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Abstract

EEG and MEG have excellent temporal resolution, but the estimation of the neural sources that 

generate the signals recorded by the sensors is a difficult, ill-posed problem. The high spatial 

resolution of functional MRI makes it an ideal tool to improve the localization of the EEG/MEG 

sources using data fusion. However, the combination of the two techniques remains challenging, 

as the neural generators of the EEG/MEG and BOLD signals might in some cases be very 

different. Here we describe a data fusion approach that was developed by our team over the last 

decade in which fMRI is used to provide source constraints that are based on functional areas 

defined individually for each subject. This mini-review describes the different steps that are 

necessary to perform source estimation using this approach. It also provides a list of pitfalls that 

should be avoided when doing fMRI-informed EEG/MEG source imaging. Finally, it describes 

the advantages of using a ROI-based approach for group-level analysis and for the study of 

sensory systems.
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Introduction

The cortical generators of EEG/MEG measurements can be estimated by solving an inverse 

imaging problem where the unknown sources are distributed on an individual’s cortex with 

their orientations fixed and orthogonal to the local surface (Dale and Sereno, 1993). 
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Typically, several thousand sources are needed to model the convolutions of the cortical 

manifold precisely, but only a hundred or so measurements are available. The associated 

inverse procedure is thus extremely ill-posed and has an infinity of solutions (Hämäläinen 

al., 1993). Conventional approaches to this issue introduce priors on the source distribution 

to constrain the estimation problem.

Over the two last decades, the emergence of functional imaging techniques, notably fMRI, 

has opened avenues to improve EEG/MEG source localization by fusing data acquired 

separately in the two modalities. Since the late 1990’s, it has been proposed that the BOLD 

responses obtained from the same experiments could be introduced as prior in the source 

covariance matrix R. For example, George et al., (1995) used BOLD activation maps to set 

the diagonal elements of R to non-zero values at source locations where the BOLD 

activations were above a given threshold. This approach makes the assumption that the 

generators of the BOLD responses are identical to those of the EEG/MEG measurements. 

While such a hypothesis might sometimes be partially true, there are also cases where the 

neural generators of the two signals are totally different (see e.g. Geukes et al., 2013). 

Several studies have proposed to address this issue by imposing a partial fMRI constraint 

(Ahlfors and Simpson, 2004; Dale et al., 2000; Liu et al., 1998, 2002) or by modeling more 

finely the relationship between the BOLD signals and the EEG/MEG measurements (Sato et 

al., 2004; Yoshioka et al., 2008; Liu and He, 2008; Ou et al., 2012). Although these 

approaches soften the impact of the discrepancies between the generators of the EEG/MEG 

and the BOLD, they do not fully eliminate them (Vanni et al., 2004). In addition, these 

approaches require that each EEG experiment has to be reproduced in fMRI, thereby 

increasing the acquisition time and costs associated with each study.

FMRI data can be used in a different way to serve as a source constraint. Rather than 

assuming correspondence between activation in replicated studies in EEG/MEG and fMRI, 

one can use fMRI to map out the structure of independent functional regions of interest. 

These regions of interest (ROIs) consist either of the topographic maps of the sensory 

surfaces onto cortex or cortical areas that are defined on the basis of their stimulus 

selectivity. Previous work has used the spatial correspondence between the stimulus space 

and brain regions, coupled with using multiple stimulus locations in EEG to constrain 

localization (Vanni et al., 2004; Di Russo et al., 2005; Hagler et al., 2009; Ales et al. 2010). 

Our work described here has developed an fMRI-informed EEG/MEG source imaging 

approach where the structure of the source correlation matrix is derived from a specific set 

of cortical regions that are determined once for any individual participant (Cottereau et al., 

2012a). Mapping these regions provides several benefits. The regions of interest provide a 

basis for making not just an anatomically defined, but also a functionally defined cross-

subject correspondence. The associated constraints are independent of any given 

experimental protocol and thus can be reused. Our approach is based on the biologically 

plausible assumption that the activity within an ROI is correlated. As the EEG/MEG signals 

are related to the neuron spiking rate (Hämäläinen et al., 1993; Logothetis, 2008) and the 

spiking rates of neurons within the same cortical area are correlated (Cohen and Maunsell, 

2009; Kenet et al., 2003; Lampl et al., 1999), the voltages coming from nearby sources 

belonging to the same area should be highly similar. In addition to improving the spatial 
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resolution of the EEG/MEG reconstructions, this approach also leads to an ROI analysis that 

is based on functional correspondence. Functional ROI-based comparisons both simplify 

and increase the accuracy of the pooling of the results between subjects, because a co-

registration of the individual anatomies, with its inevitable distortion is not necessary. Over 

the last several years, this approach has been used to study different properties of the visual 

system: motion processing (Cottereau et al., 2014a; Ales and Norcia, 2009), chromatic 

processing (Wang and Wade, 2011; Xiao and Wade, 2010), binocular disparity processing 

(Cottereau et al., 2011; 2012bc), attention (Kim and Verghese, 2012; Verghese et al., 2012; 

Palomares et al., 2012; Lauritzen et al., 2010), figure-ground segmentation (Appelbaum et 

al., 2006; 2008; 2010), perceptual decision-making (Cottereau et al., 2014b; Ales et al., 

2013) and contrast normalization (Busse et al., 2009; Tsai et al., 2012). Beyond the scope of 

the visual system, this approach can easily be applied to other sensory systems where fMRI 

can be used to reliably map functional areas (see e.g. Barton et al., 2012 for the auditory 

system or Meier et al., 2013 for the sensory-motor system).

