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Role of IL-38 and Its Related Cytokines in Inflammation
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Interleukin- (IL-) 38 is a recently discovered cytokine and is the tenth member of the IL-1 cytokine family. IL-38 shares structural
features with IL-1 receptor antagonist (IL-1Ra) and IL-36Ra. IL-36R is the specific receptor of IL-38, a partial receptor antagonist of
IL-36. IL-38 inhibits the production of T-cell cytokines IL-17 and IL-22. IL-38 also inhibits the production of IL-8 induced by IL-
36𝛾, thus inhibiting inflammatory responses. IL-38-related cytokines, including IL-1Ra and IL-36Ra, are involved in the regulation
of inflammation and immune responses.The study of IL-38 and IL-38-related cytokines might provide new insights for developing
anti-inflammatory treatments in the near future.

1. Introduction

Our understanding of the interleukin-1 family (IL-1F) has
recently expanded to encompass 11 members: IL-1F1-IL-1F11
[1].These cytokines are also termed IL-1𝛼, IL-1𝛽, IL-1 receptor
antagonist (IL-1Ra), IL-18, IL-36Ra, IL-36𝛼, IL-37, IL-36𝛽,
IL-36𝛾, IL-38, and IL-33, respectively [2] (Table 1). These
proteinmolecules play a prominent role in inflammation and
immune responses, acting as the first line of defense against
invasive pathogenic microorganisms and physical damage.
IL-38 is a novel member of the IL-1F identified in 2001 by
a unique high throughput cDNA screening approach taking
advantage of a set of oligonucleotide probes to hybridize
successive arrays of human cDNAs from various tissues [3, 4].
The former name of IL-38 is IL-1HY2, similar to IL-36Ra (IL-
1HY1). IL-38 is the 10th member of IL-1F and its receptor is
termed IL-1 receptor-related protein 2 (IL-1Rrp2, IL-36R). IL-
38 is an IL-36 antagonist and functions as a typical receptor
antagonist similar to IL-1Ra and IL-36Ra [5]. IL-38 reduces
inflammation by preventing the binding of agonist receptor
ligands to IL-36R, a specific receptor of IL-38.

2. Biological Characteristics of IL-38

The novel IL-1-like gene, IL-38, is located in the IL-1 family
cluster (except IL-18 and IL-33) on human chromosome

2q13-14.1 near the IL-1Ra gene (IL-1RN) and IL-36Ra gene
(IL-36RN) [6]. The IL-38 gene is located 49,479 bp upstream
from IL-1RN on the same DNA strand [7]. IL-38 shares
high sequence homology with IL-1Ra and IL-36Ra. The
primary translated product is an IL-38 precursor, 152 amino
acids in length and with 16.9 kD molecular mass. Sequence
analysis indicated that the IL-38 protein shares 41% homol-
ogy with IL-1Ra and 43% homology with IL-36Ra [4, 7]
and lower homology (14–30%) with IL-1𝛽 and other IL-1
family proteins. In mammalian Chinese hamster ovary cells,
recombinant IL-38 protein was synthesized into two forms,
a major form at 25 kD and a minor form at 17 kD. Lin et al.
[3] suggested that the major form of IL-38 might be a
result of posttranslational protein modifications, such as
phosphorylation. However, studies have shown that the IL-38
protein lacks N-glycosylation and O-glycosylation consensus
sites in Chinese hamster ovary cells [3]. As is typical of the
IL-1 family, including IL-36Ra, IL-36𝛼, IL-36𝛽, and IL-36𝛾,
IL-38 lacks a signal peptide and caspase-1 consensus cleavage
site [3, 7]. Furthermore, the natural N terminus for IL-38
is still unclear [7]. Using the multiple alignment sequence
profile-based searching method (PSI-BLAST), an automated
sequence and structure searching procedure (high through-
put modeling), and a fold recognition method (SeqFold),
three-dimensional structural models of IL-38 were predicted.
The IL-38 structural model displays a 12-𝛽-stranded trefoil
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Table 1: IL-1 family members [10, 11].

