DNA-related proteins may not be the primary target of PCB adduction, it may have a 

profound impact on the carcinogenicity observed with PCB exposure. The metabolic 

activation pathway of PCB 3 to its ultimate carcinogenic species was demonstrated in a rat 

model (Espandiari et al., 2004). In this study, which examined several PCB3 metabolites, a 

probable proximate carcinogen, the para-hydroxylated 4’-OHPCB 3 and an ultimate 

carcinogen, the 3,4-benzoquinone PCB 3, were identified as cancer initiating compounds. 

PCB associated DNA-adduction is described in more detail in the respective section of this 

review. In contrast to LC-PCBs, the tumor promoting activity of certain PCB mixtures has 

been partially attributed to their enzyme-inducing properties (Alvares et al., 1977, Knerr and 

Schrenk, 2006). The fact that the higher-chlorinated congeners are generally better inducers 

than LC-PCBs might explain the synergistic carcinogenicity of PCB mixtures as opposed to 

individual congeners that was observed in previous in vivo studies (Hansen, 1998, Sleight, 

1985). Another mechanism by which hydroxylated, and potentially quinone metabolites of 

PCBs exert tumor promoting activity is through inhibition of gap junctional intercellular 

communication (Machala et al., 2004). For a more detailed discussion of the genotoxicity of 

PCBs, please see (Lehmann et al., 2007, Ludewig et al., 2008, Senthilkumar et al., 2011).

Besides their involvement in carcinogenesis, reactive PCB metabolites have been shown to 

induce oxidative stress, resulting in profound cytotoxic effects observed in vitro. For 

example 4-OH-PCB 11 was capable of inducing cytotoxic effects in immortalized human 

prostate epithelial cells (Zhu et al., 2013). The mechanism of cytotoxicity resulting in 

decreased cell viability was demonstrated to involve an OH-PCB dependent increase in the 

formation of reactive oxygen species, in particular intracellular superoxide and 

hydroperoxides.

Hydroxylated PCB metabolites

While PCBs in general are known endocrine disruptors that can target various endocrine 

systems, including the estrogen and thyroid systems, hydroxylated PCBs also appear to be 

toxicologically relevant key players in PCB mediated endocrine disruption. For example, 

certain OH-PCBs have been shown to interact with the estrogen receptor, acting either as 

receptor agonists or antagonists (Connor et al., 1997, DeCastro et al., 2006, Krishnan and 

Safe, 1993, Ma and Sassoon, 2006, Machala et al., 2004). Interestingly, several hydroxyl 

LC-PCBs had up to 100% higher efficacy than estradiol (Machala et al., 2004). Although 

they were much less potent than estradiol, they acted in an additive mode. A study 

investigating the estrogenic activity in human serum of men exposed to PCBs indicated a 

distinct and congener-dependent pattern, with higher-chlorinated congeners being strictly 

antiestrogenic and lower-chlorinated ones exerting estrogenic effects (Pliskova et al., 2005). 
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This finding was in agreement with previous observations in vivo indicating that LC-PCBs 

were more estrogenic than higher-chlorinated congeners, which could be a result of their 

increased potential for metabolic conversion (Bitman and Cecil, 1970, Hansen, 1998). Also, 

exposure of ovarian cells to ng/ml amounts of PCB3 or its hydroxylated metabolites 

increased secretion of estradiol, an effect that was caused by an increase in aromatase 

activity and which was most pronounced with the dihydroxy PCB3 (Ptak et al., 2005, Ptak et 

al., 2006). In addition to exerting direct estrogenic and antiestrogenic effects through 

receptor binding or increased estrogen production, OH-PCBs have also been shown to 

induce estrogenicity indirectly through inhibition of the estrogen sulfotransferase (i.e., 

SULT1E1) (Kester et al., 2000, Kester et al., 2002). Inhibition of this SULT isoform slows 

down the rate of inactivation of estrogens by sulfation and thus results in increased levels of 

the active hormones.

OH-PCBs have also been identified as one class of PCB metabolites that act as disruptors of 

thyroid homeostasis (Meerts et al., 2002, Morse et al., 1996, Meerts et al., 2004) and a clear 

relationship between elevated OH-PCB levels and decreased thyroid hormone levels has 

been observed in animal (Dallaire et al., 2009, Otake et al., 2007, van den Berg et al., 1988, 

Morse et al., 1993) and human (Kato et al., 2004) studies. Serum hypothyroxinemia is 

among the most frequently reported adverse health effects in human populations exposed to 

PCBs (Kodavanti and Curras-Collazo, 2010, Patrick, 2009). Alongside observed direct 

thyroid effects in wildlife, these observations led to the classification of PCBs as thyroid-

disrupting chemicals (TDCs) (Knerr and Schrenk, 2006, Mayes et al., 1998, Pearce and 

Braverman, 2009). Due to the role of thyroid hormones as stimulants and regulators for 

cellular proliferation and differentiation, thyroid disruption is particularly critical during 

human fetal development (Patrick, 2009, Giera et al., 2011). Serum concentrations of both 

the pro-hormone L-thyroxine (T4) and the active hormone triiodothyronine (T3) are 

extremely low (3.5–6.5 pM free T3, 0.9–2.8 nM total T3, 10–23 pM free T4, 58–161 nM 

total T4) and even small changes in these concentrations can result in developmental 

toxicities (Patrick, 2009). Neurodevelopmental effects of alterations in thyroid hormones 

have been observed in infants and laboratory animals as a result of subclinical maternal 

hypothyroidism during the first trimester of pregnancy, and include decreased cognitive and 

motor function, mental retardation, and low IQ scores (Vermiglio et al., 2004, Zoeller and 

Rovet, 2004). Epidemiological studies report visual recognition deficits, impaired executive 

functioning and speech problems as adverse neurodevelopmental effects in PCB-exposed 

populations (Jugan et al., 2010, Pearce and Braverman, 2009). In adults, subclinical 

hypothyroidism primarily affects lipid metabolism and is associated with increased serum 

lipid concentrations and a higher incidence of obesity (Asvold et al., 2007, Patrick, 2009). 

These effects may also contribute to the increased risk of cardiovascular effects such as 

atherosclerosis and myocardial infarction that was observed in PCB exposed populations 

(Razvi et al., 2008).

Interestingly, while most studies report negative correlations between PCB and thyroid 

hormone levels, fewer studies indicate positive correlations, particularly between serum 

PCB levels and free thyroid hormone concentrations (Bloom et al., 2009, Langer et al., 

2008). In addition, a few studies report no correlation between elevated plasma PCB and 
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thyroid hormone levels (Jugan et al., 2010). These findings indicate that thyroid effects may 

not just be related to the extent of the exposure but are in fact congener- or metabolite-

dependent. In vivo animal models clearly indicate a negative correlation between PCB 

concentrations and T4 levels (Jugan et al., 2010, Meerts et al., 2002, Meerts et al., 2004). 

PCBs have been suggested to affect the thyroid homeostatic system at various stages in a 

congener-dependent manner and there is increasing evidence for distinct roles of various 

classes of PCB metabolites.

A suggested major contributing mechanism in environmental contaminant induced 

hypothyroxinemia is the displacement of T4 from its binding sites on the thyroid hormone 

transport protein transthyretin (TTR) (Kodavanti and Curras-Collazo, 2010). As opposed to 

parent PCBs, all OH-PCBs retained in human and wildlife blood seem to be competitors for 

T4 binding sites on TTR (Brouwer et al., 1998, Malmberg et al., 2004, Darnerud et al., 1996, 

Gutleb et al., 2010). In addition, the binding potencies of OH-PCBs have been shown to be 

up to an order of magnitude greater than the binding of T4 (Rickenbacher et al., 1986, 

Chauhan et al., 2000). Moreover, TTR has been suggested to facilitate the transport of 

bound ligands across the blood-brain barrier and the placenta and thus, binding to TTR may 

also play a role in the distribution of OH-PCBs to the placenta and the brain (Brouwer et al., 

1998, Lans et al., 1993, Mortimer et al., 2012). In fact, exposure of pregnant mice to PCBs 

resulted in elevated serum and brain levels of OH-PCBs in the developing fetus (Meerts et 

al., 2002, Meerts et al., 2004, Morse et al., 1995, Morse et al., 1996). After birth, the OH-

PCBs in brain were no longer detected, suggesting an increased susceptibility exists in this 

highly sensitive moment of brain development (Jacobson et al., 1990, Boucher et al., 2009, 

Darras, 2008).

Another potential mechanism by which OH-PCBs interfere with thyroid homeostasis is 

represented by the inhibition of SULT-catalyzed sulfation of thyroid hormones (Schuur et 

al., 1998a), since OH-PCBs are a well-known class of substrates and inhibitors of a variety 

of sulfotransferase enzymes (Liu et al., 2009, Ekuase et al., 2011, Kester et al., 2000, Kester 

et al., 2002, Wang et al., 2006).

OH-PCBs also possess neurotoxic potential (Pessah et al., 2006, Londono et al., 2010, 

Sharma and Kodavanti, 2002) in that they have been shown to interact more potently with 

the RyR receptors than parent compounds (Pessah et al., 2006) and they have been shown to 

affect the Ca2+ homeostasis in neuronal cells (Londono et al., 2010). More recently it was 

revealed that OH-PCB induced muscle dysfunction actually depends on their interactions 

with RyR receptors (Niknam et al., 2013).

PCB methyl sulfones

The selective tissue retention of MeSO2-PCBs in lung tissue has been hypothesized to be at 

least partially accountable for respiratory problems in Yusho patients (Kato et al., 1995). In 

liver, several MeSO2-PCBs have been found to induce microsomal drug metabolizing 

enzymes, and in some cases metabolites were even more potent than the respective parent 

compounds (Kato et al., 1995, Kato et al., 1999, Kato et al., 1997). In particular, certain 

MeSO2-PCBs were capable of inducing CYP2B1, CYP2B2, CYP3A2, and CYP2C6 (Kato 

et al., 1995). In addition, they were strong inhibitors of CYP11B1, an enzyme that is 
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required in corticosterone biosynthesis and antagonists for the glucocorticoid receptor, 

which further indicated their potential as endocrine disruptors (Johansson et al., 1998). The 

MeSO2-PCBs may also induce UDP-glucuronosyltransferase (Kato et al., 2000), which in 

turn was hypothesized to affect the thyroid hormone homeostasis (Kato et al., 2000). Finally, 

MeSO2-PCBs are also capable of reducing thyroid hormone levels in laboratory animals 

(Kato et al., 1998, Kato et al., 1999, Kato et al., 2000). These effects, were observed both in 

mink dams and also in their offspring, where metabolites were transferred from mothers 

(Lund et al., 1999).

PCB sulfates

While OH-PCBs have long been known as a class of competitive ligands for TTR, we have 

recently demonstrated that PCB sulfates represent another group of high-affinity ligands for 

the T4-binding sites on the protein (Grimm et al., 2013). Interestingly, the sulfates bound 

with similar or higher affinity than their corresponding OH-PCBs, which for the first time 

indicated a potential toxicological significance of PCB sulfates in thyroid hormone 

disruption. This increased affinity as compared to OH-PCBs may be the result of the 

presence of the anionic sulfate group, which resembles the alanyl moiety on T4 and is 

assumed to facilitate hydrogen bonding interactions with lysine residues in the T4 binding 

site. Authentic PCB sulfate standards were not available until relatively recently (Li et al., 

2010), and this may explain the lack of previous mechanistic studies on their biological 

and/or toxicological potential.

Toxicological relevance of PCB metabolites and research needs

So why should we care about the formation and physiologic fate of PCB metabolites, 

particularly those derived from the more readily metabolized LC-PCBs?

First, due to their environmental persistence and widespread occurrence, traditionally 

manufactured PCBs remain a public health hazard. Even though human exposure levels 

appear to be overall declining (Jugan et al., 2010), the measured PCB concentrations can 

vary greatly between exposed individuals, from almost undetectable to peak concentrations 

of more than 100 µg/g lipid weight (Langer et al., 2008). Assuming an average plasma lipid 

concentration of 7.35 g/l (El Majidi et al., 2014) and an average molecular weight of 300 

g/mol for PCBs, these 31 measurements translate into plasma PCB concentrations from the 

picomolar to low micromolar range (2.45 µM). OHPCB and MeSO2-metabolite 

concentrations are frequently correlated to parent PCB levels and are typically one to two 

orders of magnitude below PCB concentrations, a finding that is reflective of the relative 

resistance toward bioconversion exhibited by mostly HC-PCBs (Letcher et al., 2000, Marek 

et al., 2013b).

Second, recent evidence for the omnipresence of lower-chlorinated and/or nonlegacy PCBs 

in our environment and the increasing evidence for their associated toxicities, clearly 

indicate their role as chemicals of interest from a public health perspective. A target group 

of particular concern are school children daily exposed to lower-chlorinated, airborne PCBs 

in older buildings built primarily in the 1950s and 1960s (Herrick, 2010, Herrick et al., 

2004, MacIntosh et al., 2012). As opposed to HC-PCBs, these LC-PCBs are readily 
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metabolized which may be the primary reason, why the parent congeners are typically 

present only at very low to undetectable concentrations (Hansen, 2001, Robertson and 

Ludewig, 2011). Low blood levels are often misinterpreted as an indication for low exposure 

and therefore low relevance when in fact they should be taken as an indication of 

continuous, steady-state, and therefore potentially significant overall exposure to compounds 

that have a high propensity to be bioactivated to potentially harmful metabolites. To date 

research has revealed four groups of potentially toxic metabolites of primarily these LC-

PCBs: i: reactive metabolic intermediates from PCBs, particularly the quinones; ii: 

hydroxylated PCB metabolites, iii: PCB methyl sulfones and iv: PCB sulfates.

While there is substantial evidence for the formation and toxic potential of these metabolites 

derived from both in vitro and in vivo studies, the extent of their formation and exposure 

levels in human populations have not yet been explored. However, considering air PCB 

concentrations of up to of 5.5 ng/m3, for example in Chicago (Hu et al., 2010a, Persoon et 

al., 32 2010), and several hundred to thousand ng/m3 in indoor air of schools (Herrick et al., 

2004, Liebl et al., 2004) and evidence for the presence of certain lower-chlorinated, airborne 

PCBs, such as PCB 11, in plasma of exposed populations (Marek et al., 2013b), quantitative 

assessment of LC-PCB and metabolite exposure levels is highly desirable.

It is not yet possible to assess human exposure to reactive metabolic intermediates of PCBs 

(arene oxides, semiquinones, quinones or their bound residues) even though the neutral, 

lipophilic MeSO2-PCB congeners may be taken as a measure of arene oxide formation. 

Moreover, it is relevant to assess human levels of OH-PCBs and their conjugated PCB 

metabolites, such as MeSO2-PCBs, PCB sulfates, and PCB glucuronides, since the parent 

PCB congeners are in many cases present only at trace concentrations or remain 

undetectable. The major OH-PCBs are present at concentrations in the same range as many 

of the PCB congeners and hence relevant for exposure assessments to PCBs. MeSO2- PCBs 

have strong tissue and cell specific retention leading to higher local (cellular) concentrations 

than general tissue levels. The physiological fates and biological activities of PCB sulfates 

are still relatively poorly understood and additional studies will be required to assess their 

significance in PCB metabolism and toxicities.

Research needs for reactive (epoxide and (semi)quinone) PCB intermediates

PCB adducts with DNA and proteins in humans may be impossible to identify. Risks of 

adduct formation to DNA and other biomacromolecules can therefore only fully be assessed 

indirectly if we know the complete PCB congener profile and concentration pattern of the 

individual exposure to PCBs. This requirement is primarily based on the need for 

concentration data for lower chlorinated biphenyls and other congeners that are rapidly 

metabolized and therefore disappearing in humans despite often continuous, ongoing 

exposure from the 33 environment (Grossman, 2013). Exposures to lower chlorinated 

biphenyls would be primarily through inhalation of contaminated air in cities, buildings or 

locations near PCB-contaminated waste sites (Herrick, 2010, Hu and Hornbuckle, 2010, Hu 

et al., 2010a, MacIntosh et al., 2012, Marek et al., 2013b). The majority of exposures to 

PCBs in the general population, however, is thought to arise through dietary sources 

(Domingo and Bocio, 2007). Food as source for LC-PCBs is often overlooked, but may be 
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high for certain food items such as plant oils, possibly due to airborne exposure onto crops 

or from contaminated sewage sludge used as fertilizer (Ludewig et al., 2007). However, 

since most HC-PCBs biomagnify in the food chain and they are therefore the major 

contributors to dietary PCB exposure. HC-PCBs also bioaccumulate in humans resulting in 

the observed age-dependent increase in body burden over a lifetime. For these congeners it 

would seem possible to model the reactive intermediate concentrations based on internal 

concentrations of PCB congeners. The exposure to LC-PCBs with short half-lives may have 

a small impact on the total PCB body burden at any given time, but may well be the major 

source of PCBs that form reactive intermediates (Robertson and Gupta, 2000, Robertson and 

Ludewig, 2011). The formation of reactive intermediates, arene oxides, semi-quinones, and 

quinones, is therefore related to PCB concentration patterns in individuals. Other important 

questions relate to organand species-specificity of activation pathways and therefore 

likelihood of adduct formation. As described above, the chlorination pattern of a PCB 

congener determines the substrate specificity for CYP forms which in turn my influence 

organ and cell-specific formation of oxidized metabolites. In addition, cells with specific 

oxidizing enzymes, like myeloperoxidase in bone marrow cells, may be most likely to 

produce reactive quinone metabolites and therefore more likely to form DNA and protein 

adduct (Xie et al., 2010). Understanding of these specific enzyme requirements may 

elucidate the mechanism of the observed organ-specific carcinogenicity of 34 PCBs. Finally, 

an understanding of the activation pathway and mechanisms of toxicity will enable the 

development of chemoprotective regiments. Potential toxicities of the reactive intermediates 

are thus 1. directly related to the internal PCB congener concentrations including those from 

short-lived lower chlorinated congeners that can only be estimated by assessing the external 

exposures, 2. affected by species, organ and cell-specific bioactivation capacities, and 3. 

determined by the cellular consequences of the adduction to a specific macromolecule. Data 

for all three parameters are currently incomplete, thereby preventing true data-driven risk 

assessment.

Research needs for OH-PCBs

Human populations can be exposed to OH-PCBs by two different sources. While metabolic 

conversion of PCBs was for a long time considered the only source of OH-PCBs, it has also 

been demonstrated that OH-PCBs were originally present in Aroclors and they are still 

present in detectable amounts in the environment (Bergman et al., 1994b, Marek et al., 

2013a, Matthews and Kato, 1979). Moreover, little or no data exist about OH-PCBs in our 

foodstuffs. OH-PCBs are either excreted as such or as their conjugates, or they may be 

further metabolized to dihydroxylated PCBs. However, some of the OH-PCBs are strongly 

retained in blood as protein bound phenolic metabolites with reasonably long half-lives 

(Bergman et al., 1994b, Malmberg et al., 2004, Oberg et al., 2002). Considering that OH-

PCBs formed from internal PCB congeners lead to a continuous exposure to these 

metabolites, it should be possible to model some OH-PCB concentrations based on known 

PCB levels in a healthy normal human. However, since OH-PCB congeners can be present 

in high concentrations (10% – 30% of the PCB level) which are often higher than many of 

the individual PCB congeners (Marek et al., 2013b, Hisada et al., 2013, Nomiyama et al., 

2010), it is relevant to determine the concentrations of these metabolites and 35 potential 

sources separately. The goal is primarily to promote dose-response linkages between effects 
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of the OH-PCBs and their concentrations, a research field that needs further development. 

Assessing PCB induced adverse health effects for many toxic endpoints can be improved by 

including data on human concentrations and effects of OH-PCBs.

Research needs for PCB methyl sulfones

In contrast to the retained OH-PCB metabolites, MeSO2-PCBs are neutral metabolites that 

are present at much lower concentrations in humans than OH-PCBs (<4% of the dominant 

OH-PCB congener) (Bergman et al., 1979, Letcher et al., 2000). MeSO2-PCBs have specific 

and strong tissue or even cell specificity, particularly in the liver and lung (Bergman et al., 

1979, Larsson and Bergman, 1998, Letcher et al., 2000). Whether or not this translates into 

organ and cell specific toxic effects has not been fully investigated. Another difference 

between methylsulfone and OH PCBs is that the MeSO2-PCBs are the final product of the 

most rapidly metabolized PCB congeners which consequently are present in humans only at 

trace or even non-detectable concentrations. Since these metabolites derive from exposure to 

some of the most rapidly metabolized PCB congeners, they may serve as markers for 

exposure to these congeners and of the non-quantifyable arene oxide and quinone 

metabolites of these PCBs.

Research needs for PCB sulfates

Although the toxicological relevance of PCB sulfation is not yet known, a variety of in vitro 

and in vivo studies suggest that the formation of PCB sulfates is a potentially significant 

metabolic pathway for LC-PCBs in humans (Dhakal et al., 2012, Dhakal et al., 2014, Ekuase 

et al., 2011, Grimm et al., 2013, Liu et al., 2006, Liu et al., 2011, Liu et al., 2009, Zhai et al., 

2013a). The 36 fact that, in the past, human serum has been almost exclusively analyzed for 

parent PCBs and only recently for their hydroxylated metabolites indicates that overall PCB 

exposure levels in exposed populations may have been underestimated, at least with respect 

to the LC-PCBs (Hovander et al., 2000, Marek et al., 2013b, Dirtu and Covaci, 2010). Thus 

development of sulfate metabolites in urine or blood as biomarker of exposure to LC-PCBs 

is a promising avenue to obtain realistic exposure data for humans in their natural 

environments.