This mini-review is based on a talk that was given at the ‘Cutting-EEG’ workshop (Berlin, 

2014). It describes the analysis pipeline and explains how to use functional areas defined 

from functional magnetic resonance imaging (fMRI) to inform the EEG/MEG inverse 

problem. It completes a recent publication (Cottereau et al., 2012a) that used simulations 

and real datasets to characterize the efficiency of the proposed method. In particular, it 

develops the advantages of using a ROI-based approach for group-level analysis.

Our goal is to explain the different steps that are necessary as well as the possible pitfalls 

that should be avoided when performing fMRI-informed EEG/MEG source imaging to the 

user who would be interested in using this approach. In the following, we first describe how 

to define the cortical source space (see the ‘Source space definition’ section) and how to 

model the link between this source space and the EEG/MEG measurements (see ‘Forward 

modeling of the cortical currents’ section). We then explain how to define functional areas 

using fMRI (see the ‘Functional area definition using fMRI’ section) and how to introduce 

priors from these ROIs into the EEG/MEG source reconstruction problem (see the ‘fMRI-

informed inverse modeling of the cortical currents’ section’). Finally, we describe how to 

estimate the grouplevel cross-talk in a study (see the ‘Cross-talk matrix’ section) and the 

possibilities that such an approach opens. For each of these steps, we briefly describe the 

aim and provide a detailed explanation of how this step was performed in our previous 

studies. We also discuss possible alternatives that might improve each step.

Material and method

Source space definition

Aim: In order to model the link between the EEG/MEG measurements and cortical activity, 

it is necessary to define a source space. Because the generators of the signals are believed to 

be mainly cortical, the source space is given by the cortical surface that is extracted from a 

structural scan of each subject.

How we currently do it: For tissue segmentation and registration with the functional scans, 

we collect a T1-weighted MRI data set at 3T. Our typical voxel acquisition resolution is 0.8 
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× 0.8 × 0.8 mm3, which because of current software limits is resampled to 1 × 1 × 1 mm3. 

The FreeSurfer software package (http://surfer.nmr.mgh.harvard.edu) is used to extract both 

gray/white and gray/cerebrospinal fluid (CSF) boundaries. These surfaces can have different 

curvatures. In particular, the gray/white boundary has sharp gyri (the curvature changes 

rapidly) and smooth sulci (slowly changing surface curvature), while the gray/CSF boundary 

is the inverse, with smooth gyri and sharp sulci. To avoid these discontinuities, we generate 

a surface partway between these two boundaries that has gyri and sulci with approximately 

equal curvature. For each subject, the source space is given by his/her “midgray” cortical 

surface tessellation and consisted in 20,484 regularly spaced vertices (see figure 1-B). The 

distance between connected vertices is on average 3.7mm with standard deviation of 1.5 mm 

and range 0.1–11 mm. Current dipoles are placed at each of these vertices. Their orientations 

are constrained to be orthogonal to the cortical surface to diminish the number of parameters 

to be estimated in the inverse procedure (Hämäläinen et al., 1993).

Alternatives: Although we use FreeSurfer, several other packages can be used to extract the 

cortical surface from structural scans: e.g. the Anatomist software available in the 

BrainVISA environment (http://brainvisa.info) or BrainVoyager (http://

www.brainvoyager.com, Goebel, 2012).

Forward modeling of the cortical currents

Aim: Model the relationship between the source space and the EEG/MEG measurements at 

the sensor level. For this step, it is necessary to take into account the different compartments 

within the head (CSF, skull and skin) (see e.g. Hallez et al, 2007). These compartments can 

be extracted from T1 and T2-weighted structural scanners of each individual subject. The 

source space also needs to be co-registered with the positions of the EEG electrodes.

How we currently do it: We collect a 3D T2-weighted data set at 3T. We typically acquire 

the T2-weighted scan in the same session as the T1 and use identical geometry. It is 

important for the scan parameters of the T2 acquisition to be chosen in such a way as to 

reduce signal from spongy bone in the skull. Our typical voxel resolution is 0.8 × 0.8 × 0.8 

mm3. The FSL toolbox (http://www.fmrib.ox.ac.uk/fsl/) is used to segment from the 

individual T1- and T2-weighted MRI scans contiguous volume regions for the inner skull, 

outer skull, and scalp. These MRI volumes are then converted into inner skull, outer skull, 

and scalp surfaces (Smith 2002; Smith et al., 2004) that defined the boundaries between the 

brain/CSF and the skull, the skull and the scalp, and the scalp and the air (see figure 1-B). 