Cytokine Family name Receptor Coreceptor Property
IL-1𝛼 IL-1F1 IL-1RI IL-1RAcp Proinflammatory
IL-1𝛽 IL-1F2 IL-1RI IL-1RAcp Proinflammatory
IL-1Ra IL-1F3 IL-1RI NA Antagonist for IL-1𝛼, IL-1𝛽
IL-18 IL-1F4 IL-18R𝛼 IL-18R𝛽 Proinflammatory
IL-36Ra IL-1F5 IL-36R NA Antagonist for IL-36𝛼, IL-36𝛽, and IL-36𝛾
IL-36𝛼 IL-1F6 IL-36R IL-1RAcp Proinflammatory
IL-37 IL-1F7 IL-18R𝛼? Unknown Anti-inflammatory, transcription regulating factor [12]
IL-36𝛽 IL-1F8 IL-36R IL-1RAcp Proinflammatory
IL-36𝛾 IL-1F9 IL-36R IL-1RAcp Proinflammatory
IL-38 IL-1F10 IL-36R Unknown Antagonist for IL-36𝛼, IL-36𝛽, and IL-36𝛾
IL-33 IL-1F11 ST2 IL-1RAcp Proinflammatory, transcription regulating factor [13]
NA: not applicable; ?: requires confirmation.
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Figure 1: Amino acid composition of human IL-38 protein.

structure and shares similarity with the crystal structure of
IL-1Ra and IL-1𝛽 [3, 8]. The characteristics of IL-38 provide
further evidence that it belongs to the IL-1F. In addition, IL-
38 was categorized in the IL-36 subfamily according to the
length of its precursor. Thus, IL-38 likely also belongs to this
subfamily because it has the ability to bind to the common
receptor IL-36R [2, 9].

To date, no reports have described the components and
properties of IL-38. We adopted the ProtParam tool [14, 15]
application to analyze the amino acid composition of IL-38,
which consists of 19 amino acids. A (alanine), E (glutamic
acid), and L (leucine) were the most prevalent amino acids
(9.2%) in IL-38, followed by G (glycine, 7.9%), P (proline,
6.6%), and S (serine, 6.6%). Only H (histidine) was not
present in IL-38 (Figure 1). The molecular weight of IL-
38 is 16.9 kD and is consistent with a previous study, as
predicted by ProtParam tool. IL-38 has a half-life of 7 h,
an isoelectric point (pI) of 4.94, and the molecular for-
mula of C

757
H
1164

N
198

O
226

S
9
, as analyzed by SOPMA (self-

optimized predictionmethod fromalignment) [15, 16].More-
over, the second structure of IL-38 was composed of a 𝛽-turn,
random coil, 𝛽-sheet, and 𝛼-helix. Analysis further indicated
that the random coil and 𝛽-sheet were uniformly distributed
in the protein chain.

By multitissue first-strand cDNA PCR analysis, IL-38
mRNA was measured in a range of tissues, including heart,
placenta, fetal liver, skin, spleen, thymus, and tonsil. IL-38

was expressed mostly in the skin and in proliferating B cells
of the tonsil [3]. However, in nonimmune tissues, such as
human heart and placenta, IL-38 was present at low levels,
similar to other IL-1F members [7]. Some IL-1F members
are constitutively produced, whereas others have inducible
expression, being rapidly induced by bacteria or inflamma-
tory mediators [7, 17, 18]. The expression type of IL-38 is
currently unknown and requires further research.

3. Receptor and Signaling Pathway of IL-38

In 2001, it was speculated that IL-38 acted as an IL-1 recep-
tor antagonist because of its amino acid homology to the
naturally occurring IL-1Ra and the observation that IL-38
could bind to the soluble IL-1 receptor type I (IL-1RI). IL-
1RI was once considered a receptor for IL-38 [3, 5]. However,
the binding affinity of recombinant IL-38 is significantly
lower than that of IL-1Ra and IL-1𝛽. Recently, researchers
doubted whether IL-1RI was a receptor for IL-38. IL-1Rrp2
was regarded as an IL-38-specific receptor andwas also called
IL-36R. In a report by van de Veerdonk [5], the combining
capacity between IL-38 and IL-1RI, IL-36R, IL-18R, and IL-
1R accessory proteins (IL-1RAP, IL-1RAcP) was compared,
in the presence of increasing concentrations of IL-38. IL-38
bound to IL-36R but did not bind to the other immobilized
receptors. Furthermore, IL-38 binding to immobilized IL-
36Rwas comparable to IL-36Ra binding to the same receptor.
It was observed that increasing the concentration of IL-38
resulted in increased optical density, reaching a plateau at
16.7 𝜇g/mL, a higher value than that obtained for IL-36Ra.
Based on the binding studies, these data suggest IL-38 could
act by blocking the IL-36R pathway.