Acknowledgements

This review was in part the work product of the European Food Safety Authority (EFSA) working group on non-
dioxin like PCBs, 2005. Where the authors own work was mentioned, those studies were supported by grants from 
the NIH (ES07380 and ES013661), DOD, EPA and the EU R&D projects PCBRISK, COMPARE, ANEMONE 
and RENCO. LWR would also like to recognize the Alexander von Humboldt Foundation for financial support.

References

Alvares AP, Fischbein A, Anderson KE, Kappas A. Alterations in drug metabolism in workers 
exposed to polychlorinated biphenyls. Clin Pharmacol Ther. 1977; 22:140–146. [PubMed: 407043] 

Amaro AR, Oakley GG, Bauer U, Spielmann HP, Robertson LW. Metabolic activation of PCBs to 
quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. 
Chem Res Toxicol. 1996; 9:623–629. [PubMed: 8728508] 

Asvold BO, Vatten LJ, Nilsen TI, Bjoro T. The association between TSH within the reference range 
and serum lipid concentrations in a population-based study. The HUNT Study. Eur J Endocrinol. 
2007; 156:181–186. [PubMed: 17287407] 

Grimm et al. Page 19

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ATSDR. Toxicological profile for polychlorinated biphenyls (PCBs). U.S. Dept. Health Services, 
Public Health Service; 2000. 

Bakke JE, Bergman AL, Larsen GL. Metabolism of 2,4',5-trichlorobiphenyl by the mercapturic acid 
pathway. Science. 1982; 217:645–647. [PubMed: 6806905] 

Bakke JE, Feil VJ, Bergman A. Metabolites of 2,4',5-trichlorobiphenyl in rats. Xenobiotica. 1983; 
13:555–564. [PubMed: 6419479] 

Ballschmiter K, Mennel A, Buyten J. Long chain alkyl-polysiloxanes as non-polar stationary phases in 
capillary gas chromatography. Fresenius' Journal of Analytical Chemistry. 1993; 346:396–402.

Ballschmiter K, Zell M. Analysis of polychlorinated-biphenyls (PCB) by glass-capillary gas-
chromatography - composition of technical Aroclor-PCB and Clophen-PCB mixtures. Fresenius J 
Anal Chem. 1980; 302:20–31.

Barron MG, Yurk JJ, Crothers DB. Assessment of Potential Cancer Risk from Consumption of PCBs 
Bioaccumulated in Fish and Shellfish. Environ Health Perspect. 1994; 102:562–567. [PubMed: 
9679116] 

Basu I, Arnold KA, Venier M, Hites RA. Partial pressures of PCB-11 in air from several Great Lakes 
sites. Environmental Science & Technology. 2009; 43:6488–6492. [PubMed: 19764206] 

Bender RP, Lehmler HJ, Robertson LW, Ludewig G, Osheroff N. Polychlorinated biphenyl quinone 
metabolites poison human topoisomerase IIalpha: altering enzyme function by blocking the N-
terminal protein gate. Biochemistry. 2006; 45:10140–10152. [PubMed: 16906772] 

Bender RP, Osheroff N. Mutation of cysteine residue 455 to alanine in human topoisomerase IIalpha 
confers hypersensitivity to quinones: enhancing DNA scission by closing the N-terminal protein 
gate. Chem Res Toxicol. 2007; 20:975–981. [PubMed: 17516663] 

Bergman A, Brandt I, Jansson B. Accumulation of methylsulfonyl derivatives of some bronchial-
seeking polychlorinated biphenyls in the respiratory tract of mice. Toxicol Appl Pharmacol. 1979; 
48:213–220. [PubMed: 112715] 

Bergman A, Klasson-Wehler E, Kuroki H. Selective retention of hydroxylated PCB metabolites in 
blood. Environ Health Perspect. 1994a; 102:464–469. [PubMed: 8593850] 

Bergman A, Norstrom RJ, Haraguchi K, Kuroki H, Beland P. PCB and DDE methyl sulfones in 
mammals from Canada and Sweden. Environmental Toxicology and Chemistry. 1994b; 13:121–
128.

Birnbaum LS. Distribution and excretion of 2,3,6,2',3',6'- and 2,4,5,2',4',5'-hexachlorobiphenyl in 
senescent rats. Toxicol Appl Pharmacol. 1983; 70:262–272. [PubMed: 6414105] 

Bitman J, Cecil HC. Estrogenic activity of DDT analogs and polychlorinated biphenyls. J Agric Food 
Chem. 1970; 18:1108–1112. [PubMed: 5483049] 

Bloom MS, Vena JE, Olson JR, Kostyniak PJ. Assessment of polychlorinated biphenyl congeners, 
thyroid stimulating hormone, and free thyroxine among New York state anglers. Int J Hyg Environ 
Health. 2009; 212:599–611. [PubMed: 19493696] 

Boucher O, Muckle G, Bastien CH. Prenatal exposure to polychlorinated biphenyls: a 
neuropsychologic analysis. Environ Health Perspect. 2009; 117:7–16. [PubMed: 19165381] 

Bradbury S, Mekenyan O, Ankley G. Quantitative structure-activity relationships for polychlorinated 
hydroxybiphenyl estrogen receptor binding affinity—an assessment of conformer flexibility. 
Environ Toxicol Chem. 1996; 15:1945–1954.

Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical emission inventory for 
selected PCB congeners--a mass balance approach 3. An update. Sci Total Environ. 2007; 
377:296–307. [PubMed: 17395248] 

Brouwer A, Longnecker MP, Birnbaum LS, Cogliano J, Kostyniak P, Moore J, Schantz S, Winneke G. 
Characterization of potential endocrine-related health effects at low-dose levels of exposure to 
PCBs. Environ Health Perspect. 1999; 107(Suppl 4):639–649. [PubMed: 10421775] 

Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ, Klasson-Wehler E, Bergman A, Visser TJ. 
Interactions of persistent environmental organohalogens with the thyroid hormone system: 
mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998; 
14:59–84. [PubMed: 9460170] 

Grimm et al. Page 20

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chauhan KR, Kodavanti PR, Mckinney JD. Assessing the role of ortho-substitution on polychlorinated 
biphenyl binding to transthyretin, a thyroxine transport protein. Toxicol Appl Pharmacol. 2000; 
162:10–21. [PubMed: 10631123] 

Choi SD, Baek SY, Chang YS, Wania F, Ikonomou MG, Yoon YJ, Park BK, Hong S. Passive air 
sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and 
Antarctic research stations: implications for long-range transport and local pollution. 
Environmental Science & Technology. 2008; 42:7125–7131. [PubMed: 18939536] 

Christensen H, Heggberget TM, Gutleb AC. Polychlorinated biphenyls and reproductive performance 
in otters from the Norwegian coast. Arch Environ Contam Toxicol. 2010; 59:652–660. [PubMed: 
20383701] 

Chu S, Covaci A, Haraguchi K, Voorspoels S, van de Vijver K, Das K, Bouquegneau JM, De Coen W, 
Blust R, Schepens P. Levels and enantiomeric signatures of methyl sulfonyl PCB and DDE 
metabolites in livers of harbor porpoises (Phocoena phocoena) from the Southern North Sea. 
Environ Sci Technol. 2003a; 37:4573–4578. [PubMed: 14594363] 

Chu S, Covaci A, Jacobs W, Haraguchi K, Schepens P. Distribution of methyl sulfone metabolites of 
polychlorinated biphenyls and p,p'-DDE in human tissues. Environ Health Perspect. 2003b; 
111:1222–1227. [PubMed: 12842777] 

Connor K, Ramamoorthy K, Moore M, Mustain M, Chen I, Safe S, Zacharewski T, Gillesby B, Joyeux 
A, Balaguer P. Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: 
structure-activity relationships. Toxicol Appl Pharmacol. 1997; 145:111–123. [PubMed: 9221830] 

Cuadra SN, Linderholm L, Athanasiadou M, Jakobsson K. Persistent organic pollutants in children 
working in a waste disposal site and in female high fish consumers in Managua, Nicaragua. 
Ambio. 2006; 35:109–116. [PubMed: 16846198] 

Custer TW, Custer CM, Gray BR. Polychlorinated biphenyls, dioxins, furans, and organochlorine 
pesticides in belted kingfisher eggs from the upper Hudson River basin, New York, USA. Environ 
Toxicol Chem. 2010; 29:99–110. [PubMed: 20821424] 

Daidoji T, Gozu K, Iwano H, Inoue H, Yokota H. UDP-glucuronosyltransferase isoforms catalyzing 
glucuronidation of hydroxy-polychlorinated biphenyls in rat. Drug Metab Dispos. 2005; 33:1466–
1476. [PubMed: 16006569] 

Dallaire R, Muckle G, Dewailly E, Jacobson SW, Jacobson JL, Sandanger TM, Sandau CD, Ayotte P. 
Thyroid hormone levels of pregnant inuit women and their infants exposed to environmental 
contaminants. Environ Health Perspect. 2009; 117:1014–1020. [PubMed: 19590699] 

Darnerud PO, Morse D, Klasson-Wehler E, Brouwer A. Binding of a 3,3',4,4'-tetrachlorobiphenyl 
(CB-77) metabolite to fetal transthyretin and effects on fetal thyroid hormone levels in mice. 
Toxicology. 1996; 106:105–114. [PubMed: 8571380] 

Darras VM. Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone 
signalling in the developing brain. Cerebellum. 2008; 7:26–37. [PubMed: 18418666] 

Daubeze M, Narbonne JF. Incorporation of labeled 2,4,5,2',4',5' - hexachlorobiphenyl into the nuclear 
fraction of rat hepatocytes in vivo. Toxicology. 1984; 31:315–318. [PubMed: 6204423] 

Decastro BR, Korrick SA, Spengler JD, Soto AM. Estrogenic activity of polychlorinated biphenyls 
present in human tissue and the environment. Environ Sci Technol. 2006; 40:2819–2825. 
[PubMed: 16683629] 

Dhakal K, Adamcakova-Dodd A, Lehmler HJ, Thorne PS, Robertson LW. Sulfate conjugates are 
urinary markers of inhalation exposure to 4-chlorobiphenyl (PCB3). Chem Res Toxicol. 2013; 
26:853–855. [PubMed: 23713983] 

Dhakal K, He X, Lehmler HJ, Teesch LM, Duffel MW, Robertson LW. Identification of sulfated 
metabolites of 4-chlorobiphenyl (PCB3) in the serum and urine of male rats. Chem Res Toxicol. 
2012; 25:2796–2804. [PubMed: 23137097] 

Dhakal K, Uwimana E, Adamcakova-Dodd A, Thorne PS, Lehmler HJ, Robertson LW. Disposition of 
Phenolic and Sulfated Metabolites after Inhalation Exposure to 4-Chlorobiphenyl (PCB3) in 
Female Rats. Chem Res Toxicol. 2014

Dirtu AC, Covaci A. Estimation of daily intake of organohalogenated contaminants from food 
consumption and indoor dust ingestion in Romania. Environ Sci Technol. 2010; 44:6297–6304. 
[PubMed: 20704229] 

Grimm et al. Page 21

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Domingo JL, Bocio A. Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: 
a literature review. Environ Int. 2007; 33:397–405. [PubMed: 17270272] 

Du S, Wall SI, Cacia D, Rodenburg LA. Passive air sampling for polychlorinated biphenyls in the 
Philadelphia metropolitan area. Environ Sci Technol. 2009; 43:1287–1292. [PubMed: 19350892] 

Ekuase EJ, Liu Y, Lehmler HJ, Robertson LW, Duffel MW. Structure-activity relationships for 
hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone 
catalyzed by human hydroxysteroid sulfotransferase SULT2A1. Chem Res Toxicol. 2011; 
24:1720–1728. [PubMed: 21913674] 

El Majidi N, Bouchard M, Carrier G. Systematic analysis of the relationship between standardized 
biological levels of polychlorinated biphenyls and thyroid function in pregnant women and 
newborns. Chemosphere. 2014; 98:1–17. [PubMed: 24200047] 

Ellerichmann T, Bergmann A, Franke S, Huehnerfuss H, Jakobsson E, Koenig WA, Larsson C. Gas 
chromatographic enantiomer separations of chiral PCB methyl sulfons and identification of 
selectively retained enantiomers in human liver. Fresenius Environmental Bulletin. 1998; 7:244–
257.

Erickson, MD. Analytical Chemistry of PCBs. Boca Raton: CRC Lewis Publishers; 1997. 

Erickson, MD. Introduction: PCB properties, uses, occurrence, and regulatory history. In: Robertson, 
LW.; Hansen, LG., editors. PCBs: recent advances in environmental toxicology and health effects. 
Lexington, Kentucky: The University Press of Kentucky; 2001. 

Erickson MD, Kaley RG 2nd. Applications of polychlorinated biphenyls. Environ Sci Pollut Res Int. 
2011; 18:135–151. [PubMed: 20848233] 

Espandiari P, Glauert HP, Lehmler HJ, Lee EY, Srinivasan C, Robertson LW. Polychlorinated 
biphenyls as initiators in liver carcinogenesis: resistant hepatocyte model. Toxicol Appl 
Pharmacol. 2003; 186:55–62. [PubMed: 12583993] 

Espandiari P, Glauert HP, Lehmler HJ, Lee EY, Srinivasan C, Robertson LW. Initiating activity of 4-
chlorobiphenyl metabolites in the resistant hepatocyte model. Toxicol Sci. 2004; 79:41–46. 
[PubMed: 14976334] 

Fängström B, Athanasiadou M, Athanassiadis I, Weihe P, Bergman A. Hydroxylated PCB metabolites 
in nonhatched fulmar eggs from the Faroe Islands. Ambio. 2005a; 34:184–187. [PubMed: 
16042274] 

Fangstrom B, Athanasiadou M, Grandjean P, Weihe P, Bergman A. Hydroxylated PCB metabolites 
and PCBs in serum from pregnant Faroese women. Environ Health Perspect. 2002; 110:895–899. 
[PubMed: 12204824] 

Fängström B, Hovander L, Bignert A, Athanassiadis I, Linderholm L, Grandjean P, Weihe P, Bergman 
A. Concentrations of PBDE, PCB and OH-PCBs in serum from pregnant Faroese women and their 
children seven years later. Environmental Science & Technology. 2005b; 39:9457–9463. 
[PubMed: 16475322] 

Fangstrom B, Strid A, Grandjean P, Weihe P, Bergman A. A retrospective study of PBDEs and PCBs 
in human milk from the Faroe Islands. Environ Health. 2005; 4:12. [PubMed: 16014177] 

Feinberg M, Soler L, Contenot S, Verger P. Assessment of seasonality in exposure to dioxins, furans 
and dioxin-like PCBs by using long-term food-consumption data. Food Addit Contam Part A 
Chem Anal Control Expo Risk Assess. 2011; 28:502–512. [PubMed: 21416416] 

Fitzgerald EF, Belanger EE, Gomez MI, Cayo M, Mccaffrey RJ, Seegal RF, Jansing RL, Hwang SA, 
Hicks HE. Polychlorinated biphenyl exposure and neuropsychological status among older 
residents of upper Hudson River communities. Environ Health Perspect. 2008; 116:209–215. 
[PubMed: 18288320] 

Fitzgerald EF, Shrestha S, Palmer PM, Wilson LR, Belanger EE, Gomez MI, Cayo MR, Hwang SA. 
Polychlorinated biphenyls (PCBs) in indoor air and in serum among older residents of upper 
Hudson River communities. Chemosphere. 2011; 85:225–231. [PubMed: 21724230] 

Flor S, Ludewig G. Polyploidy-induction by dihydroxylated monochlorobiphenyls: structure-activity-
relationships. Environ Int. 2010; 36:962–969. [PubMed: 20471090] 

Gabrio T, Piechotowski I, Wallenhorst T, Klett M, Cott L, Friebel P, Link B, Schwenk M. PCB-blood 
levels in teachers, working in PCB-contaminated schools. Chemosphere. 2000; 40:1055–1062. 
[PubMed: 10739046] 

Grimm et al. Page 22

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gallenberg LA, Ring BJ, Vodicnik MJ. The influence of time of maternal exposure to 2,4,5,2',4',5'-
hexachlorobiphenyl on its accumulation in their nursing offspring. Toxicol Appl Pharmacol. 1990; 
104:1–8. [PubMed: 2113719] 

Giera S, Bansal R, Ortiz-Toro TM, Taub DG, Zoeller RT. Individual polychlorinated biphenyl (PCB) 
congeners produce tissue- and gene-specific effects on thyroid hormone signaling during 
development. Endocrinology. 2011; 152:2909–2919. [PubMed: 21540284] 

Goncharov A, Bloom M, Pavuk M, Birman I, Carpenter DO. Blood pressure and hypertension in 
relation to levels of serum polychlorinated biphenyls in residents of Anniston, Alabama. J 
Hypertens. 2010; 28:2053–2060. [PubMed: 20644494] 

Goncharov A, Pavuk M, Foushee HR, Carpenter DO. Blood pressure in relation to concentrations of 
PCB congeners and chlorinated pesticides. Environ Health Perspect. 2011; 119:319–325. 
[PubMed: 21362590] 

Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW. Sulfated metabolites of polychlorinated 
biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ 
Health Perspect. 2013; 121:657–662. [PubMed: 23584369] 

Grossman E. Nonlegacy PCBs: pigment manufacturing by-products get a second look. Environ Health 
Perspect. 2013; 121:A86–A93. [PubMed: 23454657] 

Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and 
chemical toxicity. Chem Res Toxicol. 2001; 14:611–650. [PubMed: 11409933] 

Guroff G, Daly JW, Jerina DM, Renson J, Witkop B, Udenfriend S. Hydroxylation-induced migration: 
the NIH shift. Recent experiments reveal an unexpected and general result of enzymatic 
hydroxylation of aromatic compounds. Science. 1967; 157:1524–1530. [PubMed: 6038165] 

Gutleb AC, Cenijn P, Velzen M, Lie E, Ropstad E, Skaare JU, Malmberg T, Bergman A, Gabrielsen 
GW, Legler J. In vitro assay shows that PCB metabolites completely saturate thyroid hormone 
transport capacity in blood of wild polar bears (Ursus maritimus). Environ Sci Technol. 2010; 
44:3149–3154. [PubMed: 20345174] 

Guvenius DM, Aronsson A, Ekman-Ordeberg G, Bergman A, Noren K. Human prenatal and postnatal 
exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, 
and pentachlorophenol. Environ Health Perspect. 2003; 111:1235–1241. [PubMed: 12842779] 

Guvenius DM, Hassanzadeh P, Bergman A, Noren K. Metabolites of polychlorinated biphenyls in 
human liver and adipose tissue. Environ Toxicol Chem. 2002; 21:2264–2269. [PubMed: 
12389902] 

Haglund P. Isolation and characterization of polychlorinated biphenyl (PCB) atropisomers. 
Chemosphere. 1996; 32:8.

Hagmar L, Rylander L, Dyremark E, Klasson-Wehler E, Erfurth EM. Plasma concentrations of 
persistent organochlorines in relation to thyrotropin and thyroid hormone levels in women. Int 
Arch Occup Environ Health. 2001; 74:184–188. [PubMed: 11355292] 

Hansen LG. Stepping backward to improve assessment of PCB congener toxicities. Environ Health 
Perspect. 1998; 106(Suppl 1):171–189. [PubMed: 9539012] 

Hansen, LG. The ortho side of PCBs: Occurrence and disposition. Boston: Kluwer Academic 
Publishers Boston; 1999. 

Hansen, LG. Identification of steady state and episodic PCB congeners from mulitple pathway 
exposures. In: Robertson, LW.; Hansen, LG., editors. PCBs: Recent Advances in Environmental 
Toxicology and Health Effects. Lexington, Kentucky, US: The University Press of Kentucky; 
2001. 

Harrad S, Goosey E, Desborough J, Abdallah MA, Roosens L, Covaci A. Dust from U.K. primary 
school classrooms and daycare centers: the significance of dust as a pathway of exposure of young 
U.K. children to brominated flame retardants and polychlorinated biphenyls. Environ Sci Technol. 
2010; 44:4198–4202. [PubMed: 20441148] 

Harrad S, Ibarra C, Robson M, Melymuk L, Zhang X, Diamond M, Douwes J. Polychlorinated 
biphenyls in domestic dust from Canada, New Zealand, United Kingdom and United States: 
implications for human exposure. Chemosphere. 2009; 76:232–238. [PubMed: 19356786] 

Herrick RF. PCBs in school-persistent chemicals, persistent problems. New Solut. 2010; 20:115–126. 
[PubMed: 20359995] 

Grimm et al. Page 23

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Herrick RF, Mcclean MD, Meeker JD, Baxter LK, Weymouth GA. An unrecognized source of PCB 
contamination in schools and other buildings. Environ Health Perspect. 2004; 112:1051–1053. 
[PubMed: 15238275] 

Hisada A, Shimodaira K, Okai T, Watanabe K, Takemori H, Takasuga T, Noda Y, Shirakawa M, Kato 
N, Yoshinaga J. Serum levels of hydroxylated PCBs, PCBs and thyroid hormone measures of 
Japanese pregnant women. Environ Health Prev Med. 2013; 18:205–214. [PubMed: 23054994] 

Hofvander, L. Ph.D. Thesis. Department of Environmental Chemistry, University of Stockholm; 2006. 
Polychlorinated biphenyls and their metabolites in human blood: Method development, 
identification and quantification. 