Following each EEG recording session, a Polhemus FASTRAK system is used to record the 

electrode positions, fiducial landmarks (nasion, left, and right tragus), and several tens of 

points distributed around the scalp and face surface. Co-registration of the electrode 

positions to the MRI head surface is performed using a least squares fitting routine in 

MATLAB. The algorithm starts by first using the three digitized fiducial landmarks along 

with their visible locations on the anatomical MRI to perform an initial alignment to the 

MRI coordinate frame. From this initial estimate, we find the rigid body transform that 

minimizes a cost function that combines the distance from digitized scalp points and the 

digitized electrode positions. This approach provides an accurate co-registration whose 

mislocalization error typically ranges below 3 mm. The source space, the 3D electrode 
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locations, and the individually defined boundaries are then combined with the MNE 

software package (http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php) to 

characterize the electric field propagation with a three-compartment boundary element 

method (BEM) (Hämäläinen and Sarvas, 1989). The resulting forward model is linear and 

links the activity of the 20,484 cortical sources to the voltages recorded by the sensors. 

Mathematically, this forward model can be written as:

where M is a column vector containing the m measurements on the EEG/MEG sensor array 

at instant t; J is a column vector of the n unknown source amplitudes of all elementary 

sources in the model with zero mean and a covariance matrix R (size n * n); G (size m * n) 

is the forward gain matrix sampled at the sensor array and ε (size m * 1) is an additive 

nuisance term with zero mean and a covariance matrix C (size m * m).

Alternatives: Although we use the MNE software to generate our forward model, several 

other options exist. Boundary element models for EEG are also available in Brainstorm 

(Tadel et al., 2011), FieldTrip (Oostenveld et al., 2011) or SPM8 (Litvak et al., 2011).

In our studies, the source orientation is constrained to be normal to the cortical surface. 

Other studies chose to use a loose constraint where three orientation parameters are 

estimated for each source (Uutela et al., 1999; Lin et al., 2006). Lin et al. (2006), showed 

that applying a loose-orientation constraint to a relatively coarse model of about 7,500 

dipolar sources improved the localization performances of a variety of distributed source 

imaging approaches by a few millimeters with respect to image models with strict or totally 

free orientations. The implementation of a loose-orientation version of our approach is 

straightforward.

BEM methods assume homogeneity and isotropy within each region of the head. It ignores 

anisotropy in white matter tracts in the brain in which conduction is more important along 

the axonal fibers compared to the transverse direction (see e.g. Wolters et al., 2006). 

Similarly, the sinuses and diploic spaces in the skull make it very inhomogeneous. To take 

into account these different factors, it is possible to compute the forward model from finite 

element methods (FEM). These methods can, for example, use diffusion tensor imaging 

(DTI) to accurately model the anisotropy within the white matter. They might therefore 

improve the forward model and the accuracy of the associated inverse (Gullmar et al., 2010). 

Note that all the inverse techniques described in this mini review could be directly applied to 

a forward model obtained from a finite element method.

Functional area definition using fMRI

Aim: localize the different functional areas using fMRI that will be used to constrain the 

inverse procedure.

How we currently do it: For functional MRI (fMRI), we employ a single-shot, gradient-echo 

planar imaging (EPI) sequence (TR/TE = 2,000/28 ms, flip angle 80, 126 volumes per run) 

with a typical voxel size of 1.7 × 1.7 × 2 mm3 (128 × 128 acquisition matrix, 220-mm field 
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of view, bandwidth 1,860 Hz/pixel, echo spacing 0.71 ms). We acquire 30 slices without 

gaps, positioned approximately parallel to the parietal occipital sulcus. Once per session, a 

2D SE T1-weighted volume is acquired with the same slice specifications as the functional 

series in order to facilitate registration of the fMRI data to the anatomical scan. The general 

procedures for these scans (head stabilization, visual display system, etc.) are standard and 

have been described in detail elsewhere (Brewer et al., 2005).

Retinotopic field mapping using rotating wedges and expanding/contracting rings (cycles of 

12 TRs) produce ROIs corresponding to visual cortical areas V1, V2v, V2d, V3v, V3d, 

V3A, and V4 in each hemisphere (Tootell and Hadjikhani, 2004). These stimuli are shown 

in figure 2 and their complete description can be found in (Brewer et al., 2005). For each 

subject, the retinotopic maps are acquired during one session that lasts less than an hour. We 

record 4 runs of wedges and 4 runs of rings. Each run contains 126 volumes (4min12s). We 

discard the 6 first volumes from the analysis to allow for both the magnetization history and 

visual stimulation response to reach steady-state. The remaining 120 cycles contains exactly 

10 cycles of our stimuli and are analyzed in the Fourier domain. For each voxel, its preferred 

polar angle (for the wedge stimuli) and eccentricity (for the ring stimuli) in the visual field 

are given by the phase of the Fourier coefficients at the stimulation frequency. The 

retinotopic ROIs are then manually defined using these values.