The most recently identified IL-1 family members are
widely expressed in inflammatory cells.These cytokines com-
bine with the cell-surface receptor IL-1R and induce down-
stream signaling, including downstream nuclear transcripts
such as nuclear factor-𝜅B (NF-𝜅B) and activator protein-1
(AP-1). Furthermore, as a feedback and adjustment mech-
anism, these signaling molecules induced the expression of
cyclooxygenase, nitric oxide synthase, and other inflamma-
tory mediators to promote the development of inflammation
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Figure 2: Receptor and signaling pathway of IL-38.

[19, 20]. In line with the characteristics of IL-38 and the
homology of IL-38 and IL-36Ra, it can be concluded that IL-
38 has a role in inflammatory disease by IL-36Ra pathway-
related molecules (Figure 2). The biological function of IL-
38 is to inhibit IL-36 cytokine (IL-36𝛼, IL-36𝛽, and IL-
36𝛾) binding to IL-36R, similar to IL-36Ra. According to
its activity as a receptor antagonist, IL-38 may have an anti-
inflammatory function. IL-38 might also be related to IL-1R
and IL-18R signaling pathways, although there is no evidence
regarding its role in these specific signaling pathways.

4. Biological Activity of IL-38
and Related Cytokines

Because of its homology with other IL-1F members, IL-38 is
thought to have the biological activity of IL-1F members. IL-
1 cytokines are primarily proinflammatory cytokines as they
stimulate the expression of genes associated with inflamma-
tion and immunological diseases. IL-1𝛼 or IL-1𝛽 binds to its
primary receptor IL-1RI, which recruits a second receptor
subunit, IL-1RAcP. Formation of the receptor heterodimer
induces biological responses typically involving the activation
of NF-𝜅B and mitogen-activated protein kinase (MAPK)
pathways [21]. IL-1F6 (IL-36𝛼), IL-1F8 (IL-36𝛽), and IL-1F9
(IL-36𝛾) also activate NF-𝜅B and MAPKs similar to IL-1.
Therefore, most molecules involved in IL-1F-induced signal-
ing, such as cytokines, chemokines, adhesion molecules, and
enzymes, are mediators of inflammatory diseases [22, 23].

4.1. IL-1Ra. IL-1Ra (IL-1F3) is the receptor antagonist of IL-1,
a protein composed of two major subunits, IL-1𝛼 and IL-1𝛽
[24]. IL-1Ra is synthesized and released in response to the

same stimuli that lead to IL-1 production. IL-1Ra, a potent
anti-inflammatory cytokine, competitively inhibits stimula-
tion by inflammatory mediators by binding to IL-1R1 and
preventing the recruitment of IL-1RAcP. IL-1Ra is associated
with severe autoimmune and inflammatory diseases such as
periodontitis [25], vaginitis [26], non-Hodgkin’s lymphoma
[27], gastric cancer [28, 29], osteoarthritis [30], precan-
cerous lesions [31], and inflammatory bowel diseases [32].
Deficiency of the IL-1-receptor antagonist (DIRA), caused
by mutations in IL1RN, can lead to an autosomal recessive
autoinflammatory disease. DIRA allows unopposed actions
of IL-1, resulting in life-threatening excessive systemic IL-1-
mediated inflammationwith skin and bone involvement [33].
A study by Korthagen et al. aimed to elucidate the influence
of polymorphisms in IL1RN on idiopathic pulmonary fibrosis
(IPF) susceptibility and mRNA expression. Polymorphisms
of IL1RN manifested as a variable number tandem repeat
(VNTR), which affected IL-1Ra mRNA expression, suggest
that lower levels of IL-1Ra predispose to developing IPF
[34]. In addition, IL-1RA VNTR may be associated with
Parkinson’s disease risk [35]. IL1RN may be a future novel
therapeutic target with high specificity, low toxicity, and side
effects for the treatment of specific diseases. It is important
to enhance our understanding of IL1RN functions, such as
its interaction with other genes and the influence of environ-
mental factors on its production, to develop treatments with
reduced side effects [34].

In addition, IL1Ra-deficient (IL-1Ra−/−) mice, good ani-
mal models for experimental studies, spontaneously develop
several inflammatory diseases, resembling arthritis [36], aor-
titis [37], intervertebral disc degeneration [38], and psoriasis
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in humans due to unopposed excess IL-1 signaling. The cur-
rent knowledge also suggested that IL-1Ra, an endogenous
inhibitor of IL-1, related to alcoholic steatohepatitis [39], liver
damage [40], lung damage [41], fat mass [42], and aqueous-
deficient dry eye in autoimmune diseases [43].