Hovander L, Athanasiadou M, Asplund L, Jensen S, Wehler EK. Extraction and cleanup methods for 
analysis of phenolic and neutral organohalogens in plasma. J Anal Toxicol. 2000; 24:696–703. 
[PubMed: 11110024] 

Hovander L, Linderholm L, Athanasiadou M, Athanassiadis I, Bignert A, Fängström B, Kocan A, 
Petrik J, Trnovec T, Bergman A. Levels of PCBs and their metabolites in the serum of residents of 
a highly contaminated area in eastern Slovakia. Environmental Science & Technology. 2006; 
40:3696–3703. [PubMed: 16830529] 

Hovander L, Linderholm L, Athanasiadou M, Athanassiadis I, Trnovec T, Kocan A, Petrik J, Bergman 
A. Analysis of PCB and PCB metabolites in humans from eastern Slovakia. Organohalogen 
Compounds. 2004; 66:3525–3531.

Hrycay EG, Bandiera SM. Spectral interactions of tetrachlorobiphenyls with hepatic microsomal 
cytochrome P450 enzymes. Chem. Biol. Interact. 2003; 146:285–296. [PubMed: 14642740] 

Hu D, Hornbuckle KC. Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ 
Sci Technol. 2010; 44:2822–2827. [PubMed: 19957996] 

Hu D, Lehmler HJ, Martinez A, Wang K, Hornbuckle KC. Atmospheric PCB congeners across 
Chicago. Atmos Environ (1994). 2010a; 44:1550–1557. [PubMed: 21918637] 

Hu D, Martinez A, Hornbuckle KC. Discovery of non-aroclor PCB (3,3'-dichlorobiphenyl) in Chicago 
air. Environ Sci Technol. 2008; 42:7873–7877. [PubMed: 19031874] 

Hu D, Martinez A, Hornbuckle KC. Sedimentary Records of Non-Aroclor and Aroclor PCB mixtures 
in the Great Lakes. Journal of Great Lakes Research. 2011; 37:359–364. [PubMed: 23538476] 

Hu X, Adamcakova-Dodd A, Lehmler HJ, Hu D, Hornbuckle K, Thorne PS. Subchronic inhalation 
exposure study of an airborne polychlorinated biphenyl mixture resembling the Chicago ambient 
air congener profile. Environ Sci Technol. 2012; 46:9653–9662. [PubMed: 22846166] 

Hu X, Adamcakova-Dodd A, Lehmler HJ, Hu D, Kania-Korwel I, Hornbuckle KC, Thorne PS. Time 
course of congener uptake and elimination in rats after short-term inhalation exposure to an 
airborne polychlorinated biphenyl (PCB) mixture. Environ Sci Technol. 2010b; 44:6893–6900. 
[PubMed: 20698547] 

Hu X, Adamcakova-Dodd A, Thorne PS. The fate of inhaled (14)C-labeled PCB11 and its metabolites 
in vivo. Environ Int. 2014; 63:92–100. [PubMed: 24275706] 

Hu X, Lehmler HJ, Adamcakova-Dodd A, Thorne PS. Elimination of inhaled 3,3'-dichlorobiphenyl 
and the formation of the 4-hydroxylated metabolite. Environ Sci Technol. 2013; 47:4743–4751. 
[PubMed: 23582014] 

Jacobson JL, Jacobson SW, Humphrey HE. Effects of in utero exposure to polychlorinated biphenyls 
and related contaminants on cognitive functioning in young children. J Pediatr. 1990; 116:38–45. 
[PubMed: 2104928] 

Jacobus JA, Flor S, Klingelhutz A, Robertson LW, Ludewig G. 2-(4'-Chlorophenyl)-1,4-
Benzoquinone Increases the Frequency of Micronuclei and Shortens Telomeres. Environ Toxicol 
Pharmacol. 2008; 25:267–272. [PubMed: 18438462] 

James, MO. Polychlorinated Biphenyls: Metabolism and Metabolites. In: Robertson, L.; Hansen, LG., 
editors. PCBs, Recent Advances in Environmental Toxicology and Health Effects. Lexington, KY: 
The University Press of Kentucky; 2001. 

Jamshidi A, Hunter S, Hazrati S, Harrad S. Concentrations and chiral signatures of polychlorinated 
biphenyls in outdoor and indoor air and soil in a major U.K. conurbation. Environ Sci Technol. 
2007; 41:2153–2158. [PubMed: 17438756] 

Grimm et al. Page 24

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jerina DM, Daly JW. Arene oxides: a new aspect of drug metabolism. Science. 1974; 185:573–582. 
[PubMed: 4841570] 

Johansson M, Larsson C, Bergman A, Lund BO. Structure-activity relationship for inhibition of 
CYP11B1-dependent glucocorticoid synthesis in Y1 cells by aryl methyl sulfones. Pharmacol 
Toxicol. 1998; 83:225–230. [PubMed: 9834972] 

Jörundsdottir H, Norstrom K, Olsson M, Pham-tuan H, Hühnerfuss H, Bignert A, Bergman A. 
Temporal trend of bis(4-chlorophenyl) sulfone, methylsulfonyl-DDE and -PCBs in Baltic 
guillemot (Uria aalge) egg 1971–2001 - A comparison to 4,4'-DDE and PCB trends. Environ. 
Pollut. 2006; 141:226–237. [PubMed: 16225974] 

Jugan ML, Levi Y, Blondeau JP. Endocrine disruptors and thyroid hormone physiology. Biochem 
Pharmacol. 2010; 79:939–947. [PubMed: 19913515] 

Kaiser K. On the optical activity of polychlorinated biphenyls. Environ. Poll. 1974; 7:93–101.

Kallenborn, R.; Huhnerfuss, H., editors. Chiral Environmental Pollutants - Trace Analysis and 
Ecotoxicology. Berlin, Heidelberg: Springer Verlag; 2001. 

Kaminsky LS, Kennedy MW, Adams SM, Guengerich FP. Metabolism of dichlorobiphenyls by highly 
purified isozymes of rat liver cytochrome P-450. Biochemistry. 1981; 20:7379–7384. [PubMed: 
6798990] 

Kania-korwel I, Barnhart CD, Stamou M, Truong KM, El-komy MH, Lein PJ, Veng-pedersen P, 
Lehmler HJ. 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and its hydroxylated metabolites are 
enantiomerically enriched in female mice. Environ Sci Technol. 2012; 46:11393–11401. 
[PubMed: 22974126] 

Kania-korwel I, Duffel MW, Lehmler HJ. Gas chromatographic analysis with chiral cyclodextrin 
phases reveals the enantioselective formation of hydroxylated polychlorinated biphenyls by rat 
liver microsomes. Environ. Sci. Technol. 2011; 45:9590–9596. [PubMed: 21966948] 

Kania-korwel I, Hrycay EG, Bandiera S, Lehmler H-J. 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) 
atropisomers interact enantioselectively with hepatic microsomal cytochrome P450 enzymes. 
Chem. Res. Toxicol. 2008a; 21:1295–1303. [PubMed: 18494506] 

Kania-korwel I, Vyas S, Song Y, Lehmler HJ. Gas chromatographic separation of methoxylated 
polychlorinated biphenyl atropisomer. J. Chromatogr. A. 2008b; 1207:146–154. [PubMed: 
18760792] 

Kato S, Mckinney JD, Matthews HB. Metabolism of symmetrical hexachlorobiphenyl isomers in the 
rat. Toxicol. Appl. Pharma. 1980; 53:389–398.

Kato Y, Haraguchi K, Kawashima M, Yamada S, Masuda Y, Kimura R. Induction of hepatic 
microsomal drug-metabolizing enzymes by methylsulphonyl metabolites of polychlorinated 
biphenyl congeners in rats. Chem Biol Interact. 1995; 95:257–268. [PubMed: 7728896] 

Kato Y, Haraguchi K, Shibahara T, Masuda Y, Kimura R. Reduction of thyroid hormone levels by 
methylsulfonyl metabolites of polychlorinated biphenyl congeners in rats. Arch Toxicol. 1998; 
72:541–544. [PubMed: 9765071] 

Kato Y, Haraguchi K, Shibahara T, Shinmura Y, Masuda Y, Kimura R. The induction of hepatic 
microsomal UDP-glucuronosyltransferase by the methylsulfonyl metabolites of polychlorinated 
biphenyl congeners in rats. Chem Biol Interact. 2000; 125:107–115. [PubMed: 10699571] 

Kato Y, Haraguchi K, Shibahara T, Yumoto S, Masuda Y, Kimura R. Reduction of thyroid hormone 
levels by methylsulfonyl metabolites of tetra- and pentachlorinated biphenyls in male Sprague-
Dawley rats. Toxicol Sci. 1999; 48:51–54. [PubMed: 10330683] 

Kato Y, Haraguchi K, Tomiyasu K, Hiroyuki S, Isogai M, Masuda Y, Kimura R. Structure-dependent 
induction of CYP2B1/2 by 3-methylsulfonyl metabolites of polychlorinated biphenyl congeners 
in rats. Environ Toxicol Pharmacol. 1997; 3:137–144. [PubMed: 21781771] 

Kato Y, Ikushiro S, Haraguchi K, Yamazaki T, Ito Y, Suzuki H, Kimura R, Yamada S, Inoue T, 
Degawa M. A possible mechanism for decrease in serum thyroxine level by polychlorinated 
biphenyls in Wistar and Gunn rats. Toxicol Sci. 2004; 81:309–315. [PubMed: 15254343] 

Kester MH, Bulduk S, Tibboel D, Meinl W, Glatt H, Falany CN, Coughtrie MW, Bergman A, Safe 
SH, Kuiper GG, Schuur AG, Brouwer A, Visser TJ. Potent inhibition of estrogen sulfotransferase 
by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. 
Endocrinology. 2000; 141:1897–1900. [PubMed: 10803601] 

Grimm et al. Page 25

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kester MH, Bulduk S, Van toor H, Tibboel D, Meinl W, Glatt H, Falany CN, Coughtrie MW, Schuur 
AG, Brouwer A, Visser TJ. Potent inhibition of estrogen sulfotransferase by hydroxylated 
metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for 
estrogenic activity of endocrine disrupters. J Clin Endocrinol Metab. 2002; 87:1142–1150. 
[PubMed: 11889178] 

Kimbrough, RD.; Jensen, AA., editors. Halogenated Biphenyls, Terphenyls, Naphthalenes, 
Dibenzodioxins and Related Products. 2nd Ed.. 1989. 

Klasson wehler E, Jonsson J, Bergman A, Brandt I, Darnerud PO. 3,3',4,4'-Tetrachlorobiphenyl and 
3,3',4,4',5-pentachlorobiphenyl: tissue localization and metabolic fate in the mourse. 
Chemosphere. 1989; 19:809–812.

Klasson Wehler E, Lindberg L, Joensson CJ, Bergman A. Tissue retention and metabolism of 2,3,4,3',
4'-pentachlorobiphenyl in mink and mouse. Chemosphere. 1993; 27:2397–2412.

Knerr S, Schrenk D. Carcinogenicity of "non-dioxinlike" polychlorinated biphenyls. Crit Rev Toxicol. 
2006; 36:663–694. [PubMed: 17050081] 

Kodavanti PR, Curras-collazo MC. Neuroendocrine actions of organohalogens: thyroid hormones, 
arginine vasopressin, and neuroplasticity. Front Neuroendocrinol. 2010; 31:479–496. [PubMed: 
20609372] 

Krishnan V, Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), and 
dibenzofurans (PCDFs) as antiestrogens in MCF-7 human breast cancer cells: quantitative 
structure-activity relationships. Toxicol Appl Pharmacol. 1993; 120:55–61. [PubMed: 7685553] 

Kutz FW, Wood PH, Bottimore DP. Organochlorine pesticides and polychlorinated biphenyls in 
human adipose tissue. Rev Environ Contam Toxicol. 1991; 120:1–82. [PubMed: 1899728] 

Langer P, Kocan A, Tajtakova M, Koska J, Radikova Z, Ksinantova L, Imrich R, Huckova M, Drobna 
B, Gasperikova D, Sebokova E, Klimes I. Increased thyroid volume, prevalence of thyroid 
antibodies and impaired fasting glucose in young adults from organochlorine cocktail polluted 
area: outcome of transgenerational transmission? Chemosphere. 2008; 73:1145–1150. [PubMed: 
18790515] 

Lans MC, Klasson-Wehler E, Willemsen M, Meussen E, Safe S, Brouwer A. Structure-dependent, 
competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans 
with human transthyretin. Chem Biol Interact. 1993; 88:7–21. [PubMed: 8330325] 

Larsdotter M, Darnerud P, Aune M, Glynn A, Bjerselius R. Serum concentrations of 
pentachlorophenol (PCP), polychlorinated biphenyls (PCBs), and hydroxylated metabolites of 
PCB during pregnancy and lactation (in Swedish). Swedish EPA Report on Contract 2190104, 
2005. 2005 /http://www.naturvardsverket.se/dokument/mo/modok/export/klorfenoler.pdf/. 

Larsson C, Bergman A. Synthesis of radiolabelled methylsulphonyl CBs with specific retention in the 
rat liver. Organohalogen Compounds. 1998; 35:127–130.

Larsson C, Ellerichmann T, Huhnerfuss H, Bergman A. Chiral PCB methyl sulfones in rat tissues after 
exposure to technical PCBs. Environ Sci Technol. 2002; 36:2833–2838. [PubMed: 12144255] 

Larsson C, Norstrom K, Athanansiadis I, Bignert A, Konig WA, Bergman A. Enantiomeric specificity 
of methylsulfonyl-PCBs and distribution of bis(4-chlorophenyl) sulfone, PCB, and DDE methyl 
sulfones in grey seal tissues. Environ Sci Technol. 2004; 38:4950–4955. [PubMed: 15506185] 

Lauby-secretan B, Loomis D, Grosse Y, El ghissassi F, Bouvard V, Benbrahim-tallaa L, Guha N, Baan 
R, Mattock H, Straif K. Carcinogenicity of polychlorinated biphenyls and polybrominated 
biphenyls. Lancet Oncol. 2013; 14:287–288. [PubMed: 23499544] 

Lehmann L, H LE, P AK, L WR, Ludewig G. 4-monochlorobiphenyl (PCB3) induces mutations in the 
livers of transgenic Fisher 344 rats. Carcinogenesis. 2007; 28:471–478. [PubMed: 16950798] 

Lehmler HJ, Harrad SJ, Huhnerfuss H, Kania-korwel I, Lee CM, Lu Z, Wong CS. Chiral 
polychlorinated biphenyl transport, metabolism, and distribution: a review. Environ Sci Technol. 
2010; 44:2757–2766. [PubMed: 20384371] 

Lehmler HJ, Robertson LW, Garrison AW, Kodavanti PR. Effects of PCB 84 enantiomers on [3H]-
phorbol ester binding in rat cerebellar granule cells and 45Ca2+-uptake in rat cerebellum. 
Toxicol Lett. 2005; 156:391–400. [PubMed: 15763638] 

Grimm et al. Page 26

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.naturvardsverket.se/dokument/mo/modok/export/klorfenoler.pdf/


Letcher, RJ.; Klasson-wehler, E.; Bergman, A. Methyl sulfone and hydroxylated metabolites of 
polychlorinated biphenyls. In: Paasivirta, J., editor. New Types of Persistent Halogenated 
Compounds. Berlin: Springer-Verlag; 2000. 

Li X, Parkin S, Duffel MW, Robertson LW, Lehmler HJ. An efficient approach to sulfate metabolites 
of polychlorinated biphenyls. Environ Int. 2010; 36:843–848. [PubMed: 19345419] 

Liebl B, Schettgen T, Kerscher G, Broding HC, Otto A, Angerer J, Drexler H. Evidence for increased 
internal exposure to lower chlorinated polychlorinated biphenyls (PCB) in pupils attending a 
contaminated school. Int J Hyg Environ Health. 2004; 207:315–324. [PubMed: 15471095] 

Lin PH, Sangaiah R, Ranasinghe A, Upton PB, La DK, Gold A, Swenberg JA. Formation of 
quinonoid-derived protein adducts in the liver and brain of Sprague-Dawley rats treated with 2,2',
5,5'-tetrachlorobiphenyl. Chem Res Toxicol. 2000; 13:710–718. [PubMed: 10956058] 

Litten S, Fowler B, Luszniak D. Identification of a novel PCB source through analysis of 209 PCB 
congeners by US EPA modified method 1668. Chemosphere. 2002; 46:1457–1459. [PubMed: 
12002476] 

Liu Y, Apak TI, Lehmler HJ, Robertson LW, Duffel MW. Hydroxylated polychlorinated biphenyls are 
substrates and inhibitors of human hydroxysteroid sulfotransferase SULT2A1. Chem Res 
Toxicol. 2006; 19:1420–1425. [PubMed: 17112228] 

Liu Y, Lehmler HJ, Robertson LW, Duffel MW. Physicochemical properties of hydroxylated 
polychlorinated biphenyls aid in predicting their interactions with rat sulfotransferase 1A1 
(rSULT1A1). Chem Biol Interact. 2011; 189:153–160. [PubMed: 21130751] 

Liu Y, Smart JT, Song Y, Lehmler HJ, Robertson LW, Duffel MW. Structure-activity relationships for 
hydroxylated polychlorinated biphenyls as substrates and inhibitors of rat sulfotransferases and 
modification of these relationships by changes in thiol status. Drug Metab Dispos. 2009; 
37:1065–1072. [PubMed: 19196841] 

Londono M, Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N. Hydroxylated PCB induces Ca2+ 
oscillations and alterations of membrane potential in cultured cortical cells. J Appl Toxicol. 
2010; 30:334–342. [PubMed: 19924679] 

Lu Z, Kania-korwel I, Lehmler HJ, Wong CS. Stereoselective formation of mono- and dihydroxylated 
polychlorinated biphenyls by rat cytochrome P450 2B1. Environ Sci Technol. 2013; 47:12184–
12192. [PubMed: 24060104] 

Lu Z, Wong CS. Factors affecting phase I stereoselective biotransformation of chiral polychlorinated 
biphenyls by rat cytochrome P-450 2B1 isozyme. Environ Sci Technol. 2011; 45:8298–8305. 
[PubMed: 21863805] 

Lucier GW, Mcdaniel OS, Schiller CM, Matthews HB. Structural requirements for the accumulation 
of chlorinated biphenyl metabolites in the fetal rat intestine. Drug Metab Dispos. 1978; 6:584–
590. [PubMed: 30609] 

Ludewig, G. Cancer initiation by PCBs. In: Robertson, LW.; Hansen, LG., editors. PCBs, Recent 
Advances in Environmental Toxicology and Health Effects. Lexington: The University Press of 
Kentucky; 2001. 

Ludewig, G.; Esch, H.; Robertson, L. Polyhalogenierte Bi- und Terphenyle. In: Dunkelberg, H.; Gebel, 
T.; Hartwig, A., editors. Handbuch der Lebensmitteltoxikologie: Belastungen, Wirkungen, 
Lebensmittelsicherheit, Hygiene. Weinheim: Wiley-VCH; 2007. 

Ludewig G, Lehmann L, Esch H, Robertson LW. Metabolic Activation of PCBs to Carcinogens in 
Vivo - A Review. Environ Toxicol Pharmacol. 2008; 25:241–246. [PubMed: 18452002] 

Lund B-O, Örberg J, Bergman Å, Larsson C, Bergman A, Bäcklin B-M, Håkansson H, Madej A, 
Brouwer A, Brunström B. Chronic and reproductive toxicity of a mixture of 15 methylsulfonyl-
polychlorinated biphenyls and 3-methylsulfonyl-2,2-bis-(4-chlorophenyl)-1,1-dichloroethene in 
mink (Mustela vison). Environmental Toxicology and Chemistry. 1999; 18:292–298.

Lund J, Brandt I, Poellinger L, Bergman A, Klasson-wehler E, Gustafsson JA. Target cells for the 
polychlorinated biphenyl metabolite 4,4'-bis(methylsulfonyl)-2,2',5,5'-tetrachlorobiphenyl. 
Characterization of high affinity binding in rat and mouse lung cytosol. Mol Pharmacol. 1985; 
27:314–323. [PubMed: 3918256] 

Lund J, Nordlund L, Devereux T, Glaumann H, Gustafsson JA. Physicochemical and immunological 
characterization of binding protein for PCB methyl sulfones. Chemosphere. 1987; 16:1677–1680.