ROIs corresponding to hMT+ are identified with low-contrast motion stimuli similar to 

those described in (Huk and Heeger 2002). The LOC is defined with a block-design fMRI 

localizer scan. During this scan, the observers view blocks of images depicting common 

objects (12 s/block) alternating with blocks containing scrambled versions of the same 

objects. The stimuli are those used in a previous study (Kourtzi and Kanwisher, 2002). The 

regions activated by these scans include an area lying between the V1/V2/V3 foveal 

confluence and hMT+ that we identify as LOC. This definition covers almost all regions 

(e.g., V4d, LOC, LOp) that have previously been identified as lying within object-

responsive lateral occipital cortex (Kourtzi and Kanwisher, 2002). The LOC and hMT+ 

localizers are recorded during one session that lasts less than one hour and contains 4 runs 

(126 volumes) for each localizer.

Our data are first corrected for gradient non-linearity distortion (see e.g. Jovicich et al., 

2006) using tools provided by our MRI manufacturer. Slice-timing correction and motion 

correction are then performed using the FSL toolbox. For motion correction, we use the 

mcflirt tool (see Jenkinson et al., 2002). Our analysis of the fMRI data is finally done using 

the VISTA software (http://white.stanford.edu/software/) or the AFNI package.

These different functional localizers and the associated ROIs from a typical subject are 

shown in Figure 2-A. All these fMRI analyses were performed using the Vista software.

Alternatives: Atlas-fitting algorithms (see e.g. Dougherty et al., 2003, Hagler & Dale, 2013) 

can be used to automatically extract the retinotopic ROIs from BOLD responses to rotating 

wedges and expanding/contracting rings). This approach should permit a more accurate 

definition of the retinotopic ROIs. Recent studies have also shown that it is possible to 

define retinotopic maps on the ventral pathway: VO-1 and V0-2 (Brewer et al., 2005) and at 
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the level of the lateral occipital cortex (Larson and Heeger, 2006). Manipulating attention, it 

is possible to define additional retinotopic maps in the parietal cortex (Silver et al., 2005; 

Swisher et al., 2007; Silver and Kastner). Studies on the visual system have recently 

described various additional localizers that could easily be introduced in our approach: FFA 

(Kanwisher et al., 1997), PPA (Aguirre et al., 1998), V6 (Cardin et al., 2012), CSv (Wall 

and Smith, 2008; Pitzalis et al., 2013), KO (Tyler et al., 2006) (see figure 2-B). Functional 

localizers in other sensory modalities have also recently been proposed in the auditory 

domain (tonotopic maps, Barton et al., 2012) and in the sensory-motor system (Meier et al., 

2013). Some ROIs, such as hMT+ contain multiple, distinct visual areas, that could 

potentially have different activation time courses or response properties. In order to model 

more finely the intra-area correlation, our approach could take into account these different 

sub-divisions. For example in the case of hMT+, motion-based fMRI localizers permit a 

differentiation between MT and MST (Dukelow et al., 2001; Huk et al., 2002). Even finer 

subdivisions of this part of the cortex can be obtained from retinotopic mapping (Kolster et 

al., 2010). Recent studies suggested that it is possible to extract the early visual areas from 

their anatomical and/or geometrical properties (Glasser & Van Essen, 2011; Benson et al., 

2012; Bridge et al., 2013; Benson et al., 2014, see the FreeSurfer package for an atlas-based 

definitions of V1, V2 and hMT+). If these results can be confirmed and extended to higher-

level visual areas, they open the exciting possibility to apply our approach without the need 

to record additional fMRI data.

EPI can sometimes suffer from intensity distortion caused by the B0 field inhomogeneity 

induced by magnetic susceptibility variations. Methods have been proposed to remove these 

distortions (see e.g. Holland et al., 2010). The application of these methods in our pipeline 

would probably improve the quality of the data.

fMRI-informed inverse modeling of the cortical currents

Aim: use the functional localizers to constrain the estimation of the cortical activity 

generating the EEG/MEG measurements and characterize the activity within the ROIs