4.2. IL-36Ra. IL-36Ra (IL-1F5) shares 44% homology with
IL-1Ra and is an antagonist of IL-36𝛼, IL-36𝛽, and IL-36𝛾. IL-
36Ra has a 𝛽-stranded trefoil structure, similar to other fam-
ily members of IL-1, with a conserved hydrophobic core. IL-
36Ra binds to IL-1Rrp2 and has biological effects on immune
cells. The mechanism of IL-36Ra antagonism is analogous to
IL-1Ra by forming a functional signaling complex. IL-36Ra
protein starting at Val-2 is fully active and inhibits IL-36𝛼,
IL-36𝛽, and IL-36𝛾. The A-X-Asp motif is conserved in all
IL-1F members at the N-terminal, where Val-2 of IL-36Ra
lies in this 9-amino acid conserved sequence. All four IL-36
cytokines lack a conventional signal sequence and function
as extracellular cytokines although it is unclear how they
are secreted [44]. In addition, IL-36Ra antagonist activity
requires removal of the N-terminal methionine present in
the primary translation product [45]. More extensive N-
terminal amino truncation of IL-36𝛼, IL-36𝛽, and IL-36𝛾 can
dramatically increase their specific activities [45].

IL-36Ra plays a key role in innate and adaptive immunity
by stimulating helper T-cell responses and it is associated
with many inflammatory diseases. Recessive homozygous
mutations in IL36RN are the major cause for the develop-
ment of generalized pustular psoriasis [46–49]. Mutations in
IL36RN, including premature termination codon mutations,
frameshift mutations, and substitutions of amino acid lead
to incorrect folding of the IL-36Ra protein. These mutations
inhibit the activity of IL-36Ra, thus failing to antagonize
IL-36 signaling pathways and inducing inflammatory skin
disease due to the high levels of IL-36𝛼, IL-36𝛽, and IL-36𝛾.
Excessive IL-36 levels in the skin of mice lead to symptoms to
human psoriasis. However, IL-36Ra-deficient mice develop
the more serious pustular psoriasis. Therefore, treatment
with a combination of IL-36Ra and IL-36R might improve
psoriasis by inhibiting IL-36 stimulation and might be an
ideal treatment strategy for inflammation of human skin.
IL-36Ra functions as an anti-inflammatory cytokine in the
brain [50] and enhances the hippocampal expression of IL-
4. This is a consequence of its interaction with the orphan
receptor, single Ig IL-1R-related molecule (SIGIRR)/TIR8.
Collectively, in vitro IL-4 mRNA and protein expression in
glia induced by the interaction of IL-36Ra and SIGIRR/TIR8
play a critical role in its anti-inflammatory properties [5].
IL-36 cytokines also have a significant association in the
pathogenesis of rheumatoid arthritis [9, 51, 52], inflammatory
lung diseases [53, 54], obesity [55], bile duct occlusion
disorder, and chronic glomerulonephritis [56]. Data strongly
suggest that IL-36Ra might be a useful treatment for IL-36-
related diseases.

4.3. IL-38. In recent years, scholars identified a novel CD4+
T-cell subtype, which was different from T-helper 1 (Th1)
and Th2 cells. These cells were named Th17 cells due to

the expression of IL-17 and these discoveries have improved
our understanding of inflammatory processes. Th17 cells are
different from natural T-cell precursors, and the mature cells
secrete a variety of cytokines such as IL-17 and IL-22 [57, 58].
Th17 plays an important role in a variety of autoimmune dis-
eases and has an independent regulatorymechanism for their
differentiation and development. Th17 is associated with the
pathogenesis of systemic lupus erythematosus, rheumatoid
arthritis, multiple sclerosis, psoriasis, inflammatory bowel
disease, and autoimmune thyroid diseases [44]. Previous
studies demonstrated the functions of IL-38 and Th17 cells
by blocking the IL-1R, IL-18R, and IL-36R pathways [5].
These data suggested that the influence of IL-38 on Th17
cells was similar to blocking IL-1R and IL-36R pathways,
which suppressed IL-17 and IL-22 secretion. Consistent with
binding data and the suppression of IL-17 and IL-22, we
suggest that IL-38 has similar biological effects onTh17 cells.