Grimm et al. Page 27

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Luthe G, Jacobus JA, Robertson LW. Receptor interactions by polybrominated diphenyl ethers versus 
polychlorinated biphenyls: a theoretical Structure-activity assessment. Environ Toxicol 
Pharmacol. 2008; 25:202–210. [PubMed: 19768137] 

Ma R, Sassoon DA. PCBs exert an estrogenic effect through repression of the Wnt7a signaling 
pathway in the female reproductive tract. Environ Health Perspect. 2006; 114:898–904. 
[PubMed: 16759992] 

Macdonal RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ, Semkin RG, Strachan WM, Li 
YF, Wania F, Alaee M, Alexeeva LB, Backus SM, Bailey R, Bewers JM, Gobeil C, Halsall CJ, 
Harner T, Hoff JT, Jantunen LM, Lockhart WL, Mackay D, Muir DC, Pudykiewicz J, Reimer 
KJ, Smith JN, Stern GA. Contaminants in the Canadian Arctic: 5 years of progress in 
understanding sources, occurrence and pathways. Sci Total Environ. 2000; 254:93–234. 
[PubMed: 10885446] 

Machala M, Blaha L, Lehmler HJ, Pliskova M, Majkova Z, Kapplova P, Sovadinova I, Vondracek J, 
Malmberg T, Robertson LW. Toxicity of hydroxylated and quinoid PCB metabolites: inhibition 
of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen 
receptors in hepatic and mammary cells. Chem Res Toxicol. 2004; 17:340–347. [PubMed: 
15025504] 

Macintosh DL, Minegishi T, Fragala MA, Allen JG, Coghlan KM, Stewart JH, Mccarthy JF. 
Mitigation of building-related polychlorinated biphenyls in indoor air of a school. Environ 
Health. 2012; 11:24. [PubMed: 22490055] 

Maervoet J, Covaci A, Schepens P, Sandau CD, Letcher RJ. A reassessment of the nomenclature of 
polychlorinated biphenyl (PCB) metabolites. Environ Health Perspect. 2004; 112:291–294. 
[PubMed: 14998742] 

Malmberg T, Hoogstraate J, Bergman A, Klasson wehler E. Pharmacokinetics of two major 
hydroxylated polychlorinated biphenyl metabolites with specific retention in rat blood. 
Xenobiotica. 2004; 34:581–589. [PubMed: 15277017] 

Mannschreck A, Pustet N, Robertson L, Oesch F, Püttmann M. Enantiomers of polychlorinated 
biphenyls: Semi-preparative enrichment by liquid chromatography. Liebigs Ann. Chem. 
1985:2101–2103.

Marek RF, Martinez A, Hornbuckle KC. Discovery of hydroxylated polychlorinated biphenyls (OH-
PCBs) in sediment from a lake Michigan waterway and original commercial aroclors. Environ 
Sci Technol. 2013a; 47:8204–8210. [PubMed: 23862721] 

Marek RF, Thorne PS, Wang K, Dewall J, Hornbuckle KC. PCBs and OH-PCBs in serum from 
children and mothers in urban and rural U.S. communities. Environ Sci Technol. 2013b; 
47:3353–3361. [PubMed: 23452180] 

Matthews HB, Anderson MW. Effect of chlorination on the distribution and excretion of 
polychlorinated biphenyls. Drug Metab. Disp. 1975; 3:371–380.

Matthews HB, Kato S. The metabolism and disposition of halogenated aromatics. Ann N Y Acad Sci. 
1979; 320:131–137. [PubMed: 110188] 

Mayes BA, Mcconnell EE, Neal BH, Brunner MJ, Hamilton SB, Sullivan TM, Peters AC, Ryan MJ, 
Toft JD, Singer AW, Brown JF Jr, Menton RG, Moore JA. Comparative carcinogenicity in 
Sprague-Dawley rats of the polychlorinated biphenyl mixtures Aroclors 1016, 1242, 1254, and 
1260. Toxicol Sci. 1998; 41:62–76. [PubMed: 9520342] 

Mcfarland VA, Clarke JU. Environmental occurrence, abundance, and potential toxicity of 
polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ 
Health Perspect. 1989; 81:225–239. [PubMed: 2503374] 

Mcgraw JESR, Waller DP. Specific human CYP 450 isoform metabolism of a pentachlorobiphenyl 
(PCB-IUPAC# 101). Biochem Biophys Res Commun. 2006; 344:129–133. [PubMed: 16616008] 

Mclean MR, Bauer U, Amaro AR, Robertson LW. Identification of catechol and hydroquinone 
metabolites of 4-monochlorobiphenyl. Chem Res Toxicol. 1996a; 9:158–164. [PubMed: 
8924585] 

Mclean MR, Robertson LW, Gupta RC. Detection of PCB adducts by the 32P-postlabeling technique. 
Chem Res Toxicol. 1996b; 9:165–171. [PubMed: 8924587] 

Grimm et al. Page 28

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Meerts IA, Assink Y, Cenijn PH, Van den berg JH, Weijers BM, Bergman A, Koeman JH, Brouwer A. 
Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal 
thyroid hormone homeostasis in the rat. Toxicol Sci. 2002; 68:361–371. [PubMed: 12151632] 

Meerts IA, Hoving S, Van den berg JH, Weijers BM, Swarts HJ, Van der beek EM, Bergman A, 
Koeman JH, Brouwer A. Effects of in utero exposure to 4-hydroxy-2,3,3',4',5-
pentachlorobiphenyl (4-OH-CB107) on developmental landmarks, steroid hormone levels, and 
female estrous cyclicity in rats. Toxicol Sci. 2004; 82:259–267. [PubMed: 15310862] 

Meijer L, Weiss J, Van velzen M, Brouwer A, Bergman A, Sauer P. Flame retardants, polychlorinated 
biphenyls and insecticides in pregnant women in the northern part of The Netherlands. 
Organohalogen Compounds. 2004; 66:3552–3556.

Melymuk L, Robson M, Helm PA, Diamond ML. PCBs, PBDEs, and PAHs in Toronto air: spatial and 
seasonal trends and implications for contaminant transport. Sci Total Environ. 2012; 429:272–
280. [PubMed: 22578845] 

Menichini E, Iacovella N, Monfredini F, Turrio-baldassarri L. Atmospheric pollution by PAHs, 
PCDD/Fs and PCBs simultaneously collected at a regional background site in central Italy and at 
an urban site in Rome. Chemosphere. 2007; 69:422–434. [PubMed: 17604079] 

Mills RA, Millis CD, Dannan GA, Guengerich FP, Aust SD. Studies on the structure-activity 
relationships for the metabolism of polybrominated biphenyls by rat liver microsomes. Toxicol 
Appl Pharmacol. 1985; 78:96–104. [PubMed: 2994255] 

Mills SA 3rd, Thal DI, Barney J. A summary of the 209 PCB congener nomenclature. Chemosphere. 
2007; 68:1603–1612. [PubMed: 17499337] 

Morales NM, Matthews HB. In vivo binding of 2,3,6,2',3',6' - hexachlorobiphenyl and 2,4,5,2',4',5' - 
hexachlorobiphenyl to mouse liver macromolecules. Chem Biol Interact. 1979; 27:99–110. 
[PubMed: 113111] 

Morck A, Larsen G, Wehler EK. Covalent binding of PCB metabolites to lipids: route of formation 
and characterization. Xenobiotica. 2002; 32:625–640. [PubMed: 12162858] 

Morse DC, Groen D, Veerman M, Van amerongen CJ, Koeter HB, Smits van prooije AE, Visser TJ, 
Koeman JH, Brouwer A. Interference of polychlorinated biphenyls in hepatic and brain thyroid 
hormone metabolism in fetal and neonatal rats. Toxicol Appl Pharmacol. 1993; 122:27–33. 
[PubMed: 8378931] 

Morse DC, Wehler EK, Van DE, Pas M, De bie AT, Van bladeren PJ, Brouwer A. Metabolism and 
biochemical effects of 3,3',4,4'-tetrachlorobiphenyl in pregnant and fetal rats. Chem Biol Interact. 
1995; 95:41–56. [PubMed: 7697753] 

Morse DC, Wehler EK, Wesseling W, Koeman JH, Brouwer A. Alterations in rat brain thyroid 
hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 
1254). Toxicol Appl Pharmacol. 1996; 136:269–279. [PubMed: 8619235] 

Mortimer RH, Landers KA, Balakrishnan B, Li H, Mitchell MD, Patel J, Richard K. Secretion and 
transfer of the thyroid hormone binding protein transthyretin by human placenta. Placenta. 2012; 
33:252–256. [PubMed: 22264585] 

Newsome WH, Davies D. Determination of PCB metabolites in Canadian human milk. Chemosphere. 
1996; 33:559–565. [PubMed: 8680832] 

Nezel T, Müller-plathe F, Müller MD, Buser H-R. Theoretical considerations about chiral PCBs and 
their methylthio and methylsulfonyl metabolites being possibly present as stable enantiomers. 
Chemosphere. 1997; 35:1895–1906.

Niknam Y, Feng W, Cherednichenko G, Dong Y, Joshi SN, Vyas SM, Lehmler HJ, Pessah IN. 
Structure-activity relationship of selected meta- and para-hydroxylated non-dioxin like 
polychlorinated biphenyls: from single RyR1 channels to muscle dysfunction. Toxicol Sci. 2013; 
136:500–513. [PubMed: 24014653] 

Nomiyama K, Murata S, Kunisue T, Yamada TK, Mizukawa H, Takahashi S, Tanabe S. 
Polychlorinated biphenyls and their hydroxylated metabolites (OH-PCBs) in the blood of toothed 
and baleen whales stranded along Japanese coastal waters. Environ Sci Technol. 2010; 44:3732–
3738. [PubMed: 20426459] 

Grimm et al. Page 29

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Noren K, Lunden A, Pettersson E, Bergman A. Methylsulfonyl metabolites of PCBs and DDE in 
human milk in Sweden, 1972–1992. Environ Health Perspect. 1996; 104:766–772. [PubMed: 
8841763] 

Norstrom K, Eriksson J, Haglund J, Silvari V, Bergman A. Enantioselective formation of methyl 
sulfone metabolites of 2,2',3,3',4,6'-hexachlorobiphenyl in rat. Environ Sci Technol. 2006; 
40:7649–7655. [PubMed: 17256508] 

Oakley GG, Robertson LW, Gupta RC. Analysis of polychlorinated biphenyl-DNA adducts by 32P-
postlabeling. Carcinogenesis. 1996; 17:109–114. [PubMed: 8565118] 

Oberg M, Sjodin A, Casabona H, Nordgren I, Klasson-wehler E, Hakansson H. Tissue distribution and 
half-lives of individual polychlorinated biphenyls and serum levels of 4-hydroxy-2,3,3',4',5-
pentachlorobiphenyl in the rat. Toxicol Sci. 2002; 70:171–182. [PubMed: 12441362] 

Ockenden WA, Lohmann R, Shears JR, Jones KC. The significance of PCBs in the atmosphere of the 
southern hemisphere. Environ Sci Pollut Res Int. 2001; 8:189–194. [PubMed: 11505903] 

Ohta S, Haraguchi K, Kato Y, Endo T, Kimura O, Koga N. Distribution and excretion of 2,2′,3,4′,5,5′,
6-heptachlorobiphenyl (CB187) and its metabolites in rats and guinea pigs. Chemosphere. 2015; 
118:5–11. [PubMed: 25433397] 

Onozuka D, Yoshimura T, Kaneko S, Furue M. Mortality after exposure to polychlorinated biphenyls 
and polychlorinated dibenzofurans: a 40-year follow-up study of Yusho patients. Am J 
Epidemiol. 2009; 169:86–95. [PubMed: 18974082] 

Otake T, Yoshinaga J, Enomoto T, Matsuda M, Wakimoto T, Ikegami M, Suzuki E, Naruse H, 
Yamanaka T, Shibuya N, Yasumizu T, Kato N. Thyroid hormone status of newborns in relation 
to in utero exposure to PCBs and hydroxylated PCB metabolites. Environ Res. 2007; 105:240–
246. [PubMed: 17490634] 

Park JS, Bergman A, Linderholm L, Athanasiadou M, Kocan A, Petrik J, Drobna B, Trnovec T, 
Charles MJ, Hertz-picciotto I. Placental transfer of polychlorinated biphenyls, their hydroxylated 
metabolites and pentachlorophenol in pregnant women from eastern Slovakia. Chemosphere. 
2008; 70:1676–1684. [PubMed: 17764717] 

Park JS, Linderholm L, Charles MJ, Athanasiadou M, Petrik J, Kocan A, Drobna B, Trnovec T, 
Bergman A, Hertz-picciotto I. Polychlorinated biphenyls and their hydroxylated metabolites 
(OH-PCBS) in pregnant women from eastern Slovakia. Environ Health Perspect. 2007; 115:20–
27. [PubMed: 17366814] 

Park JS, Petreas M, Cohn BA, Cirillo PM, Factor-litvak P. Hydroxylated PCB metabolites (OH-PCBs) 
in archived serum from 1950–60s California mothers: a pilot study. Environ Int. 2009; 35:937–
942. [PubMed: 19439357] 

Parkinson A, Safe SH, Robertson LW, Thomas PE, Ryan DE, Reik LM, Levin W. Immunochemical 
quantitation of cytochrome P-450 isozymes and epoxide hydrolase in liver microsomes from 
polychlorinated or polybrominated biphenyl-treated rats. A study of structure-activity 
relationships. J Biol Chem. 1983; 258:5967–5976. [PubMed: 6304102] 

Patrick L. Thyroid disruption: mechanism and clinical implications in human health. Altern Med Rev. 
2009; 14:326–346. [PubMed: 20030460] 

Pearce EN, Braverman LE. Environmental pollutants and the thyroid. Best Pract Res Clin Endocrinol 
Metab. 2009; 23:801–813. [PubMed: 19942155] 

Pereg D, Robertson LW, Gupta RC. DNA adduction by polychlorinated biphenyls: adducts derived 
from hepatic microsomal activation and from synthetic metabolites. Chem Biol Interact. 2002; 
139:129–144. [PubMed: 11823002] 

Pereg D, Tampal N, Espandiari P, Robertson LW. Distribution and macromolecular binding of 
benzo[a]pyrene and two polychlorinated biphenyl congeners in female mice. Chem Biol Interact. 
2001; 137:243–258. [PubMed: 11566292] 

Persoon C, Peters TM, Kumar N, Hornbuckle KC. Spatial distribution of airborne polychlorinated 
biphenyls in Cleveland, Ohio and Chicago, Illinois. Environ Sci Technol. 2010; 44:2797–2802. 
[PubMed: 20384374] 

Pessah IN, Hansen LG, Albertson TE, Garner CE, Ta TA, Do Z, Kim KH, Wong PW. Structure-
activity relationship for noncoplanar polychlorinated biphenyl congeners toward the ryanodine 

Grimm et al. Page 30

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptor-Ca2+ channel complex type 1 (RyR1). Chem Res Toxicol. 2006; 19:92–101. [PubMed: 
16411661] 

Pessah IN, Lehmler HJ, Robertson LW, Perez CF, Cabrales E, Bose DD, Feng W. Enantiomeric 
specificity of (−)-2,2',3,3',6,6'-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. 
Chem Res Toxicol. 2009; 22:201–207. [PubMed: 18954145] 

Pliskova M, Vondracek J, Canton RF, Nera J, Kocan A, Petrik J, Trnovec T, Sanderson T, Van den 
berg M, Machala M. Impact of polychlorinated biphenyls contamination on estrogenic activity in 
human male serum. Environ Health Perspect. 2005; 113:1277–1284. [PubMed: 16203234] 

Preston BD, Miller JA, Miller EC. Non-arene oxide aromatic ring hydroxylation of 2,2',5,5'-
tetrachlorobiphenyl as the major metabolic pathway catalyzed by phenobarbital-induced rat liver 
microsomes. J Biol Chem. 1983; 258:8304–8311. [PubMed: 6408087] 

Ptak A, Ludewig G, Lehmler HJ, Wojtowicz AK, Robertson LW, Gregoraszczuk EL. Comparison of 
the actions of 4-chlorobiphenyl and its hydroxylated metabolites on estradiol secretion by ovarian 
follicles in primary cells in culture. Reprod Toxicol. 2005; 20:57–64. [PubMed: 15808786] 

Ptak A, Ludewig G, Robertson L, Lehmler HJ, Gregoraszczuk EL. In vitro exposure of porcine 
prepubertal follicles to 4-chlorobiphenyl (PCB3) and its hydroxylated metabolites: effects on sex 
hormone levels and aromatase activity. Toxicol Lett. 2006; 164:113–122. [PubMed: 16412591] 

Purkey HE, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW. Hydroxylated 
polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: 
rationalizing rodent PCB toxicity. Chem Biol. 2004; 11:1719–1728. [PubMed: 15610856] 

Püttmann M, Mannschreck A, Oesch F, Robertson L. Chiral effects in the induction of drug-
metabolizing enzymes using synthetic atropisomers of polychlorinated biphenyls (PCBs). 
Biochem Pharmacol. 1989; 38:1345–1352. [PubMed: 2495802] 

Püttmann M, Oesch F, Robertson L, Mannschreck A. Characteristics of polychlorinated biphenyl 
(PCB) atropisomers. Chemosphere. 1986; 15:2061–2064.

Qin X, Lehmler HJ, Teesch LM, Robertson LW, Duffel MW. Chlorinated Biphenyl Quinones and 
Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid 
Sulfotransferase hSULT2A1. Chem Res Toxicol. 2013

Quinete N, Schettgen T, Bertram J, Kraus T. Occurrence and distribution of PCB metabolites in blood 
and their potential health effects in humans: a review. Environ Sci Pollut Res Int. 2014

Rayne S, Forest K. pK(a) values of the monohydroxylated polychlorinated biphenyls (OH-PCBs), 
polybrominated biphenyls (OH-PBBs), polychlorinated diphenyl ethers (OH-PCDEs), and 
polybrominated diphenyl ethers (OH-PBDEs). J Environ Sci Health A Tox Hazard Subst Environ 
Eng. 2010; 45:1322–1346. [PubMed: 20658412] 

Razvi S, Shakoor A, Vanderpump M, Weaver JU, Pearce SH. The influence of age on the relationship 
between subclinical hypothyroidism and ischemic heart disease: a metaanalysis. J Clin 
Endocrinol Metab. 2008; 93:2998–3007. [PubMed: 18505765] 

Rickenbacher U, Mckinney JD, Oatley SJ, Blake CC. Structurally specific binding of halogenated 
biphenyls to thyroxine transport protein. J Med Chem. 1986; 29:641–648. [PubMed: 3009810] 

Ring BJ, Seitz KR, Vodicnik MJ. Transfer of 2,4,5,2',4',5'-hexachlorobiphenyl across the in situ 
perfused guinea pig placenta. Toxicol Appl Pharmacol. 1988; 96:7–13. [PubMed: 3142100] 

Robertson, LW.; Gupta, R. Metabolism of polychlorinated biphenyls (PCBs) generates eletrophiles 
and reactive oxygen species that damage DNA. In: Williams, GM.; Aruoma, OI., editors. 
Molecular Drug Metabolism and Toxicology. OICA International; 2000. 

Robertson LW, Ludewig G. Polychlorinated Biphenyl (PCB) carcinogenicity with special emphasis on 
airborne PCBs. Gefahrst Reinhalt Luft. 2011; 71:25–32. [PubMed: 21686028] 

Rodenburg LA, Du S, Fennell DE, Cavallo GJ. Evidence for widespread dechlorination of 
polychlorinated biphenyls in groundwater, landfills, and wastewater collection systems. Environ 
Sci Technol. 2010a; 44:7534–7540. [PubMed: 20828204] 

Rodenburg LA, Guo J, Du S, Cavallo GJ. Evidence for unique and ubiquitous environmental sources 
of 3,3'-dichlorobiphenyl (PCB 11). Environmental Science & Technology. 2010b; 44:2816–
2821. [PubMed: 20384375] 

Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 
(1994). 2009; 43:170–181. [PubMed: 20047015] 

Grimm et al. Page 31

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Safe S. Hydroxylated polychlorinated biphenyls (PCBs) and organochlorine pesticides as potential 
endocrine disruptors. Handbook of Environmental Chemistry. 2001; 3:155–167.

Safe S, Bandiera S, Sawyer T, Robertson L, Safe L, Parkinson A, Thomas PE, Ryan DE, Reik LM, 
Levin W, et al. PCBs: structure-function relationships and mechanism of action. Environ Health 
Perspect. 1985; 60:47–56. [PubMed: 2992927] 

Sandanger TM, Dumas P, Berger U, Burkow IC. Analysis of HO-PCBs and PCP in blood plasma from 
individuals with high PCB exposure living on the Chukotka Peninsula in the Russian Arctic. J 
Environ Monit. 2004; 6:758–765. [PubMed: 15346180] 

Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom RJ. Pentachlorophenol and hydroxylated 
polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal 
populations in Quebec. Environ Health Perspect. 2002; 110:411–417. [PubMed: 11940460] 

Schecter A, Colacino J, Haffner D, Patel K, Opel M, Papke O, Birnbaum L. Perfluorinated 
Compounds, Polychlorinated Biphenyl, and Organochlorine Pesticide Contamination in 
Composite Food Samples from Dallas, Texas. Environ. Health Perspect. 2010; 118:796–802. 
[PubMed: 20146964] 

Schnellmann, RG.; Vickers, AEM.; Sipes, IG. Metabolism and disposition of polychlorinated 
biphenyls. In: Hodgson, EBJR.; Philpot, RM., editors. Reviews in Biochemical Toxicology. New 
York, Asterdam, Oxford: Elsevier; 1985. 