How we currently do it: A classical solution to the forward model (see the ‘Forward 

modeling of the cortical currents’ section above) is to use an L2 regularized minimum-norm 

inverse (Hämäläinen et al., 1993). In this case, the solution has a closed form and can be 

written:

where λ is a regularization parameter. In absence of any prior on the source distribution, the 

source covariance matrix R is often equal to the identity matrix. In our case, we introduce 

our knowledge of the functionally defined ROIs into this matrix. Our aim is to decrease the 

tendency of the minimum-norm procedure to smooth activity over very large surfaces and 

across different functional areas. In order to do so, we enforce a local correlation constraint 

within each area using the first- and second- order neighbors on the cortical tessellation with 

a weighting function equal to 0.5 for the first order and 0.25 for the second (i.e. the off-

diagonal elements of R corresponding to neighbor sources belonging to the same functional 
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ROI are increased, see figure 2-C). This modification of the correlation matrix R therefore 

respects both retinotopy and areal boundaries and permits us to dissociate the signals from 

different areas, unlike other smoothing methods such as LORETA that apply the same 

smoothing rule throughout cortex (Pascual-Marqui et al., 1994). In practice, the full 

correlation matrix R can be very large when considering a realistic representation of the 

cortical surface (i.e. we saw in the ‘Source space definition’ section that about 20,000 

sources are necessary). However, as our model does not consider the inter-area correlations, 

only the sub-parts of R that correspond to the functional areas are modified (see figure 2C). 

R is therefore sparse and can be stored easily. Our inverse solution involves a Cholesky 

decomposition of R and consequently of each of the sub-parts of R associated with a 

functional area. For some of these areas, modifying the off-diagonal elements of the 

corresponding sub-part of R may lead to non semi-definite matrices. In this case, we can 

rewrite the concerned sub-parts from its eigenvalue decomposition by setting all the 

negative eigenvalues to 10e-5. This leads to a decomposable matrix R whose global 

correlation properties remain unchanged. Note that because R is a block-diagonal matrix, 

this operation is equivalent to setting all the negative eigenvalues of R to 10e-5.

Several options are possible for the choice of the regularization parameter λ. It can be 

determined from an eigenvalue decomposition of the forward matrix G or directly estimated 

from the data. In our case, we use a generalized cross-validation approach. This technique 

uses a leave-one-out procedure to robustly estimate the noise in the measurements and 

computes the value of λ that minimizes it (Reeves, 1994). It has been adopted in a number of 

estimation problems, including EEG (Babiloni et al., 2004) but also MEG (Cottereau et al., 

2007) brain imaging. For this computation, we use Matlab routines that were previously 

described in (Hansen, 1994). Once the current density is obtained for each cortical source, 

ROI-level responses can be computed by averaging the time courses from all the sources 

within each ROI. We refer to the combination of L2 inversion constrained by functional 

areas as the Functional Area Constrained Estimator (FACE) (Cottereau et al., 2012a). For 

many ROI’s, especially large ones, opposite polarity dipoles can be present within the ROI. 

When the time courses from these sources are averaged, they will cancel each other. 

However, when the whole or majority of an ROI is activated, any cancellation of the 

measured response should be similar to the cancelation that occurs in the measured response 

to an extended patch of cortex (Ahlfors et al., 2010). Making mistakes because of confusing 

activation between ROI’s is a more important problem than getting the absolute magnitude 

of activation within an ROI correct. To this end we feel that the crosstalk matrix for the 

different ROI’s (see the next section) provides the best quantification of whether opposite 

polarity sources are a problem. Cancellation effects are nonetheless an inherent problem 

with any form of EEG recording, and their possible presence should always be born in mind.

Alternative: in our studies, we introduced our prior on the source correlation within a 

classical L2 minimum-norm estimator. We have shown however that this prior can be 

successfully introduced within different inverse approaches (see Cottereau et al., 2012a) like 

LORETA (Pascual-Marqui et al., 1994) or MSP (Mattout et al., 2006). In the recent years, 

L1 approaches have been described in the literature (Uutela et al., 1999; Ding & He, 2008). 

They could be directly used here. The values of the off-diagonal elements of R are fixed in 
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the current version of our approach. Recent techniques based on Bayesian inference could 

be used to estimate these values from the data (see e.g. Daunizeau et al., 2005 or Henson et 

al., 2010).

Misalignment of the EEG/MEG and MRI coordinate frames or errors in constructing a 

cortical surface can lead to inaccuracies in the dipole orientation used in the forward model. 

To diminish the impact of these errors on source reconstruction, we saw in the ‘Forward 

modeling of the cortical currents’ section that several approaches proposed to use a loose 

constraint on dipole orientation (see Uutela et al., 1999 or Lin et al., 2006). The combination 

of these approaches with FACE is straightforward.

The cross-talk matrix: an efficient way to characterize the accuracy of a ROI-based 
EEG/MEG analysis

Aim: characterize the reliability of an inverse.

The researcher who wants to use source imaging should always be aware of the limited 

accuracy of an inverse solution when analyzing data and interpreting results. This can be 

done through numerical simulations where the cortical activity is known (see e.g. Cottereau 

et al., 2012a). In particular, the accuracy of a ROI-based approach can be characterized from 

a cross-talk matrix. Cross-talk refers to the neural activity generated in other ROIs that is 

attributed to a particular ROI, due to the smoothing of the electric field by the head volume.