IL-38 gene polymorphisms are associated with psoriatic
arthritis (PsA), ankylosing spondylitis (AS) [59–61], and
cardiovascular disease [62], suggesting that IL-38 is strongly
correlated with these inflammatory diseases. The frequencies
of Th17 cells are significantly increased in the peripheral
blood of patients with PsA and AS [8, 63–68]. In addition,
the number ofTh17 cells and serum IL-17 levels were strongly
related to systemic disease activity both at the onset and
during disease progression of PsA andAS [68]. IL-38 reduced
the expression of C. albicans-induced IL-17 and IL-22 from
peripheral blood mononuclear cells (PBMCs) by reducing
the stimulation of proinflammatory cytokines in the tissues.
A recent study reported that low concentrations of IL-38
were more effective than higher concentrations in inhibiting
IL-17 and IL-22 production because higher concentrations
modestly increased IL-22 [5].

Similar to IL-36Ra, blocking IL-38 suppressed C. albi-
cans-induced Th17 cytokine production [5, 69]. Both IL-38
and IL-36Ra inhibited the production of IL-17 and IL-22 by
specifically binding to the cell surface-specific protein recep-
tor IL-36R. However, neither IL-38 nor IL-36R functions as
a classic receptor antagonist. In PBMCs, the dose-response
suppression of IL-38 and IL-36Ra by IL-36𝛾-derived IL-8
was not similar to that of IL-1Ra. Neutrophils and T cells in
inflammatory tissues are attracted by IL-8, a chemokine. IL-
38 decreased the production of proinflammatory cytokines
similar to IL-36Ra [5, 70]. In contrast, IL-38 and IL-36Ra
have parallel effects on the production of lipopolysaccharide-
induced IL-6 from dendritic cells (DCs), inducing a twofold
increase [5]. IL-6 has two adverse effects on immune cells:
IL-6 is proinflammatory but also suppresses inflammation in
tissues injured by burns or other damages.

IL-1Ra and IL-38 have a comparable dose-effect regarding
their antagonist activities and function as classic recep-
tor antagonists; the higher the concentration of IL-22, the
stronger its inhibition. Compared with IL-1Ra and IL-38, IL-
36Ra does not behave as a typical receptor antagonist. IL-38
and IL-36Ra function as antagonists at high concentrations,
but at low concentrations, they inhibit the binding of corecep-
tors. Thus, IL-38 and IL-36Ra are defined as partial receptor
antagonists, although they mimic the effects of IL-1Ra on the
production of inflammatory cytokines.
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5. Future Perspectives

IL-1 and most related family members are primarily proin-
flammatory cytokines that induce the expression of genes
associated with inflammatory diseases. Only IL-37 acts as
an anti-inflammatory cytokine. The binding of IL-1Ra and
IL-36Ra to their receptor reduces inflammation by blocking
the binding of receptor ligands. The production of fungal-
induced IL-17, IL-22, and IL-36𝛾-derived IL-8 was decreased
by IL-38, which may play an important anti-inflammatory
role in inflammatory diseases. Many articles have demon-
strated that IL-1Ra and IL-36Ra are associated with arthritis
and psoriasis, respectively. In addition, IL-38 can specifically
bind to IL-36R, similar to IL-36Ra. IL-36 cytokine has signif-
icant in vivo effects on DCs and T cells in human immune
responses via its role in the differentiation of inflammatory
Th1 cells [70–72].

In conclusion, the current knowledge supports the con-
cept that IL-38may be closely associatedwith IL-36-mediated
inflammatory diseases. Thus far, the IL-1 receptor antagonist
anakinra, the soluble decoy receptor rilonacept, and the neu-
tralizing monoclonal anti-IL-1𝛽 antibody canakinumab have
been approved as IL-1-targeting agents for the treatment of
specific diseases. Another study demonstrated the benefi-
cial use of a monoclonal antibody directed against the IL-1
receptor and a neutralizing anti-IL-1𝛼 antibody in clinical
trials [73]. The IL-38-related signaling pathway is poorly
understood and requires further study. Furthermore, the
function and mechanism of IL-38-related diseases remain
elusive and awaits elucidation. The increasing knowledge of
the mechanisms that regulate chronic inflammatory condi-
tions such as rheumatoid arthritis may provide a potential
strategy for the development of anti-inflammatory treatments
for autoimmune diseases and establish a theoretical basis for
clinical trials and drug development.
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