Schuur AG, Brouwer A, Bergman A, Coughtrie MW, Visser TJ. Inhibition of thyroid hormone 
sulfation by hydroxylated metabolites of polychlorinated biphenyls. Chem Biol Interact. 1998a; 
109:293–297. [PubMed: 9566753] 

Schuur AG, Legger FF, Van meeteren ME, Moonen MJ, Van leeuwen-bol I, Bergman A, Visser TJ, 
Brouwer A. In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of 
halogenated aromatic hydrocarbons. Chem Res Toxicol. 1998b; 11:1075–1081. [PubMed: 
9760282] 

Senthilkumar PK, Klingelhutz AJ, Jacobus JA, Lehmler H, Robertson LW, Ludewig G. Airborne 
polychlorinated biphenyls (PCBs) reduce telomerase activity and shorten telomere length in 
immortal human skin keratinocytes (HaCat). Toxicol Lett. 2011; 204:64–70. [PubMed: 
21530622] 

Shang H, Li Y, Wang T, Wang P, Zhang H, Zhang Q, Jiang G. The presence of polychlorinated 
biphenyls in yellow pigment products in China with emphasis on 3,3'-dichlorobiphenyl (PCB 
11). Chemosphere. 2014; 98:44–50. [PubMed: 24231041] 

Sharma R, Kodavanti PR. In vitro effects of polychlorinated biphenyls and hydroxy metabolites on 
nitric oxide synthases in rat brain. Toxicol Appl Pharmacol. 2002; 178:127–136. [PubMed: 
11858728] 

Silberhorn EM, Glauert HP, Robertson LW. Carcinogenicity of polyhalogenated biphenyls: PCBs and 
PBBs. Crit Rev Toxicol. 1990; 20:440–496. [PubMed: 2165409] 

Silverstone AE, Rosenbaum PF, Weinstock RS, Bartell SM, Foushee HR, Shelton C, Pavuk M. 
Polychlorinated biphenyl (PCB) exposure and diabetes: results from the Anniston Community 
Health Survey. Environ Health Perspect. 2012; 120:727–732. [PubMed: 22334129] 

Sjodin A, Hagmar L, Klasson-wehler E, Bjork J, Bergman A. Influence of the consumption of fatty 
Baltic Sea fish on plasma levels of halogenated environmental contaminants in Latvian and 
Swedish men. Environ Health Perspect. 2000; 108:1035–1041. [PubMed: 11102293] 

Sjödin A, Tullsten AK, Klasson-wehler E. Identification of the parent compounds to selectively 
retained hydroxylated PCB metabolites in rat blood plasma. Organohalogen Compounds. 1998; 
37:365–368.

Sleight S. Effects of PCBs and related compounds on hepatocarcinogenesis in rats and mice. Environ 
Health Perspect. 1985; 60:35–39. [PubMed: 2992924] 

Soechitram SD, Athanasiadou M, Hovander L, Bergman A, Sauer PJ. Fetal exposure to PCBs and their 
hydroxylated metabolites in a Dutch cohort. Environ Health Perspect. 2004; 112:1208–1212. 
[PubMed: 15289169] 

Song Y, Buettner GR, Parkin S, Wagner BA, Robertson LW, Lehmler HJ. Chlorination increases the 
persistence of semiquinone free radicals derived from polychlorinated biphenyl hydroquinones 
and quinones. J Org Chem. 2008a; 73:8296–8304. [PubMed: 18839991] 

Grimm et al. Page 32

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Song Y, Wagner BA, Lehmler HJ, Buettner GR. Semiquinone radicals from oxygenated 
polychlorinated biphenyls: electron paramagnetic resonance studies. Chem Res Toxicol. 2008b; 
21:1359–1367. [PubMed: 18549251] 

Song Y, Wagner BA, Witmer JR, Lehmler HJ, Buettner GR. Nonenzymatic displacement of chlorine 
and formation of free radicals upon the reaction of glutathione with PCB quinones. Proc Natl 
Acad Sci U S A. 2009; 106:9725–9730. [PubMed: 19497881] 

Srinivasan A, Lehmler HJ, Robertson LW, Ludewig G. Production of DNA strand breaks in vitro and 
reactive oxygen species in vitro and in HL-60 cells by PCB metabolites. Toxicol Sci. 2001; 
60:92–102. [PubMed: 11222876] 

Srinivasan A, Robertson LW, Ludewig G. Sulfhydryl binding and topoisomerase inhibition by PCB 
metabolites. Chem Res Toxicol. 2002; 15:497–505. [PubMed: 11952335] 

Sun P, Basu I, Hites RA. Temporal trends of polychlorinated biphenyls in precipitation and air at 
chicago. Environ Sci Technol. 2006; 40:1178–1183. [PubMed: 16572772] 

Tampal N, Lehmler HJ, Espandiari P, Malmberg T, Robertson LW. Glucuronidation of hydroxylated 
polychlorinated biphenyls (PCBs). Chem Res Toxicol. 2002; 15:1259–1266. [PubMed: 
12387623] 

Tampal N, Myers S, Robertson LW. Binding of polychlorinated biphenyls/metabolites to hemoglobin. 
Toxicol Lett. 2003; 142:53–60. [PubMed: 12765239] 

Tanabe S. PCB problems in the future: foresight from current knowledge. Environ Pollut. 1988; 50:5–
28. [PubMed: 15092651] 

Tilson HA, Kodavanti PR. The neurotoxicity of polychlorinated biphenyls. Neurotoxicology. 1998; 
19:517–525. [PubMed: 9745906] 

Todaka T, Hori T, Hirakawa H, Kajiwara J, Yasutake D, Onozuka D, Iida T, Furue M. Concentrations 
of polychlorinated biphenyls in blood of Yusho patients over 35 years after the incident. 
Chemosphere. 2009; 74:902–909. [PubMed: 19070886] 

Troisi GM, Haraguchi K, Kaydoo DS, Nyman M, Aguilar A, Borrell A, Siebert U, Mason CF. 
Bioaccumulation of polychlorinated biphenyls (PCBs) and dichlorodiphenylethane (DDE) 
methyl sulfones in tissues of seal and dolphin morbillivirus epizootic victims. J Toxicol Environ 
Health A. 2001; 62:1–8. [PubMed: 11205532] 

Van den berg KJ, Zurcher C, Brouwer A. Effects of 3,4,3',4'-tetrachlorobiphenyl on thyroid function 
and histology in marmoset monkeys. Toxicol Lett. 1988; 41:77–86. [PubMed: 3128898] 

Van den hurk P, Kubiczak GA, Lehmler HJ, James MO. Hydroxylated polychlorinated biphenyls as 
inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene. Environ Health 
Perspect. 2002; 110:343–348. [PubMed: 11940451] 

Vansell NR, Muppidi JR, Habeebu SM, Klaassen CD. Promotion of thyroid tumors in rats by 
pregnenolone-16alpha-carbonitrile (PCN) and polychlorinated biphenyl (PCB). Toxicol Sci. 
2004; 81:50–59. [PubMed: 15201439] 

Vermiglio F, Lo presti VP, Moleti M, Sidoti M, Tortorella G, Scaffidi G, Castagna MG, Mattina F, 
Violi MA, Crisa A, Artemisia A, Trimarchi F. Attention deficit and hyperactivity disorders in the 
offspring of mothers exposed to mild-moderate iodine deficiency: a possible novel iodine 
deficiency disorder in developed countries. J Clin Endocrinol Metab. 2004; 89:6054–6060. 
[PubMed: 15579758] 

Waller SC, He YA, Harlow GR, He YQ, Mash EA, Halpert JR. 2,2',3,3',6,6'-hexachlorobiphenyl 
hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. Chem Res Toxicol. 
1999; 12:690–699. [PubMed: 10458702] 

Wang LQ, Lehmler HJ, Robertson LW, James MO. Polychlorobiphenylols are selective inhibitors of 
human phenol sulfotransferase 1A1 with 4-nitrophenol as a substrate. Chem Biol Interact. 2006; 
159:235–246. [PubMed: 16413005] 

Wangpradit O, Mariappan SV, Teesch LM, Duffel MW, Norstrom K, Robertson LW, Luthe G. 
Oxidation of 4-chlorobiphenyl metabolites to electrophilic species by prostaglandin H synthase. 
Chem Res Toxicol. 2009; 22:64–71. [PubMed: 19105592] 

Warner NA, Martin JW, Wong CS. Chiral polychlorinated biphenyls are biotransformed 
enantioselectively by mammalian cytochrome P-450 isozymes to form hydroxylated metabolites. 
Environ Sci Technol. 2009; 43:114–121. [PubMed: 19209593] 

Grimm et al. Page 33

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Weintraub M, Birnbaum LS. Catfish consumption as a contributor to elevated PCB levels in a non-
Hispanic black subpopulation. Environ Res. 2008; 107:412–417. [PubMed: 18407261] 

Weistrand C, Noren K. Methylsulfonyl metabolites of PCBs and DDE in human tissues. Environ 
Health Perspect. 1997; 105:644–649. [PubMed: 9288499] 

Weistrand C, Noren K, Nilsson A. Occupational exposure. Organochlorine compounds in blood 
plasma from potentially exposed workers. PCB, PCN, PCDD/F, HCB and methylsulfonyl 
metabolites of PCB. Environmental Science and Pollution Research International. 1997; 4:2–9. 
[PubMed: 19002410] 

Wethington DM 3RD, Hornbuckle KC. Milwaukee, WI, as a source of atmospheric PCBs to Lake 
Michigan. Environ Sci Technol. 2005; 39:57–63. [PubMed: 15667075] 

Wu X, Duffel M, Lehmler HJ. Oxidation of polychlorinated biphenyls by liver tissue slices from 
phenobarbital-pretreated mice is congener-specific and atropselective. Chem Res Toxicol. 2013a; 
26:1642–1651. [PubMed: 24107130] 

Wu X, Kammerer A, Lehmler HJ. Microsomal oxidation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 
136) results in species-dependent chiral signatures of the hydroxylated metabolites. Environ Sci 
Technol. 2014; 48:2436–2444. [PubMed: 24467194] 

Wu X, Kania-korwel I, Chen H, Stamou M, Dammanahalli KJ, Duffel M, Lein PJ, Lehmler HJ. 
Metabolism of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from 
phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica. 2013b; 43:933–947. 
[PubMed: 23581876] 

Wu X, Pramanik A, Duffel MW, Hrycay EG, Bandiera SM, Lehmler HJ, Kania-korwel I. 2,2',3,3',6,6'-
Hexachlorobiphenyl (PCB 136) is enantioselectively oxidized to hydroxylated metabolites by rat 
liver microsomes. Chem. Res. Toxicol. 2011; 24:2249–2257. [PubMed: 22026639] 

Xie W, Wang K, Robertson LW, Ludewig G. Investigation of mechanism(s) of DNA damage induced 
by 4-monochlorobiphenyl (PCB3) metabolites. Environ Int. 2010; 36:950–961. [PubMed: 
20129669] 

Yang D, Kania-korwel I, Ghogha A, Chen H, Stamou M, Bose DD, Pessah IN, Lehmler HJ, Lein PJ. 
PCB 136 atropselectively alters morphometric and functional parameters of neuronal 
connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. 
Toxicol Sci. 2014; 138:379–392. [PubMed: 24385416] 

Zettner MA, Flor S, Ludewig G, Wagner J, Robertson LW, Lehmann L. Quinoid metabolites of 4-
monochlorobiphenyl induce gene mutations in cultured Chinese hamster v79 cells. Toxicol Sci. 
2007; 100:88–98. [PubMed: 17686921] 

Zhai G, Hu D, Lehmler HJ, Schnoor JL. Enantioselective biotransformation of chiral PCBs in whole 
poplar plants. Environ Sci Technol. 2011; 45:2308–2316. [PubMed: 21329345] 

Zhai G, Lehmler HJ, Schnoor JL. Sulfate metabolites of 4-monochlorobiphenyl in whole poplar plants. 
Environ Sci Technol. 2013a; 47:557–562. [PubMed: 23215248] 

Zhai G, Wu X, Lehmler HJ, Schnoor JL. Atropisomeric determination of chiral hydroxylated 
metabolites of polychlorinated biphenyls using HPLC-MS. Chem Cent J. 2013b; 7:183. 
[PubMed: 24360245] 

Zhang X, Diamond ML, Robson M, Harrad S. Sources, emissions, and fate of polybrominated 
diphenyl ethers and polychlorinated biphenyls indoors in Toronto, Canada. Environ Sci Technol. 
2011; 45:3268–3274. [PubMed: 21413794] 

Zhao HX, Adamcakova-dodd A, Hu D, Hornbuckle KC, Just CL, Robertson LW, Thorne PS, Lehmler 
HJ. Development of a synthetic PCB mixture resembling the average polychlorinated biphenyl 
profile in Chicago air. Environ Int. 2010; 36:819–827. [PubMed: 19375801] 

Zhao S, Narang A, Ding X, Eadon G. Characterization and quantitative analysis of DNA adducts 
formed from lower chlorinated PCB-derived quinones. Chem Res Toxicol. 2004; 17:502–511. 
[PubMed: 15089092] 

Zhu Y, Mapuskar KA, Marek RF, Xu W, Lehmler HJ, Robertson LW, Hornbuckle KC, Spitz DR, 
Aykin-burns N. A new player in environmentally induced oxidative stress: polychlorinated 
biphenyl congener, 3,3'-dichlorobiphenyl (PCB11). Toxicol Sci. 2013; 136:39–50. [PubMed: 
23997111] 

Grimm et al. Page 34

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zoeller RT, Rovet J. Timing of thyroid hormone action in the developing brain: clinical observations 
and experimental findings. J Neuroendocrinol. 2004; 16:809–818. [PubMed: 15500540] 

Grimm et al. Page 35

Crit Rev Toxicol. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Summary of PCB metabolism and associated toxicities

• Although many biologic effects of parent PCBs are receptor-mediated, including 

the well-described characteristics of PCBs as inducers of xenobiotic 

metabolism, other PCB toxication processes involve the metabolism of PCBs 

themselves or their metabolic progeny.

• PCBs are in general metabolized via initial oxidation to arene oxides, but may 

also undergo direct insertion of hydroxyl groups. These reactions, catalyzed by 

CYPs, are regio- and stereo-selective. Retention of PCB atropisomers in tissues, 

for example, may be highly enantioselective.

• Reactive electrophilic PCB metabolites, arene oxides, semi-quinones and 

quinones, may form adducts to biomacromolecules, i.e. proteins, DNA, RNA 

and lipids.

• The major stable PCB metabolites are polychlorobiphenylols (OH-PCBs) that 

are, depending on their structure, either rapidly metabolized, excreted or 

retained in certain compartments in the body, primarily the blood.

• Major OH-PCB congeners derived from HC-PCBs that are found in blood are 

present in concentrations similar to the most persistent individual PCB 

congeners. They are also more 37 easily than the parent compounds transferred 

via the placenta to the fetus.

• PCB congeners with non-chlorinated meta-/para-positions and chlorinated 

neighboring ortho-/meta-positions and a slowly reacting second phenyl ring are 

rapidly metabolized; these PCB congeners form OH-PCBs and MeSO2-PCBs.

• Several MeSO2-PCBs are accumulated in a highly tissue-specific manner, 

especially in liver and lung.

• Recent evidence supports sulfation as a major metabolic pathway for LC-PCBs 

in vitro and in vivo, and provides initial evidence for biological activity of the 

resulting sulfate ester metabolites.

• Conjugated PCB metabolites such as PCB sulfates and glucuronides may have 

been overlooked classes of PCB metabolites in the past and total PCB exposure 

levels, particularly to LC-PCBs in exposed populations, may have been 

underestimated. Novel procedures to reliably quantify PCB sulfates and 

potentially other conjugated metabolites, such as glucuronic acid derivatives, in 

human serum could fill this significant gap in the literature and could help to 

more accurately estimate human exposure levels.
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Figure 1. 
General metabolic scheme for a representative lower-chlorinated PCB congener, PCB 3. 

Enzymes involved in the metabolism are indicated by the letters A, B and D-N with the 

letter C indicating non-enzymatic transformations. Enzymes suggested for these 

transformations are listed as follows: A, Cytochrome P-450 (CYP) enzyme system, Direct 

insertion in meta position; CYP2B (rodents); B, Cytochrome P-450 enzyme system; 

CYB2B1 (rodents); CYP3A4 (humans); Non-coplanar PCBs: CYB2B, 2C, 3A ; C, Non-

enzymatic reaction; D, Glutathione S-transferase; E, Epoxide hydrolase; F, Dihydrodiol 

dehydrogenase (AKR1C); G, Autooxidation and/or Peroxidases; H, γ–Glutamyl 

transpeptidase, then cysteinylglycine dipeptidase; I, Cysteine S-conjugate β-lyase; J, Thiol S-

methyltransferase; K, CYP and/or FAD-containing monooxygenases (FMO); L, UDP-
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glucuronosyl transferase (UGT); M, Sulfotransferase (SULT); N, Cysteine S-conjugate N-

acetyltransferase
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Figure 2. 
Chemical structures of the most common OH-PCB congeners present in human blood (c.f. 

Table 2). The full names of the five OH-PCBs are: 2,3,3’,4’,5-pentachloro-4-biphenylol (4-

OH-PCB 107); 2,2’,3’,4,4’,5- hexachloro-3-biphenylol (3’-OH-PCB 138); 2,2’,3,4’,5,5’- 

hexachloro-4-biphenylol (4-OH-PCB 146); 2,2’,4,4’,5,5’- hexachloro-3-biphenylol (3-OH-

PCB 153) and 2,2’,3,4’,5,5’,6 - heptachloro-4-biphenylol (4-OH-PCB 187).
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Table 1

The twenty most frequently detected PCB congeners in air and their potential sources

Major Sources
Detection in

Paint pigments Human serum

52 Aroclors 1016, 1242, 1248, 1254 Y Y

20/28 Aroclors 1016, 1242, 1248 Y Y

11 Pigment and dye production Y Y

95 Aroclor 1254 Y Y

31 Aroclors 1016, 1242, 1248 Y Y

18/30 Aroclors 1016, 1242 Y Y

8 Aroclors 1221, 1016, 1242 Y Y

61/70/74/76 Aroclors 1242, 1248, 1254 Y Y

3 Aroclor 1221 Y Y

4 Aroclor 1221, 1016, 1242 Y Y

90/101/113 Aroclor 1254 Y Y

21/33 Aroclors 1016, 1242 Y Y

16 Aroclors 1016, 1242 (>3%) Y Y

15 Aroclors 1016, 1242 Y Y

110 Aroclor 1254 Y Y

17 Aroclors 1016, 1242 (>3%) ND Y

49/69 Aroclors 1016, 1248 (>3) ND Y

83/99 Aroclor 1254 ND Y

118 Aroclor 1254 Y Y

1) Congeners were ranked by frequency of occurrence in analyzed air samples.

2) For the co-eluting peaks, the bolded congeners are believed to be primary congeners.