How we currently do it: for each subject, we simulate the cross-talk by placing sources in 

one ROI and estimating their contribution to other ROIs, using the same forward and inverse 

methods described above. The global cross talk matrix (i.e., averaged across all the subjects 

who participated in our EEG experiment) is shown in figure 3-A for seven ROIs (V1, V2, 

V3, V4, LOC, V3A, and hMT+); the cross talk magnitude shown in the matrix is 

proportional to activity originating in the ROI where the cross talk is being estimated. This 

cross-talk matrix was obtained using an inter-ROI correlation prior. To illustrate that this 

prior diminishes cross-talk error, we show the cross-talk matrices with and without a FACE 

prior in supplementary figure 1.

The crosstalk matrix (figure 3-A) indicates that large areas (e.g. V1) or areas with high 

curvature (e.g. hMT+) do not necessarily have the worst crosstalk and therefore that their 

estimated time-courses is not too much affected by opposite polarity sources (see the 

previous section). A very important point about functional areas is that their shape, size and 

position on the cortical mantel varies significantly across subjects. For example, Dougherty 

et al., (2003) showed that the surface of the early visual areas V1, V2 and V3 can vary by as 

much as a factor of three between subjects. Substantial variability also exists in their shape 

and therefore in the orientation of these retinotopic areas. Important inter-subject variability 

has also been described for higher-level visual areas (Duncan et al., 2009). Because of this 

variability, the cross-talk from one ROI to the others varies considerably across subjects. 

This property is illustrated in figure 3-B where the visual areas and associated cross-talk 

matrices are shown for 4 different subjects. For group-level studies, this variability is 

actually a strength because the cross-talk into a target areas tends to cancel across subjects. 

To illustrate this property, we can compute a cross-talk error for an increasing number of 
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subjects. This error is given by the norm of the difference between the identity matrix and 

the average cross-talk matrix. It is equal to zero when there is no cross-talk. To facilitate 

visualization, this error was normalized by its value for one unique subject. The results 

obtained for up to 11 subjects are shown in figure 3-C. For more than 6 subjects, this error is 

a factor of two less than that for a single-subject inverse.

What can be done with a ROI-based analysis?

ROI-based analysis has several advantages over the whole-brain analysis that is more 

classically used in EEG/MEG imaging studies. First, it allows a direct comparison of 

activations between functionally equivalent sources across subjects. Given ROI definitions, 

it is not necessary to first co-register the subject’s brain to an anatomical common space. 

The method therefore avoids all the issues associated with these co-registrations. The 

method also allows one to compare EEG/MEG results to those obtained from other studies 

using other methods, such as fMRI or single-unit physiology where the same ROIs were 

defined. Finally, it greatly simplifies the multiple comparison problem in statistics, as the 

number of ROIs is 2 orders of magnitude smaller that the number of cortical sources.

Over the last years, the ROI-based approach described in this review has been used to 

characterize the dynamics and more recently the functional connectivity (Cottereau et al., 

2014a) of the responses within the different visual areas. As an example, figure 4 shows the 

results obtained in one of our previous EEG studies where we were interested in the cortical 

mechanisms implied in decision-making (Cottereau et al., 2014b).

In this example, subjects had to detect a horizontal disparity (i.e. a depth) increment within a 

temporal sequence where a disc appeared and disappeared at 1 Hertz (see figure 4A). 

Subjects signaled their detection by pressing a button on the keyboard. Our ROI-based 

analysis revealed that the dynamics of the responses were very different in the different 

ROIs. We show here the responses for the hits vs misses (i.e. the evoked potentials 

corresponding to the trials where the target was detected vs missed) in 3 representative 

ROIs: V1, V3A and V4. This comparison is shown for stimulus-locked (figure 4C) and 

response-locked (figure 4D) data. The complete details of the analysis and the responses in 

the other ROIs can be found in (Cottereau et al., 2014b). What is interesting to observe is 

how different the shapes of the responses in the three ROIs are. While responses for Hits and 

Misses in V1 are very similar, significant differences appear first in the V4 and then in the 

V3A ROIs. This illustrates well how our ROI-based approach can dissociate the responses 

from the different functional ROIs. We noted above that defining ROIs facilitates the 

comparison with results obtained in other studies. In this particular case, we have noted that 

other imaging data in human (Neri et al., 2004) and electrophysiological recordings in 

macaque (Shiozaki et al., 2012) have also implicated V4 in depth encoding and 

discrimination. Using a very similar paradigm and the same approach, we investigated the 

neural mechanisms involved in shape discrimination (see Ales et al., 2013). In this case, the 

first ROI that showed a significant decision-related activity was the LOC ROI, extending 

our knowledge of decision networks in human cortex both in terms of cortical organization, 

but also in terms of the temporal evolution of response over the different areas comprising 

the underlying perceptual, decision, and motor response networks..
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Discussion

Here we have described an approach to multi-modal data fusion that uses functionally 

defined ROIs to constrain the solution of EEG/MEG imaging problems. We have focused on 