3) Y: detected; ND: non-detectable
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Table 2

List of all possible mono-OH-PCB congeners, showing the calculated pKa values and octanol:water 

coefficients of the un-ionized tate

ID1 Compound1 pKa1 log
P1

2-Chlorobiphenyl5

1 3-OH-PCB 1 8.36 4.07

2 4-OH-PCB 1 8.77 4.07
4.044

3 5-OH-PCB 1 9.29 4.04

4 6-OH-PCB 1 9.79 4.05

5 2'-OH-PCB 1 10.63 4.03

6 3'-OH-PCB 1 9.81 4.03

7 4'-OH-PCB 1 9.55 4.05

3-Chlorobiphenyl

8 2-OH-PCB 2 9.1 4.04

9 4-OH-PCB2 7.89 4.07

10 5-OH-PCB 2 9.05 4.03

11 6-OH-PCB 2 9.99 4

12 2'-OH-PCB 2 10.49 3.99

13 3'-OH-PCB 2 9.85 4

14 4'-OH-PCB 2 9.41 4.01

4-Chlorobiphenyl

15 2-OH-PCB 3 9.74 4

16 3-OH-PCB 3 8.33 4.04

17 2'-OH-PCB 3 10.5
9.482

3.98
3.512

18 3'-OH-PCB 3 9.87
9.622

3.98
3.802

19 4'-OH-PCB 3 9.42
9.712

9.613

3.97
3.772

3.773

4.044

2,2'-Dichlorobiphenyl

20 3-OH-PCB 4 8.26 4.82

21 4-OH-PCB4 8.69 4.81

22 5-OH-PCB 4 9.19 4.79

23 6-OH-PCB4 9.86 4.78

2,3-Dichlorobiphenyl

24 4-OH-PCB 5 7.2 4.83

25 5-OH-PCB 5 8.43 4.82

26 6-OH-PCB 5 9.17 4.78
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ID1 Compound1 pKa1 log
P1

27 2'-OH-PCB 5 10.52 4.78

28 3'-OH-PCB 5 9.75 4.8

29 4'-OH-PCB 5 9.5 4.79

2,3'-Dichlorobiphenyl

30 3-OH-PCB 6 8.3 4.8

31 4-OH-PCB 6 8.71 4.77

32 5-OH-PCB 6 9.23 4.75

33 6-OH-PCB 6 9.67 4.76

34 2'-OH-PCB 6 9.14 4.77

35 4'-OH-PCB 6 7.98
8.173

4.81
4.213

36 5'-OH-PCB 6 8.95 4.77

37 6'-OH-PCB 6 10.01 4.76

2,4-Dichlorobiphenyl

38 3-OH-PCB 7 6.81 4.78

39 5-OH-PCB 7 7.71 4.8

40 6-OH-PCB 7 8.92 4.77

41 2'-OH-PCB 7 10.53 4.76

42 3'-OH-PCB 7 9.76 4.75

43 4'-OH-PCB 7 9.51 4.77

2,4'-Dichlorobiphenyl

44 3-OH-PCB 8 8.31 4.77

45 4-OH-PCB 8 8.73
8.703

4.77
4.573

46 5-OH-PCB 8 9.24 4.75

47 6-OH-PCB 8 9.68 4.75

48 2'-OH-PCB 8 9.77 4.76

49 3'-OH-PCB 8 8.23 4.79

2,5-Dichlorobiphenyl

50 3-OH-PCB 9 7.49 4.8

51 4-OH-PCB 9 7.2 4.83

52 6-OH-PCB 9 8.28 4.75

53 2'-OH-PCB 9 10.52 4.77

54 3'-OH-PCB 9 9.75 4.75

55 4'-OH-PCB 9 9.5
9.253

4.78
4.173

4.634

2,6-Dichlorobiphenyl

56 3-OH-PCB 10 7.73 4.82

57 4-OH-PCB 10 7.91 4.84
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ID1 Compound1 pKa1 log
P1

58 2'-OH-PCB 10 10.66 4.78

59 3'-OH-PCB 10 9.71 4.8

60 4'-OH-PCB 10 9.47 4.8
4.634

3,3'-Dichlorobiphenyl

61 2-OH-PCB 11 8.99 4.75

62 4-OH-PCB 11 7.84
8.233

4.77
4.293

63 5-OH-PCB 11 8.99 4.73

64 6-OH-PCB 11 9.87 4.71

3,4-Dichlorobiphenyl

65 2-OH-PCB 12 8.25 4.75

66 5-OH-PCB 12 7.47 4.79

67 6-OH-PCB 12 9.12 4.76

68 2'-OH-PCB 12 10.39 4.75

69 3'-OH-PCB 12 9.81 4.75

70 4'-OH-PCB 12 9.37
9.263

4.77
4.213

3,4'-Dichlorobiphenyl

71 2-OH-PCB 13 9 4.73

72 4-OH-PCB 13 7.85 4.75

73 5-OH-PCB 13 9.01 4.72

74 6-OH-PCB 13 9.88 4.7

75 2'-OH-PCB 13 9.63 4.71

76 3'-OH-PCB 13 8.27 4.74

3,5-Dichlorobiphenyl

77 2-OH-PCB 14 8.48 4.75

78 4-OH-PCB 14 6.35
6.943

4.8
4.273

79 2'-OH-PCB 14 10.38 4.74

80 3'-OH-PCB 14 9.79 4.75

81 4'-OH-PCB 14 9.35
6.942

4.76
4.272

4,4'-Dichlorobiphenyl

82 2-OH-PCB 15 9.64 4.68

83 3-OH-PCB 15 8.29 4.73

2,2',3-Trichlorobiphenyl

84 4-OH-PCB 16 7.13 5.24

85 5-OH-PCB 16 8.32 5.15

86 6-OH-PCB 16 9.24 5.22
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ID1 Compound1 pKa1 log
P1

87 3'-OH-PCB 16 8.2 5.19

88 4'-OH-PCB 16 8.64 5.2

89 5'-OH-PCB 16 9.13 5.16

90 6'-OH-PCB 16 9.74 5.2

2,2',4-Trichlorobiphenyl

91 3-OH-PCB 17 6.71 5.25

92 5-OH-PCB 17 7.61 5.14

93 6-OH-PCB 17 8.99 5.17

94 3'-OH-PCB 17 8.21 5.15

95 4'-OH-PCB 17 8.65 5.26

96 5'-OH-PCB 17 9.14 5.22

97 6'-OH-PCB 17 9.75 5.1

2,2',5-Trichlorobiphenyl

98 3-OH-PCB 18 7.4 5.19

99 4-OH-PCB 18 7.12 5.17

100 6-OH-PCB 18 8.36 5.23

101 3'-OH-PCB 18 8.2 5.15

102 4'-OH-PCB 18 8.64 5.26

103 5'-OH-PCB 18 9.13 5.21

104 6'-OH-PCB 18 9.74 5.11

2,2',6-Trichlorobiphenyl

105 3-OH-PCB 19 7.64 5.23

106 4-OH-PCB 19 7.87 5.18

107 3'-OH-PCB 19 8.16 5.21

108 4'-OH-PCB 19 8.65 5.19

109 5'-OH-PCB 19 9.08 5.15

110 6'-OH-PCB 19 9.89 5.22

2,3,3'-Trichlorobiphenyl

111 4-OH-PCB 20 7.15 5.19

112 5-OH-PCB 20 8.37 5.16

113 6-OH-PCB 20 9.05 5.12

114 2'-OH-PCB 20 9.02 5.2

115 4'-OH-PCB 20 7.93 5.18

116 5'-OH-PCB 20 8.89 5.16

117 6'-OH-PCB 20 9.9 5.1

2,3,4-Trichlorobiphenyl

118 5-OH-PCB 21 6.85 5.3

119 6-OH-PCB 21 8.3 5.27

120 2'-OH-PCB 21 10.41 5.2
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ID1 Compound1 pKa1 log
P1

121 3'-OH-PCB 21 9.7 5.16

122 4'-OH-PCB 21 9.46 5.23

2,3,4'-Trichlorobiphenyl

123 4-OH-PCB 22 7.16 5.18

124 5-OH-PCB 22 8.38 5.17

125 6-OH-PCB 22 9.06 5.11

126 2'-OH-PCB 22 9.65 5.1

127 3'-OH-PCB 22 8.17 5.15

2,3,5-Trichlorobiphenyl

128 4-OH-PCB 23 5.66 5.32

129 6-OH-PCB 23 7.66 5.26

130 2'-OH-PCB 23 10.4 5.12

131 3'-OH-PCB 23 9.69 5.17

132 4'-OH-PCB 23 9.45 5.26

2,3,6-Trichlorobiphenyl

133 4-OH-PCB 24 6.35 5.32

134 5-OH-PCB 24 6.87 5.3

135 2'-OH-PCB 24 10.54 5.21

136 3'-OH-PCB 24 9.65 5.16

137 4'-OH-PCB 24 9.42 5.22

2,3',4-Trichlorobiphenyl

138 3-OH-PCB 25 6.75 5.18

139 5-OH-PCB 25 7.65 5.15

140 6-OH-PCB 25 8.81 5.1

141 2'-OH-PCB 25 9.03 5.11

142 4'-OH-PCB 25 7.94
7.773

5.23
4.793

143 5'-OH-PCB 25 8.9 5.23

144 6'-OH-PCB 25 9.91 5.12

2,3',5-Trichlorobiphenyl

145 3-OH-PCB 26 7.43 5.14

146 4-OH-PCB 26 7.14 5.18

147 6-OH-PCB 26 8.17 5.17

148 2'-OH-PCB 26 9.02 5.12

149 4'-OH-PCB 26 7.93 5.22

150 5'-OH-PCB 26 8.89 5.21

151 6'-OH-PCB 26 9.9 5.12

2,3',6-Trichlorobiphenyl

152 3-OH-PCB 27 7.67 5.15
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ID1 Compound1 pKa1 log
P1

153 4-OH-PCB 27 7.86 5.18

154 2'-OH-PCB 27 9.17 5.21

155 4'-OH-PCB 27 7.9 5.18

156 5'-OH-PCB 27 8.84 5.15

157 6'-OH-PCB 27 10.04 5.11

2,4,4'-Trichlorobiphenyl

158 3-OH-PCB 28 6.76 5.14

159 5-OH-PCB 28 7.66 5.17

160 6-OH-PCB 28 8.82 5.1

161 2'-OH-PCB 28 9.66 5.12

162 3'-OH-PCB 28 8.18 5.17

2,4,5-Trichlorobiphenyl

163 3-OH-PCB 29 5.95 5.29

164 6-OH-PCB 29 7.43 5.26

165 2'-OH-PCB 29 10.41 5.12

166 3'-OH-PCB 29 9.7 5.19

167 4'-OH-PCB 29 9.46 5.27

2,4,6-Trichlorobiphenyl

168 3-OH-PCB 30 6.18 5.29

169 2'-OH-PCB 30 10.55 5.13

170 3'-OH-PCB 30 9.66 5.17

171 4'-OH-PCB 30 9.44 5.27
5.224

2,4',5-Trichlorobiphenyl

172 3-OH-PCB 31 7.45 5.15

173 4-OH-PCB 31 7.16 5.2

174 6-OH-PCB 31 8.18 5.11

175 2'-OH-PCB 31 9.65 5.12

176 3'-OH-PCB 31 8.17 5.16

2,4',6-Trichlorobiphenyl

177 3-OH-PCB 32 7.69 5.15

178 4-OH-PCB 32 7.87 5.19

179 2'-OH-PCB 32 9.79 5.1

180 3'-OH-PCB 32 8.13 5.15

2,3',4'-Trichlorobiphenyl

181 3-OH-PCB 33 8.25 5.15

182 4-OH-PCB 33 8.68
8.333

5.27
5.013

183 5-OH-PCB 33 9.18 5.23
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ID1 Compound1 pKa1 log
P1

184 6-OH-PCB 33 9.57 5.1

185 2'-OH-PCB 33 8.28 5.21

186 5'-OH-PCB 33 7.37 5.18

187 6'-OH-PCB 33 9.15 5.12

2,3',5'-Trichlorobiphenyl

188 3-OH-PCB 34 8.24 5.15

189 4-OH-PCB 34 8.66 5.27

190 5-OH-PCB 34 9.17 5.24

191 6-OH-PCB 34 9.55 5.1

192 2'-OH-PCB 34 8.52 5.19

193 4'-OH-PCB 34 6.43
6.572

6.713

5.2
4.742

4.743

3,3',4-Trichlorobiphenyl

194 2-OH-PCB 35 8.13 5.17

195 5-OH-PCB 35 7.41 5.15

196 6-OH-PCB 35 9.01 5.11

197 2'-OH-PCB 35 8.88 5.11

198 4'-OH-PCB 35 7.8
7.822

7.823

5.23
4.742

4.743

199 5'-OH-PCB 35 8.95 5.23

200 6'-OH-PCB 35 9.77
8.563

5.14
4.863

3,3',5-Trichlorobiphenyl

201 2-OH-PCB 36 8.36 5.11

202 4-OH-PCB 36 6.29
6.722

6.783

5.18
4.832

4.833

203 2'-OH-PCB 36 8.87 5.1

204 4'-OH-PCB 36 7.78
7.862

7.863

5.24
4.872

4.873

205 5'-OH-PCB 36 8.93 5.23

206 6'-OH-PCB 36 9.76 5.15

3,4,4'-Trichlorobiphenyl

207 2-OH-PCB 37 8.14 5.12

208 5-OH-PCB 37 7.43 5.15

209 6-OH-PCB 37 9.02 5.13

210 2'-OH-PCB 37 9.52 5.13

211 3'-OH-PCB 37 8.23 5.19
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ID1 Compound1 pKa1 log
P1

3,4,5-Trichlorobiphenyl

212 2-OH-PCB 38 7.62 5.26

213 2'-OH-PCB 38 10.27 5.13

214 3'-OH-PCB 38 9.75 5.2

215 4'-OH-PCB 38 9.32 5.26

3,4',5-Trichlorobiphenyl

216 2-OH-PCB 39 8.38 5.11

217 4-OH-PCB 39 6.31
6.812

5.18
4.842

5.224

218 2'-OH-PCB 39 9.51 5.15

219 3'-OH-PCB 39 8.21 5.2

2,2',3,3'-Tetrachlorobiphenyl

220 4-OH-PCB 40 7.08 5.89

221 5-OH-PCB 40 8.26 5.89

222 6-OH-PCB 40 9.12 5.86

2,2',3,4-Tetrachlorobiphenyl

223 5-OH-PCB 41 6.75 5.87

224 6-OH-PCB 41 8.37 5.85

225 3'-OH-PCB 41 8.15 5.88

226 4'-OH-PCB 41 8.6 5.93

227 5'-OH-PCB 41 9.08 5.92

228 6'-OH-PCB 41 9.64 5.85

2,2',3,4'-Tetrachlorobiphenyl

229 4-OH-PCB 42 7.09 5.9

230 5-OH-PCB 42 8.28 5.91

231 6-OH-PCB 42 9.13 5.86

232 3'-OH-PCB 42 6.65 5.86

233 5'-OH-PCB 42 7.55 5.88

234 6'-OH-PCB 42 8.88 5.84

2,2',3,5-Tetrachlorobiphenyl

235 4-OH-PCB 43 5.58 5.91

236 6-OH-PCB 43 7.74 5.85

237 3'-OH-PCB 43 8.14 5.89

238 4'-OH-PCB 43 8.59 5.94

239 5'-OH-PCB 43 9.07 5.91

240 6'-OH-PCB 43 9.63 5.86

2,2',3,5'-Tetrachlorobiphenyl

241 4-OH-PCB 44 7.08 5.9
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ID1 Compound1 pKa1 log
P1

242 5-OH-PCB 44 8.26 5.9

243 6-OH-PCB 44 9.12 5.86

244 3'-OH-PCB 44 7.34 5.87

245 4'-OH-PCB 44 7.07 5.9

246 6'-OH-PCB 44 8.25 5.85

2,2',3,6-Tetrachlorobiphenyl

247 4-OH-PCB 45 6.31 5.9

248 5-OH-PCB 45 6.77 5.88

249 3'-OH-PCB 45 8.1 5.88

250 4'-OH-PCB 45 8.6 5.93

251 5'-OH-PCB 45 9.02 5.92

252 6'-OH-PCB 45 9.78 5.87

2,2',3,6'-Tetrachlorobiphenyl

253 4-OH-PCB 46 7.09 5.89

254 5-OH-PCB 46 8.22 5.89

255 6-OH-PCB 46 9.27 5.87

256 3'-OH-PCB 46 7.58 5.88

257 4'-OH-PCB 46 7.82 5.92

2,2',4,4'-Tetrachlorobiphenyl

258 3-OH-PCB 47 6.66 5.87

259 5-OH-PCB 47 7.56 5.9

260 6-OH-PCB 47 8.89 5.87

2,2',4,5-Tetrachlorobiphenyl

261 3-OH-PCB 48 5.85 5.88

262 6-OH-PCB 48 7.51 5.85

263 3'-OH-PCB 48 8.15 5.89

264 4'-OH-PCB 48 8.6 5.93

265 5'-OH-PCB 48 9.08 5.91

266 6'-OH-PCB 48 9.64 5.86

2,2',4,5'-Tetrachlorobiphenyl

267 3-OH-PCB 49 6.65 5.87

268 5-OH-PCB 49 7.55 5.9

269 6-OH-PCB 49 8.88 5.87

270 3'-OH-PCB 49 7.35 5.89

271 4'-OH-PCB 49 7.08 5.91

272 6'-OH-PCB 49 8.26 5.84

2,2',4,6-Tetrachlorobiphenyl

273 3-OH-PCB 50 6.09 5.87

274 3'-OH-PCB 50 8.11 5.88
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275 4'-OH-PCB 50 8.61 5.93

276 5'-OH-PCB 50 9.03 5.91

277 6'-OH-PCB 50 9.79 5.86

2,2',4,6'-Tetrachlorobiphenyl

278 3-OH-PCB 51 6.61 5.87

279 5-OH-PCB 51 7.5 5.87

280 6-OH-PCB 51 9.03 5.85

281 3'-OH-PCB 51 7.59 5.89

282 4'-OH-PCB 51 7.83 5.93

2,2',5,5'-Tetrachlorobiphenyl

283 3-OH-PCB 52 7.34 5.89

284 4-OH-PCB 52 7.07 5.91

285 6-OH-PCB 52 8.25 5.84

2,2',5,6'-Tetrachlorobiphenyl

286 3-OH-PCB 53 7.3 5.87

287 4-OH-PCB 53 7.08 5.9

288 6-OH-PCB 53 8.41 5.85

289 3'-OH-PCB 53 7.58 5.88

290 4'-OH-PCB 53 7.82 5.93

2,2',6,6'-Tetrachlorobiphenyl

291 3-OH-PCB 54 7.54 5.89

292 4-OH-PCB 54 7.83 5.92

2,3,3',4-Tetrachlorobiphenyl

293 5-OH-PCB 55 6.79 5.87

294 6-OH-PCB 55 8.19 5.85

295 2'-OH-PCB 55 8.92 5.85

296 4'-OH-PCB 55 7.89 5.92

297 5'-OH-PCB 55 8.84 5.9

298 6'-OH-PCB 55 9.79 5.87

2,3,3',4'-Tetrachlorobiphenyl

299 4-OH-PCB 56 7.11 5.91

300 5-OH-PCB 56 8.32 5.9

301 6-OH-PCB 56 8.95 5.87

302 2'-OH-PCB 56 8.17 5.84

303 5'-OH-PCB 56 7.31 5.88

304 6'-OH-PCB 56 9.03 5.84

2,3,3',5-Tetrachlorobiphenyl

305 4-OH-PCB 57 5.61 5.88

306 6-OH-PCB 57 7.55 5.85
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307 2'-OH-PCB 57 8.91 5.83

308 4'-OH-PCB 57 7.87 5.92

309 5'-OH-PCB 57 8.83 5.9

310 6'-OH-PCB 57 9.78 5.88

2,3,3',5'-Tetrachlorobiphenyl

311 4-OH-PCB 58 7.1 5.91

312 5-OH-PCB 58 8.31 5.9

313 6-OH-PCB 58 8.93 5.88

314 2'-OH-PCB 58 8.4 5.83

315 4'-OH-PCB 58 6.38 5.9

2,3,3',6-Tetrachlorobiphenyl

316 4-OH-PCB 59 6.3 5.88

317 5-OH-PCB 59 6.81 5.86

318 2'-OH-PCB 59 9.06 5.86

319 4'-OH-PCB 59 7.85 5.92

320 5'-OH-PCB 59 8.78 5.91

321 6'-OH-PCB 59 9.92 5.87

2,3,4,4'-Tetrachlorobiphenyl

322 5-OH-PCB 60 6.81 5.86

323 6-OH-PCB 60 8.2 5.84

324 2'-OH-PCB 60 9.55 5.85

325 3'-OH-PCB 60 8.12 5.89

2,3,4,5-Tetrachlorobiphenyl

326 6-OH-PCB 61 6.81 5.92

327 2'-OH-PCB 61 10.3 5.87

328 3'-OH-PCB 61 9.64 5.9

329 4'-OH-PCB 61 9.41 5.93
5.814

2,3,4,6-Tetrachlorobiphenyl

330 5-OH-PCB 62 5.33 5.94

331 2'-OH-PCB 62 10.44 5.87

332 3'-OH-PCB 62 9.6 5.9

333 4'-OH-PCB 62 9.39 5.94

2,3,4',5-Tetrachlorobiphenyl

334 4-OH-PCB 63 5.62 5.88

335 6-OH-PCB 63 7.56 5.83

336 2'-OH-PCB 63 9.54 5.87

337 3'-OH-PCB 63 8.11 5.9

2,3,4',6-Tetrachlorobiphenyl
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338 4-OH-PCB 64 6.31 5.89

339 5-OH-PCB 64 6.82 5.87

340 2'-OH-PCB 64 9.68 5.86

341 3'-OH-PCB 64 8.07 5.9

2,3,5,6-Tetrachlorobiphenyl

342 4-OH-PCB 65 4.81 5.95

343 2'-OH-PCB 65 10.43 5.87

344 3'-OH-PCB 65 9.59 5.89

345 4'-OH-PCB 65 9.37 5.94

2,3',4,4'-Tetrachlorobiphenyl

346 3-OH-PCB 66 6.7 5.88

347 5-OH-PCB 66 7.6 5.9

348 6-OH-PCB 66 8.7 5.87

349 2'-OH-PCB 66 8.18 5.83

350 5'-OH-PCB 66 7.33 5.89

351 6'-OH-PCB 66 9.04 5.87

2,3',4,5-Tetrachlorobiphenyl

352 3-OH-PCB 67 5.89 5.86

353 6-OH-PCB 67 7.31 5.84

354 2'-OH-PCB 67 8.92 5.84

355 4'-OH-PCB 67 7.89 5.91

356 5'-OH-PCB 67 8.84 5.89

357 6'-OH-PCB 67 9.79 5.89

2,3',4,5'-Tetrachlorobiphenyl

358 3-OH-PCB 68 6.69 5.88

359 5-OH-PCB 68 7.59 5.9

360 6-OH-PCB 68 8.69 5.87

361 2'-OH-PCB 68 8.41 5.85

362 4'-OH-PCB 68 6.39
6.302

6.303

5.91
5.332

5.333

2,3',4,6-Tetrachlorobiphenyl

363 3-OH-PCB 69 6.12 5.86

364 2'-OH-PCB 69 9.07 5.84

365 4'-OH-PCB 69 7.87 5.92

366 5'-OH-PCB 69 8.8 5.9

367 6'-OH-PCB 69 9.93 5.88

2,3',4',5-Tetrachlorobiphenyl

368 3-OH-PCB 70 7.39 5.89
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369 4-OH-PCB 70 7.11 5.92

370 6-OH-PCB 70 8.06 5.84

371 2'-OH-PCB 70 8.17 5.83

372 5'-OH-PCB 70 7.31 5.89

373 6'-OH-PCB 70 9.03 5.87

2,3',4',6-Tetrachlorobiphenyl

374 3-OH-PCB 71 7.63 5.9

375 4-OH-PCB 71 7.82 5.92

376 2'-OH-PCB 71 8.32 5.84

377 5'-OH-PCB 71 7.27 5.88

378 6'-OH-PCB 71 9.17 5.84

2,3',5,5'-Tetrachlorobiphenyl

379 3-OH-PCB 72 7.37 5.9

380 4-OH-PCB 72 7.09 5.91

381 6-OH-PCB 72 8.05 5.84

382 2'-OH-PCB 72 8.4 5.85

383 4'-OH-PCB 72 6.38 5.91

2,3',5',6-Tetrachlorobiphenyl

384 3-OH-PCB 73 7.62 5.9

385 4-OH-PCB 73 7.81 5.93

386 2'-OH-PCB 73 8.55 5.84

387 4'-OH-PCB 73 6.36 5.89

2,4,4',5-Tetrachlorobiphenyl

388 3-OH-PCB 74 5.9 5.85

389 6-OH-PCB 74 7.32 5.83

390 2'-OH-PCB 74 9.55 5.88

391 3'-OH-PCB 74 8.12 5.9

2,4,4',6-Tetrachlorobiphenyl

392 3-OH-PCB 75 6.14 5.86

393 2'-OH-PCB 75 9.69 5.87

394 3'-OH-PCB 75 8.08 5.9

2,3',4',5'-Tetrachlorobiphenyl

395 3-OH-PCB 76 8.19 5.89

396 4-OH-PCB 76 8.62 5.93

397 5-OH-PCB 76 9.12 5.91

398 6-OH-PCB 76 9.45 5.85

399 2'-OH-PCB 76 7.66 5.85

3,3',4,4'-Tetrachlorobiphenyl

400 2-OH-PCB 77 8.03 5.84
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401 5-OH-PCB 77 7.37 5.9

402 6-OH-PCB 77 8.9 5.87

3,3',4,5-Tetrachlorobiphenyl

403 2-OH-PCB 78 7.51 5.83

404 2'-OH-PCB 78 8.77 5.85

405 4'-OH-PCB 78 7.75
6.362

5.92
5.282

406 5'-OH-PCB 78 8.89 5.9

407 6'-OH-PCB 78 9.65 5.88

3,3',4,5'-Tetrachlorobiphenyl

408 2-OH-PCB 79 8.01 5.85

409 5-OH-PCB 79 7.35 5.89

410 6-OH-PCB 79 8.89 5.87

411 2'-OH-PCB 79 8.26 5.86

412 4'-OH-PCB 79 6.26
6.363

5.91
5.283

3,3',5,5'-Tetrachlorobiphenyl

413 2-OH-PCB 80 8.25 5.86

414 4-OH-PCB 80 6.24 5.91

3,4,4',5-Tetrachlorobiphenyl

415 2-OH-PCB 81 7.52 5.84

416 2'-OH-PCB 81 9.41 5.87

417 3'-OH-PCB 81 8.17 5.89

2,2',3,3',4-Pentachlorobiphenyl

418 5-OH-PCB 82 6.69 6.55

419 6-OH-PCB 82 8.26 6.51

420 4'-OH-PCB 82 7.04 6.57

421 5'-OH-PCB 82 8.22 6.57

422 6'-OH-PCB 82 9.02 6.53

2,2',3,3',5-Pentachlorobiphenyl

423 4-OH-PCB 83 5.53 6.56

424 6-OH-PCB 83 7.63 6.51

425 4'-OH-PCB 83 7.03 6.57

426 5'-OH-PCB 83 8.2 6.58

427 6'-OH-PCB 83 9.01 6.53

2,2',3,3',6-Pentachlorobiphenyl

428 4-OH-PCB 84 6.26 6.59

429 5-OH-PCB 84 6.72 6.55

430 4'-OH-PCB 84 7.04 6.59
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431 5'-OH-PCB 84 8.16 6.57

432 6'-OH-PCB 84 9.16 6.54

2,2',3,4,4'-Pentachlorobiphenyl

433 5-OH-PCB 85 6.7 6.54

434 6-OH-PCB 85 8.27 6.52

435 3'-OH-PCB 85 6.6 6.52

436 5'-OH-PCB 85 7.5 6.54

437 6'-OH-PCB 85 8.77 6.52

2,2',3,4,5-Pentachlorobiphenyl

438 6-OH-PCB 86 6.89 6.5

439 3'-OH-PCB 86 8.09 6.56

440 4'-OH-PCB 86 8.55 6.61

441 5'-OH-PCB 86 9.02 6.58

442 6'-OH-PCB 86 9.52 6.53

2,2',3,4,5'-Pentachlorobiphenyl

443 5-OH-PCB 87 6.69 6.54

444 6-OH-PCB 87 8.26 6.52

445 3'-OH-PCB 87 7.29 6.55

446 4'-OH-PCB 87 7.03 6.56

447 6'-OH-PCB 87 8.15 6.51

2,2',3,4,6-Pentachlorobiphenyl

448 5-OH-PCB 88 5.23 6.53

449 3'-OH-PCB 88 8.05 6.57

450 4'-OH-PCB 88 8.56 6.62

451 5'-OH-PCB 88 8.97 6.58

452 6'-OH-PCB 88 9.67 6.52

2,2',3,4,6'-Pentachlorobiphenyl

453 5-OH-PCB 89 6.65 6.55

454 6-OH-PCB 89 8.41 6.51

455 3'-OH-PCB 89 7.53 6.57

456 4'-OH-PCB 89 7.78 6.6

2,2',3,4',5-Pentachlorobiphenyl

457 4-OH-PCB 90 5.55 6.54

458 6-OH-PCB 90 7.64 6.52

459 3'-OH-PCB 90 6.59 6.54

460 5'-OH-PCB 90 7.49 6.55

461 6'-OH-PCB 90 8.76 6.53

2,2',3,4',6-Pentachlorobiphenyl

462 4-OH-PCB 91 6.27 6.57
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463 5-OH-PCB 91 6.73 6.57

464 3'-OH-PCB 91 6.55 6.54

465 5'-OH-PCB 91 7.45 6.56

466 6'-OH-PCB 91 8.91 6.53

2,2',3,5,5'-Pentachlorobiphenyl

467 4-OH-PCB 92 5.53 6.54

468 6-OH-PCB 92 7.63 6.52

469 3'-OH-PCB 92 7.28 6.55

470 4'-OH-PCB 92 7.02 6.58

471 6'-OH-PCB 92 8.13 6.52

2,2',3,5,6-Pentachlorobiphenyl

472 4-OH-PCB 93 4.77 6.55

473 3'-OH-PCB 93 8.04 6.58

474 4'-OH-PCB 93 8.55 6.62

475 5'-OH-PCB 93 8.96 6.58

476 6'-OH-PCB 93 9.66 6.53

2,2',3,5,6'-Pentachlorobiphenyl

477 4-OH-PCB 94 5.55 6.57

478 6-OH-PCB 94 7.79 6.5

479 3'-OH-PCB 94 7.52 6.57

480 4'-OH-PCB 94 7.77 6.61

2,2',3,5',6-Pentachlorobiphenyl

481 4-OH-PCB 95 6.26 6.58

482 5-OH-PCB 95 6.72 6.56

483 3'-OH-PCB 95 7.24 6.58

484 4'-OH-PCB 95 7.03 6.59

485 6'-OH-PCB 95 8.3 6.51

2,2',3,6,6'-Pentachlorobiphenyl

486 4-OH-PCB 96 6.27 6.57

487 5-OH-PCB 96 6.68 6.56

488 3'-OH-PCB 96 7.48 6.58

489 4'-OH-PCB 96 7.78 6.6

2,2',3,4',5'-Pentachlorobiphenyl

490 4-OH-PCB 97 7.04 6.56

491 5-OH-PCB 97 8.22 6.57

492 6-OH-PCB 97 9.02 6.53

493 3'-OH-PCB 97 5.79 6.53

494 6'-OH-PCB 97 7.4 6.51

2,2',3,4',6'-Pentachlorobiphenyl
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495 4-OH-PCB 98 7.05 6.59

496 5-OH-PCB 98 8.17 6.57

497 6-OH-PCB 98 9.17 6.53

498 3'-OH-PCB 98 6.03 6.54

2,2',4,4',5-Pentachlorobiphenyl

499 3-OH-PCB 99 5.81 6.51

500 6-OH-PCB 99 7.41 6.5

501 3'-OH-PCB 99 6.6 6.54

502 5'-OH-PCB 99 7.5 6.55

503 6'-OH-PCB 99 8.77 6.52

2,2',4,4',6-Pentachlorobiphenyl

504 3-OH-PCB 100 6.04 6.54

505 3'-OH-PCB 100 6.57 6.55

506 5'-OH-PCB 100 7.46 6.56

507 6'-OH-PCB 100 8.92 6.53

2,2',4,5,5'-Pentachlorobiphenyl

508 3-OH-PCB 101 5.79 6.52

509 6-OH-PCB 101 7.39 6.51

510 3'-OH-PCB 101 7.29 6.54

511 4'-OH-PCB 101 7.03 6.59

512 6'-OH-PCB 101 8.14 6.52

2,2',4,5,6'-Pentachlorobiphenyl

513 3-OH-PCB 102 5.76 6.54

514 6-OH-PCB 102 7.56 6.49

515 3'-OH-PCB 102 7.53 6.56

516 4'-OH-PCB 102 7.78 6.61

2,2',4,5',6-Pentachlorobiphenyl

517 3-OH-PCB 103 6.03 6.54

518 3'-OH-PCB 103 7.25 6.56

519 4'-OH-PCB 103 7.04 6.58

520 6'-OH-PCB 103 8.31 6.52

2,2',4,6,6'-Pentachlorobiphenyl

521 3-OH-PCB 104 5.99 6.55

522 3'-OH-PCB 104 7.49 6.56

523 4'-OH-PCB 104 7.79 6.62

2,3,3',4,4'-Pentachlorobiphenyl

524 5-OH-PCB 105 6.75 6.53

525 6-OH-PCB 105 8.08 6.51

526 2'-OH-PCB 105 8.06 6.49
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527 5'-OH-PCB 105 7.27 6.54

528 6'-OH-PCB 105 8.93 6.51

2,3,3',4,5-Pentachlorobiphenyl

529 6-OH-PCB 106 6.69 6.46

530 2'-OH-PCB 106 8.8 6.51

531 4'-OH-PCB 106 7.84 6.57

532 5'-OH-PCB 106 8.78 6.55

533 6'-OH-PCB 106 9.68 6.53

2,3,3',4',5-Pentachlorobiphenyl

534 4-OH-PCB 107 5.57 6.54

535 6-OH-PCB 107 7.44 6.51

536 2'-OH-PCB 107 8.05 6.5

537 5'-OH-PCB 107 7.25 6.52

538 6'-OH-PCB 107 8.92 6.51

2,3,3',4,5'-Pentachlorobiphenyl

539 5-OH-PCB 108 6.73 6.54

540 6-OH-PCB 108 8.07 6.51

541 2'-OH-PCB 108 8.3 6.51

542 4'-OH-PCB 108 6.34 6.55

2,3,3',4,6-Pentachlorobiphenyl

543 5-OH-PCB 109 5.27 6.5

544 2'-OH-PCB 109 8.96 6.51

545 4'-OH-PCB 109 7.81 6.58

546 5'-OH-PCB 109 8.74 6.57

547 6'-OH-PCB 109 9.82 6.53

2,3,3',4',6-Pentachlorobiphenyl

548 4-OH-PCB 110 6.26 6.57

549 5-OH-PCB 110 6.76 6.55

550 2'-OH-PCB 110 8.21 6.51

551 5'-OH-PCB 110 7.21 6.54

552 6'-OH-PCB 110 9.06 6.54

2,3,3',5,5'-Pentachlorobiphenyl

553 4-OH-PCB 111 5.55 6.54

554 6-OH-PCB 111 7.43 6.51

555 2'-OH-PCB 111 8.29 6.52

556 4'-OH-PCB 111 6.33 6.55

2,3,3',5,6-Pentachlorobiphenyl

557 4-OH-PCB 112 4.76 6.53

558 2'-OH-PCB 112 8.95 6.51
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559 4'-OH-PCB 112 7.8 6.59

560 5'-OH-PCB 112 8.72 6.58

561 6'-OH-PCB 112 9.81 6.54

2,3,3',5',6-Pentachlorobiphenyl

562 4-OH-PCB 113 6.24 6.57

563 5-OH-PCB 113 6.75 6.56

564 2'-OH-PCB 113 8.44 6.52

565 4'-OH-PCB 113 6.31 6.57

2,3,4,4',5-Pentachlorobiphenyl

566 6-OH-PCB 114 6.7 6.48

567 2'-OH-PCB 114 9.43 6.52

568 3'-OH-PCB 114 8.06 6.54

2,3,4,4',6-Pentachlorobiphenyl

569 5-OH-PCB 115 5.28 6.52

570 2'-OH-PCB 115 9.57 6.53

571 3'-OH-PCB 115 8.02 6.55

2,3,4,5,6-Pentachlorobiphenyl

572 2'-OH-PCB 116 10.32 6.5

573 3'-OH-PCB 116 9.54 6.59

574 4'-OH-PCB 116 9.33 6.61

2,3,4',5,6-Pentachlorobiphenyl

575 4-OH-PCB 117 4.77 6.54

576 2'-OH-PCB 117 9.56 6.53

577 3'-OH-PCB 117 8.01 6.55

2,3',4,4',5-Pentachlorobiphenyl

578 3-OH-PCB 118 5.84 6.51

579 6-OH-PCB 118 7.21 6.5

580 2'-OH-PCB 118 8.06 6.5

581 5'-OH-PCB 118 7.27 6.53

582 6'-OH-PCB 118 8.93 6.52

2,3',4,4',6-Pentachlorobiphenyl

583 3-OH-PCB 119 6.08 6.54

584 2'-OH-PCB 119 8.22 6.51

585 5'-OH-PCB 119 7.22 6.53

586 6'-OH-PCB 119 9.07 6.51

2,3',4,5,5'-Pentachlorobiphenyl

587 3-OH-PCB 120 5.83 6.51

588 6-OH-PCB 120 7.2 6.49

589 2'-OH-PCB 120 8.3 6.5
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590 4'-OH-PCB 120 6.34 6.56

2,3',4,5',6-Pentachlorobiphenyl

591 3-OH-PCB 121 6.06 6.54

592 2'-OH-PCB 121 8.45 6.52

593 4'-OH-PCB 121 6.32 6.55

2,3,3',4',5'-Pentachlorobiphenyl

594 4-OH-PCB 122 7.06 6.56

595 5-OH-PCB 122 8.26 6.56

596 6-OH-PCB 122 8.83 6.53

597 2'-OH-PCB 122 7.55 6.5

2,3',4,4',5'-Pentachlorobiphenyl

598 3-OH-PCB 123 6.64 6.52

599 5-OH-PCB 123 7.54 6.55

600 6-OH-PCB 123 8.59 6.51

601 2'-OH-PCB 123 7.56 6.5

2,3',4',5,5'-Pentachlorobiphenyl

602 3-OH-PCB 124 7.33 6.53

603 4-OH-PCB 124 7.05 6.57

604 6-OH-PCB 124 7.95 6.51

605 2'-OH-PCB 124 7.55 6.49

2,3',4',5',6-Pentachlorobiphenyl

606 3-OH-PCB 125 7.57 6.56

607 4-OH-PCB 125 7.77 6.6

608 2'-OH-PCB 125 7.7 6.51

3,3',4,4',5-Pentachlorobiphenyl

609 2-OH-PCB 126 7.41 6.49

610 2'-OH-PCB 126 7.91 6.5

611 5'-OH-PCB 126 7.31 6.53

612 6'-OH-PCB 126 8.79 6.51

3,3',4,5,5'-Pentachlorobiphenyl

613 2-OH-PCB 127 7.39 6.5

614 2'-OH-PCB 127 8.15 6.5

615 4'-OH-PCB 127 6.21 6.53

2,2',3,3',4,4'-Hexachlorobiphenyl

616 5-OH-PCB 128 6.64 7.13

617 6-OH-PCB 128 8.15 7.11

2,2',3,3',4,5-Hexachlorobiphenyl

618 6-OH-PCB 129 6.78 7.04

619 4'-OH-PCB 129 6.99 7.18
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ID1 Compound1 pKa1 log
P1

620 5'-OH-PCB 129 8.16 7.2

621 6'-OH-PCB 129 8.9 7.12

2,2',3,3',4,5'-Hexachlorobiphenyl

622 5-OH-PCB 130 6.63 7.15

623 6-OH-PCB 130 8.14 7.12

624 4'-OH-PCB 130 5.49
5.042

7.13
6.172

625 6'-OH-PCB 130 7.53 7.11

2,2',3,3',4,6-Hexachlorobiphenyl

626 5-OH-PCB 131 5.17 7.11

627 4'-OH-PCB 131 7 7.17

628 5'-OH-PCB 131 8.11 7.2

629 6'-OH-PCB 131 9.05 7.11

2,2',3,3',4,6'-Hexachlorobiphenyl

630 5-OH-PCB 132 6.59 7.14

631 6-OH-PCB 132 8.29 7.1

632 4'-OH-PCB 132 6.22 7.16

633 5'-OH-PCB 132 6.67 7.14

2,2',3,3',5,5'-Hexachlorobiphenyl

634 4-OH-PCB 133 5.48 7.13

635 6-OH-PCB 133 7.52 7.1

2,2',3,3',5,6-Hexachlorobiphenyl

636 4-OH-PCB 134 4.7 7.17

637 4'-OH-PCB 134 6.99 7.17

638 5'-OH-PCB 134 8.1 7.2

639 6'-OH-PCB 134 9.05 7.12

2,2',3,3',5,6'-Hexachlorobiphenyl

640 4-OH-PCB 135 5.49 7.14

641 6-OH-PCB 135 7.68 7.1

642 4'-OH-PCB 135 6.21 7.17

643 5'-OH-PCB 135 6.66 7.15

2,2',3,3',6,6'-Hexachlorobiphenyl

644 4-OH-PCB 136 6.22 7.16

645 5-OH-PCB 136 6.62 7.15

2,2',3,4,4',5-Hexachlorobiphenyl

646 6-OH-PCB 137 6.79 7.07

647 3'-OH-PCB 137 6.54 7.12

648 5'-OH-PCB 137 7.44 7.2

649 6'-OH-PCB 137 8.66 7.12
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ID1 Compound1 pKa1 log
P1

2,2',3,4,4',5'-Hexachlorobiphenyl

650 5-OH-PCB 138 6.64 7.18

651 6-OH-PCB 138 8.15 7.13

652 3'-OH-PCB 138 5.75 7.11

653 6'-OH-PCB 138 7.29 7.08

2,2',3,4,4',6-Hexachlorobiphenyl

654 5-OH-PCB 139 5.18 7.11

655 3'-OH-PCB 139 6.51 7.13

656 5'-OH-PCB 139 7.4 7.2

657 6'-OH-PCB 139 8.81 7.12

2,2',3,4,4',6'-Hexachlorobiphenyl

658 5-OH-PCB 140 6.6 7.15

659 6-OH-PCB 140 8.3 7.11

660 3'-OH-PCB 140 5.98 7.12

2,2',3,4,5,5'-Hexachlorobiphenyl

661 6-OH-PCB 141 6.78 7.05

662 3'-OH-PCB 141 7.23 7.17

663 4'-OH-PCB 141 6.98 7.22

664 6'-OH-PCB 141 8.03 7.1

2,2',3,4,5,6-Hexachlorobiphenyl

665 3'-OH-PCB 142 8 7.25

666 4'-OH-PCB 142 8.51 7.21

667 5'-OH-PCB 142 8.92 7.17

668 6'-OH-PCB 142 9.56 7.12

2,2',3,4,5,6'-Hexachlorobiphenyl

669 6-OH-PCB 143 6.94 7.05

670 3'-OH-PCB 143 7.47 7.15

671 4'-OH-PCB 143 7.73 7.23

2,2',3,4,5',6-Hexachlorobiphenyl

672 5-OH-PCB 144 5.17 7.11

673 3'-OH-PCB 144 7.19 7.16

674 4'-OH-PCB 144 6.99 7.22

675 6'-OH-PCB 144 8.19 7.1

2,2',3,4,6,6'-Hexachlorobiphenyl

676 5-OH-PCB 145 5.14 7.08

677 3'-OH-PCB 145 7.43 7.16

678 4'-OH-PCB 145 7.74 7.23

2,2',3,4',5,5'-Hexachlorobiphenyl
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ID1 Compound1 pKa1 log
P1