EEG recording examples, but the same methodology can be directly applied to MEG 

recordings. Our method allows for the introduction of a prior on the covariance matrix of the 

current source distribution in the inverse procedure. This prior is quite detailed and is based 

on biologically plausible assumptions about the existence of correlations between 

neighboring sources embedded in the same topographically organized functional area (see 

e.g. Cohen and Maunsell, 2009). We have previously documented the improvements 

brought by such priors using Monte-Carlo simulations (Cottereau et al., 2012a). We have 

used this approach to study the visual system, but our method can be directly applied to 

other sensory modalities that have multiple topographically organized maps, e.g. in the 

auditory (Barton et al., 2012) or sensory-motor (Meier et al., 2013) systems. The search for a 

better parcellation of cortex into functional areas is being advanced both through the use of 

fMRI but also anatomical properties extracted from structural images (Glasser & Van Essen, 

2011; Benson et al., 2012; Bridge et al., 2013; Benson et al., 2014). Cortical parcellation is 

currently an active field of research and we anticipate that more and more precise functional 

cartographies of the human brain will emerge soon and that these new parcellation schemes 

can be used to good effect with our approach. Moreover, functionally defined ROI’s are 

likely to be connected by specific white matter tracts. Many cortical tracts can now be 

identified automatically using Diffusion Tensor Imaging (Yeatman et al., 2012) and it may 

be possible to use this connectivity information to further tailor the source-covariance matrix 

on the assumption that areas that are anatomically connected are likely to also have 

functionally correlated activity. As we have noted, the use of individually defined ROI’s for 

group-level analysis allows us to improve the spatial resolution of EEG or MEG-based 

imaging beyond what can be achieved at the single subject level. On a practical level, 

because the ROIs are not defined using a parallel fMRI study with similar stimuli, the 

inverse can be defined once for a given participant and reused for a wide range of 

experiments. Finally, an ability to meaningfully relate EEG/MEG activity to identified 

cortical areas facilitates the comparison of these results with those obtained by other 

methods that also acquire data from identified cortical regions (e.g. fMRI and single-unit 

physiology).

We have described here the different steps that are necessary to reproduce our technique. In 

particular, we provided a detailed list of the software that we are currently using in our 

analysis pipeline. As we have seen, other alternatives exist that should lead to qualitatively 

similar results. We also suggested that recent developments in forward modeling (see the 

‘Forward modeling of the cortical currents’ section) could probably improve our analysis 

pipeline (e.g. by using more realistic forward models). In all our studies, we used an L2 

minimum-norm procedure. Our choice was mainly motivated by the fact that this method is 

well understood, easy to compute and is widely used in the neuroscience community as 

emphasized by the increasing number of associated articles published in the last years (see 

e.g. Florin et al., 2013; Khan et al., 2013; Park et al., 2014). However, our priors can be 

directly introduced into other reconstruction techniques if they include the covariance matrix 
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of the cortical current distributions R in their inverse procedure. For example, we recently 

evaluated the performance of our approach using two other standard source estimators (i.e., 

a LORETA inverse and a Multiple Sparse Prior (MSP) inverse) and demonstrated that our 

method provided enhanced source estimation for both of them (Cottereau et al., 2012a). We 

anticipate that algorithms based on L1 (Ding & He, 2008) or other norms (Auranen et al., 

2005) will also benefit from these types of prior.

Other fMRI-informed EEG source imaging approaches

We have discussed in the introduction methods originally introduced by Dale and Sereno 

(1993) that use the fMRI data to constrain/inform the EEG/MEG source localization 

problem. These approaches make the assumption that the cortical origins of the BOLD and 

EEG/MEG signals measured from the same stimuli are identical. However, this is only 

sometimes the case (see e.g. Geukes et al., 2013). Recent reconstruction algorithms have 

dealt with this issue by modeling more finely the relationship between the BOLD signals 

and the EEG/MEG measurements. For example, Sato et al. (2004) used a Bayesian approach 

where the fMRI information is imposed as a prior on the variance of the source distribution 

rather than on the variance itself. This choice softens the errors caused by the discrepancies 

between the BOLD and EEG/MEG signals. The efficiency of this method was recently 

demonstrated on data acquired during the stimulation of different part of the visual field 

(Yoshioka et al., 2009). In Henson et al., (2010), each fMRI cluster is treated as an 

independent prior whose pertinence for source reconstruction is evaluated using a parametric 

empirical Bayesian framework. In Ou et al., (2010), the source weights are evaluated from 

both the fMRI and EEG/MEG data using a re-weighted minimum-norm algorithm. While 

these different techniques have proven to be accurate on both synthetic and real data, their 

use is nonetheless complicated at the scale of group studies, as they require a new fMRI 

acquisition every time a change is introduced in the stimulus. It is however interesting to 

note that our prior on intra-ROI correlation could easily be introduced within Bayesian 

model selection techniques such as the one described in Henson et al. (2010) (see also 

Daunizeau et al., 2005). In this context, Bayesian inference could characterize the relevance 

of our model and possibly determine the optimal values to be used in the off-diagonal 

elements of R.