679 4-OH-PCB 146 5.49
5.042

7.19
6.232

680 6-OH-PCB 146 7.53 7.1

681 3'-OH-PCB 146 5.73 7.11

682 6'-OH-PCB 146 7.28 7.08

2,2',3,4',5,6-Hexachlorobiphenyl

683 4-OH-PCB 147 4.73 7.12

684 3'-OH-PCB 147 6.49 7.14

685 5'-OH-PCB 147 7.39 7.19

686 6'-OH-PCB 147 8.8 7.11

2,2',3,4',5,6'-Hexachlorobiphenyl

687 4-OH-PCB 148 5.51 7.14

688 6-OH-PCB 148 7.69 7.1

689 3'-OH-PCB 148 5.97 7.14

2,2',3,4',5',6-Hexachlorobiphenyl

690 4-OH-PCB 149 6.22 7.2

691 5-OH-PCB 149 6.67 7.17

692 3'-OH-PCB 149 5.7 7.13

693 6'-OH-PCB 149 7.45 7.1

2,2',3,4',6,6'-Hexachlorobiphenyl

694 4-OH-PCB 150 6.23 7.18

695 5-OH-PCB 150 6.63 7.15

696 3'-OH-PCB 150 5.93 7.12

2,2',3,5,5',6-Hexachlorobiphenyl

697 4-OH-PCB 151 4.72 7.23

698 3'-OH-PCB 151 7.18 7.15

699 4'-OH-PCB 151 6.98 7.21

700 6'-OH-PCB 151 8.19 7.11

2,2',3,5,6,6'-Hexachlorobiphenyl

701 4-OH-PCB 152 4.73 7.11

702 3'-OH-PCB 152 7.42 7.16

703 4'-OH-PCB 152 7.73 7.23

2,2',4,4',5,5'-Hexachlorobiphenyl

704 3-OH-PCB 153 5.75 7.15

705 6-OH-PCB 153 7.29 7.09

2,2',4,4',5,6'-Hexachlorobiphenyl

706 3-OH-PCB 154 5.71 7.12

707 6-OH-PCB 154 7.46 7.1

708 3'-OH-PCB 154 5.98 7.15
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ID1 Compound1 pKa1 log
P1

2,2',4,4',6,6'-Hexachlorobiphenyl

709 3-OH-PCB 155 5.94 7.15

2,3,3',4,4',5-Hexachlorobiphenyl

710 6-OH-PCB 156 6.59 7.1

711 2'-OH-PCB 156 7.95 7.09

712 5'-OH-PCB 156 7.21 7.18

713 6'-OH-PCB 156 8.81 7.16

2,3,3',4,4',5'-Hexachlorobiphenyl

714 5-OH-PCB 157 6.69 7.18

715 6-OH-PCB 157 7.97 7.13

716 2'-OH-PCB 157 7.44 7.09

2,3,3',4,4',6-Hexachlorobiphenyl

717 5-OH-PCB 158 5.22 7.12

718 2'-OH-PCB 158 8.1 7.1

719 5'-OH-PCB 158 7.16 7.19

720 6'-OH-PCB 158 8.95 7.14

2,3,3',4,5,5'-Hexachlorobiphenyl

721 6-OH-PCB 159 6.58 7.09

722 2'-OH-PCB 159 8.18 7.11

723 4'-OH-PCB 159 6.29 7.2

2,3,3',4,5,6-Hexachlorobiphenyl

724 2'-OH-PCB 160 8.84 7.11

725 4'-OH-PCB 160 7.76 7.17

726 5'-OH-PCB 160 8.68 7.17

727 6'-OH-PCB 160 9.7 7.11

2,3,3',4,5',6-Hexachlorobiphenyl

728 5-OH-PCB 161 5.21 7.11

729 2'-OH-PCB 161 8.33 7.1

730 4'-OH-PCB 161 6.27 7.2

2,3,3',4',5,5'-Hexachlorobiphenyl

731 4-OH-PCB 162 5.52 7.18

732 6-OH-PCB 162 7.33 7.1

733 2'-OH-PCB 162 7.43 7.09

2,3,3',4',5,6-Hexachlorobiphenyl

734 4-OH-PCB 163 4.72 7.12

735 2'-OH-PCB 163 8.09 7.11

736 5'-OH-PCB 163 7.15 7.17

737 6'-OH-PCB 163 8.94 7.14

2,3,3',4',5',6-Hexachlorobiphenyl
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ID1 Compound1 pKa1 log
P1

738 4-OH-PCB 164 6.21 7.21

739 5-OH-PCB 164 6.7 7.16

740 2'-OH-PCB 164 7.59 7.1

2,3,3',5,5',6-Hexachlorobiphenyl

741 4-OH-PCB 165 4.71 7.13

742 2'-OH-PCB 165 8.32 7.11

743 4'-OH-PCB 165 6.26 7.19

2,3,4,4',5,6-Hexachlorobiphenyl

744 2'-OH-PCB 166 8.16 6.94

745 3'-OH-PCB 166 7.57 6.95

2,3',4,4',5,5'-Hexachlorobiphenyl

746 3-OH-PCB 167 5.78 7.13

747 6-OH-PCB 167 7.09 7.08

748 2'-OH-PCB 167 7.44 7.12

2,3',4,4',5',6-Hexachlorobiphenyl

749 3-OH-PCB 168 6.02 7.16

750 2'-OH-PCB 168 7.6 7.09

3,3',4,4',5,5'-Hexachlorobiphenyl

751 2-OH-PCB 169 7.29 7.11

2,2',3,3',4,4',5-Heptachlorobiphenyl

752 6-OH-PCB 170 6.67 7.55

753 5'-OH-PCB 170 6.58 7.65

754 6'-OH-PCB 170 8.04 7.62

2,2',3,3',4,4',6-Heptachlorobiphenyl

755 5-OH-PCB 171 5.12 7.6

756 5'-OH-PCB 171 6.54 7.65

757 6'-OH-PCB 171 8.19 7.63

2,2',3,3',4,5,5'-Heptachlorobiphenyl

758 6-OH-PCB 172 6.66 7.57

759 4'-OH-PCB 172 5.44
4.732

7.65
6.552

760 6'-OH-PCB 172 7.41 7.62

2,2',3,3',4,5,6-Heptachlorobiphenyl

761 4'-OH-PCB 173 6.95 7.68

762 5'-OH-PCB 173 8.05 7.67

763 6'-OH-PCB 173 8.94 7.6

2,2',3,3',4,5,6'-Heptachlorobiphenyl

764 6-OH-PCB 174 6.83 7.49

765 4'-OH-PCB 174 6.17 7.68
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ID1 Compound1 pKa1 log
P1

766 5'-OH-PCB 174 6.61 7.65

2,2',3,3',4,5',6-Heptachlorobiphenyl

767 5-OH-PCB 175 5.11 7.6

768 4'-OH-PCB 175 5.45 7.66

769 6'-OH-PCB 175 7.58 7.62

2,2',3,3',4,6,6'-Heptachlorobiphenyl

770 5-OH-PCB 176 5.08 7.56

771 4'-OH-PCB 176 6.18 7.67

772 5'-OH-PCB 176 6.57 7.66

2,2',3,3',4,5',6'-Heptachlorobiphenyl

773 5-OH-PCB 177 6.53 7.65

774 6-OH-PCB 177 8.18 7.63

775 4'-OH-PCB 177 4.68 7.62

2,2',3,3',5,5',6-Heptachlorobiphenyl

776 4-OH-PCB 178 4.67 7.64

777 4'-OH-PCB 178 5.44 7.66

778 6'-OH-PCB 178 7.57 7.61

2,2',3,3',5,6,6'-Heptachlorobiphenyl

779 4-OH-PCB 179 4.68 7.6

780 4'-OH-PCB 179 6.17 7.67

781 5'-OH-PCB 179 6.56 7.65

2,2',3,4,4',5,5'-Heptachlorobiphenyl

782 6-OH-PCB 180 6.67 7.61

783 3'-OH-PCB 180 5.69 7.64

784 6'-OH-PCB 180 7.18 7.61

2,2',3,4,4',5,6-Heptachlorobiphenyl

785 3'-OH-PCB 181 6.45 7.64

786 5'-OH-PCB 181 7.34 7.65

787 6'-OH-PCB 181 8.7 7.63

2,2',3,4,4',5,6'-Heptachlorobiphenyl

788 6-OH-PCB 182 6.84 7.56

789 3'-OH-PCB 182 5.92 7.65

2,2',3,4,4',5',6-Heptachlorobiphenyl

790 5-OH-PCB 183 5.12 7.64

791 3'-OH-PCB 183 5.65 7.64

792 6'-OH-PCB 183 7.34 7.61

2,2',3,4,4',6,6'-Heptachlorobiphenyl

793 5-OH-PCB 184 5.09 7.6

794 3'-OH-PCB 184 5.88 7.65
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ID1 Compound1 pKa1 log
P1

2,2',3,4,5,5',6-Heptachlorobiphenyl

795 3'-OH-PCB 185 7.13 7.66

796 4'-OH-PCB 185 6.94 7.69

797 6'-OH-PCB 185 8.08 7.49

2,2',3,4,5,6,6'-Heptachlorobiphenyl

798 3'-OH-PCB 186 7.37 7.66

799 4'-OH-PCB 186 7.69 7.69

2,2',3,4',5,5',6-Heptachlorobiphenyl

800 4-OH-PCB 187 4.68
4.082

7.65
6.772

801 3'-OH-PCB 187 5.64 7.64

802 6'-OH-PCB 187 7.33 7.61

2,2',3,4',5,6,6'-Heptachlorobiphenyl

803 4-OH-PCB 188 4.69 7.64

804 3'-OH-PCB 188 5.87 7.65

2,3,3',4,4',5,5'-Heptachlorobiphenyl

805 6-OH-PCB 189 6.47 7.6

806 2'-OH-PCB 189 7.33 7.6

2,3,3',4,4',5,6-Heptachlorobiphenyl

807 2'-OH-PCB 190 7.99 7.59

808 5'-OH-PCB 190 7.1 7.65

809 6'-OH-PCB 190 8.84 7.63

2,3,3',4,4',5',6-Heptachlorobiphenyl

810 5-OH-PCB 191 5.16 7.62

811 2'-OH-PCB 191 7.48 7.61

2,3,3',4,5,5',6-Heptachlorobiphenyl

812 2'-OH-PCB 192 8.22 7.61

813 4'-OH-PCB 192 6.22 7.66

2,3,3',4',5,5',6-Heptachlorobiphenyl

814 4-OH-PCB 193 4.67 7.64

815 2'-OH-PCB 193 7.47 7.61

2,2',3,3',4,4',5,5'-Octachlorobiphenyl

816 6-OH-PCB 194 6.56 8.04

2,2',3,3',4,4',5,6-Octachlorobiphenyl

817 5'-0H CB 195 6.48 8.14

818 6'-0H CB 195 8.08 8.09

2,2',3,3',4,4',5,6'-Octachlorobiphenyl

819 6-OH-PCB 196 6.72 7.97

820 5'-OH-PCB 196 5.06 8.14
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ID1 Compound1 pKa1 log
P1

2,2',3,3',4,4',6,6'-Octachlorobiphenyl

821 5-OH-PCB 197 5.03 8.1

2,2',3,3',4,5,5',6-Octachlorobiphenyl

822 4'-OH-PCB 198 5.4 8.14

823 6'-OH-PCB 198 7.46 7.98

2,2',3,3',4,5,5',6'-Octachlorobiphenyl

824 6-OH-PCB 199 6.71 7.97

825 4'-OH-PCB 199 4.63 8.15

2,2',3,3',4,5,6,6'-Octachlorobiphenyl

826 4'-OH-PCB 200 6.13 8.14

827 5'-OH-PCB 200 6.51 8.16

2,2',3,3',4,5',6,6'-Octachlorobiphenyl

828 5-OH-PCB 201 5.02 8.02

829 4'-OH-PCB 201 4.64 8.15

2,2',3,3',5,5',6,6'-Octachlorobiphenyl

830 4-OH-PCB 202 4.63 8.12

2,2',3,4,4',5,5',6-Octachlorobiphenyl

831 3'-OH-PCB 203 5.59 8.14

832 6'-OH-PCB 203 7.23 7.98

2,2',3,4,4',5,6,6'-Octachlorobiphenyl

833 3'-OH-PCB 204 5.82 8.14

2,3,3',4,4',5,5',6-Octachlorobiphenyl

834 2'-OH-PCB 205 7.37 8.06

2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl

835 6'-OH-PCB 206 6.61 8.19

2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl

836 5'-OH-PCB 207 4.97 8.23

2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl

837 4'-OH-PCB 208 4.59 8.25

1
Taken from Rayne and Forest (2010) unless otherwise denoted.

2
Taken from (Tampal et al., 2002).

3
Calculated from Advanced Chemistry Development (ACD) I-Lab Web Service using ACD/pKa 8.03 or ACD/LogP 8.02 as appropriate.

4
Calculated LogP values from Bradbury et al. (1996).

5
Parent congeneric PCB nomenclature consistent with Ballschmiter (1980) and EPA on-line list. See Mills et al. (2007) for a comparison of 

congener nomenclatures.
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Table 3

Polychlorinated biphenylols (OH-PCBs) identified in human plasma and their suggested parent compound. 

Parent compounds in bold as determined by Sjödin and coworkers (Soechitram et al., 2004).

Abbreviation Structure

Parentcompound

via epoxide
or direct insertion

via
1,2-shift

5'-OH-PCB 66 3-OH-2',4,4',5-tetraCB PCB 66 PCB 68

4'-OH-PCB 79 4-OH-3,3',4',5-tetraCB PCB 79 PCB 77

3'-OH-PCB 85 3-OH-2,2',3',4,4'-pentaCB PCB 85 PCB 105 PCB 82

4'-OH-PCB 120 4-OH-2',3,4',5,5'-pentaCB PCB 120 PCB 118

4'-OH-PCB 101 4-OH-2,2',4',5,5'-pentaCB PCB 101 PCB 99

3-OH-PCB 118 3-OH-2,3',4,4',5-pentaCB PCB 118 PCB 107 PCB 126

4-OH-PCB 107 4-OH-2,3,3',4',5-pentaCB PCB 107 PCB 105, PCB 118

4'-OH-PCB 108 4-OH-2',3,3',4',5-pentaCB PCB 108 PCB 105

4-OH-PCB 134 4-OH-2,2',3,3',5,6-hexaCB PCB 134 PCB 131

4'-OH-PCB 97 4-OH-2,2',3,4',5'-pentaCB PCB 97 PCB 99

3'-OH-PCB 184 3-OH-2,2',3',4,4',6,6'-heptaCB PCB 184 PCB 176

3-OH-PCB 153 3-OH-2,2',4,4',5,5'-hexaCB PCB 153 PCB 146 PCB 167

4-OH-PCB 146 4-OH-2,2',3,4',5,5'-hexaCB PCB 146 PCB 138, PCB 153

3',4-diOHCB 90 3',4 –diOH-2,2',3,4',5-pentaCB

2',4 –diOH-PCB 107 2',4 –diOH-2,3,3',4',5-pentaCB PCB 105 PCB 118

4'-OH-PCB 127 4-OH-3,3',4',5,5'-pentaCB PCB 127 PCB 126

3'-OH-PCB 138 3-OH-2,2',3',4,4',5-hexaCB PCB 138 PCB 130 PCB 157

4'-OH-PCB 130 4-OH-2,2',3,3',4',5-hexaCB PCB 130 PCB 138 PCB 128

4-OH-PCB 163 4-OH-2,3,3',4',5,6-hexaCB PCB 163 PCB 158

4-OH-PCB 178 4-OH-2,2',3,3',5,5',6-heptaCB PCB 178 PCB 175

3'-OH-PCB 182 3-OH-2,2',3',4,4',5',6-heptaCB PCB 182 PCB 174 PCB 180

3'-OH-PCB 183 3-OH-2,2',3',4,4',5,6'-heptaCB PCB 183 PCB175 PCB 191

4'-OH-PCB 175 4-OH-2,2',3,3',4',5,6'-heptaCB PCB 175 PCB 183 PCB 171

4-OH-PCB 187 4-OH-2,2',3,4',5,5',6-heptaCB PCB 187 PCB 183

4'-OH-PCB 159 4-OH-2',3,3',4',5,5'-hexaCB PCB 159 PCB 156

4-OH-PCB 162 4-OH-2,3,3',4',5,5'-hexaCB PCB 162 PCB 157

4-OH-PCB 177 4-OH-2,2',3,3',4',5,6-heptaCB PCB 177 PCB 171

4-OH-PCB 202 4-OH-2,2',3,3',5,5',6,6'-octaCB PCB 202 PCB 201

3'-OH-PCB 180 3-OH-2,2',3',4,4',5,5'-heptaCB PCB 180 PCB 172 PCB 189

4'-OH-PCB 172 4-OH-2,2',3,3',4',5,5'-heptaCB PCB 172 PCB 170 PCB 180

4-OH-PCB 193 4-OH-2,3,3',4',5,5',6-heptaCB PCB 193 PCB 191

4,3'-diOH-PCB 187 4,3'-diOH-2,2',3,4',5,5',6-heptaCB PCB 187 PCB 183

4,4'-diOH-PCB 178 4,4'-diOH-2,2',3,3',5,5',6-heptaCB PCB 183

3'-OH-PCB 203 3-OH-2,2',3',4,4',5,5',6'-octaCB PCB 203 PCB 198 PCB 205
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Abbreviation Structure

Parentcompound

via epoxide
or direct insertion

via
1,2-shift

4'-OH-PCB 198 4-OH-2,2',3,3',4',5,5',6'-octaCB PCB 198 PCB 195 PCB 203

4'-OH-PCB 199 4-OH-2,2',3,3',4',5,5',6-octaCB PCB 199 PCB 196

4,4'-diOH-PCB 202 4,4'-diOH-2,2',3,3',5,5',6,6'-octaCB

4'-OH-PCB 208 4-OH-2,2',3,3',4',5,5',6,6'-nonaCB PCB 208 PCB 207
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Table 5

PCB methyl sulfone (MeSO2-PCBs) identified in humans and their parent compounds are indicated. Chiral 

MeSO2-PCBs are marked with an x in the table.

Structure Abbreviation Chiral
MeSO2-CBs

Parent
compound

3-MeSO2-2,2´,4´,5-tetraCB 3´-MeSO2-PCB 49 PCB 49

4-MeSO2-2,2’,4´,5-tetraCB 4´-MeSO2-PCB 49 PCB 49

3-MeSO2-2,2´,5,5´-tetraCB 3-MeSO2-PCB 52 PCB 52

4-MeSO2-2,2´,5,5´-tetraCB 4-MeSO2-PCB 52 PCB 52

3-MeSO2-2,4´,5,6-tetraCB 5-MeSO2-PCB 64 PCB 64

4-MeSO2-2,3,4´,6-tetraCB 4-MeSO2-PCB 64 PCB 64

3-MeSO2-2,3´,4´,5-tetraCB 3-MeSO2-PCB 70 PCB 70

4-MeSO2-2,3´,4´,5-tetraCB 4-MeSO2-PCB 70 PCB 70

3-MeSO2-2,2´,3´,4´,5-pentaCB 3´-MeSO2-PCB 87 PCB 87

4-MeSO2-2,2´,3´,4´,5-pentaCB 4´-MeSO2-PCB 87 PCB 87

3-MeSO2-2,2´,4´,5,6-pentaCB 5-MeSO2- PCB 91 x PCB 91

4-MeSO2-2,2´,3,4´,6-pentaCB 4-MeSO2- PCB 91 x PCB 91

3-MeSO2-2,2´,4´,5,5´-pentaCB 3´-MeSO2-PCB 101 PCB 101

4-MeSO2-2,2´,4´,5,5´-pentaCB 4´-MeSO2-PCB 101 PCB 101

3-MeSO2-2,2´,3´,4´,5,6-hexaCB 5´-MeSO2-PCB 132 x PCB 132

4-MeSO2-2,2´,3,3´,4´,6-hexaCB 4´-MeSO2-PCB 132 x PCB 132

3-MeSO2-2,2´,3´,4´,5,5´-hexaCB 3´-MeSO2-PCB 141 PCB 141

4-MeSO2-2,2´,3´,4´,5,5´-hexaCB 4´-MeSO2-PCB 141 PCB 141

3-MeSO2-2,2´,4´,5,5´,6-hexaCB 3-MeSO2-PCB 149 x PCB 149

4-MeSO2-2,2´,3,4´,5´,6-hexaCB 4-MeSO2-PCB 149 x PCB 149

3-MeSO2-2,2´,3´,4´,5,5´,6-heptaCB 5´-MeSO2-PCB 174 x PCB 174

4-MeSO2-2,2´,3,3´,4´,5´,6-heptaCB 4´-MeSO2-PCB 174 x PCB 174
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