Prior research has also taken another strategy – using the fine spatial organization of an area 

to help constrain localization results (Vanni et al., 2004; Hagler et al., 2009; Ales et al., 

2010). These methods use fMRI to map the topographic correspondence of a cortical region 

with the stimulus space (usually the visual field, but it could be any known topographic 

map). Several stimuli that differ just in their location in the stimulus space along with their 

known cortical projection are then used in the source localization step. The algorithms used 

to enforce the fMRI based-constraints have taken several forms. Vanni et al. (2004) used the 

topographic locations to seed that starting locations of dipoles (see also Pitzalis et al., 2012). 

Responses from several stimulus locations were then compared. Response components that 

were consistent across the locations were taken as the correct solution. The method can be 

taken a bit further if one can assume that the neural response properties do not vary quickly 

within a topographically mapped region. This is similar to the assumption used in the FACE 

method described above where activity is constrained to vary smoothly within, but not 
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between ROI’s. If activity in a topographically mapped ROI is relatively homogeneous, then 

changing the location of a stimulus does not dramatically change the neural response. Using 

this assumption, if one uses the same stimulus at multiple locations, one can constrain the 

recovered activity to be similar across presented locations. Slotnick et al. (1999) and Hagler 

et al. (2009) used the assumption that it is possible to distinguish between activation in 

neighboring, very closely spaced ROI’s (e.g. V1 vs V2). All of these methods also have the 

advantage of being able re-use the fMRI-acquired dataset because a participant’s 

topographic map in cortex does not vary. Therefore, these methods can then be used in the 

analysis of a variety of stimuli.

Conclusion

This mini-review describes a cutting-edge EEG/MEG technique that uses functional ROIs 

defined by fMRI to constrain the source localization problem. This technique has been used 

to study the visual system but can easily be extended to other sensory and cognitive systems. 

We describe here our analysis pipeline in detail and suggest several directions that future 

studies could take to improve even further the current spatial resolution of the approach. We 

also demonstrate the advantages of using this ROI-based approach for neuroscience studies, 

specifically in the case of group-level analysis.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Forward modeling of the EEG currents. A) EEG measurements using a high-density net 

(EGI system with 128 electrodes). B) Forward modeling. The source space is obtained from 

the segmentation of a T1 scan and is given by the ‘midgray’ surface. This surface is defined 

half-way between the white matter/gray matter (in yellow) and the gray matter/CSF (in red) 

boundaries (top panel). From a T2 scan (the skull is colored in red and the skin in blue), the 

CSF/skull, skull/skin and skin/air interfaces are extracted (bottom panel). These boundaries 

are used to model the linear link between each source activity and each recording.
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Figure 2. 
fMRI localizers of the visual areas and their use in source imaging. A) Using classical 

retinotopic stimuli (see first row), it is possible to define areas V1, V2, V3, V4, V3A (and 

eventually other higher-level visual areas like e.g. V3B, VO1 or VO2) on each individual 

subject. The lateral occipital complex (LOC) is defined by contrasting objects with 

scrambled objects (second row, left). Area hMT+ is defined by contrasting coherent motion 

with incoherent motion (second row, right). These seven ROIs are shown on lateral, back 

and ventral views on a typical subject. B) Several other visual ROIs can be defined using 
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fMRI, e.g. the fusiform face area (FFA) that responds more to faces than to scrambled faces. 

Area KO responds more to depth structure stimuli. Areas V6, VIP and CSv respond more to 

ego-motion compatible optic flow. C) Once the functional ROIs are defined, they can be 

used to inform the EEG/MEG inverse problem. The sub-parts of the correlation matrix R 
that correspond to each functional area are modified. Each source within a given ROI is 

strongly correlated to the sources within its first and second order neighborhood that belong 

to the same ROI (left column). Illustration of the applied modification on the sub-part of R 
that correspond to area V2 (right column).
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Figure 3. 
Cross-talk matrix for group-level studies in EEG. A) Average cross-talk matrix for a group 

of eleven subjects. The cross-talk is diminished compared to that obtained at the individual 

level. B) Localization of area V1, V2, V3, V3A, V3, LOC and hMT+ in four subjects (see 

figure 2 for the colour code). The large inter-subject variability leads to very different cross-

talk matrices. C) Cross-talk error as a function of the subject number. These cross-talk 

matrices can also be computed for group-level studies in MEG using the same approach. 

Tables with cross-talk values are provided in the supplements.
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Figure 4. 
Example of ROI-based analysis for the brain responses recorded in EEG during a 

discrimination task. A) A disparity-defined disc moved at 1Hz between the fixation plan (0 

arcmin) and 5 arcmin. 30% of the time, the disparity increments was (5 + δd) arcmin and the 

subjects had to detect the event and to press the button (n = 11 subjects). B) Cross-talk 

matrix corresponding to this study (see figure 3 for the details of the legend). C) Comparison 

between Hits (green) and Misses (red) (stimulus-locked) in 3 representative ROIs. D) 
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Comparison between the response-locked data (blue) and a surrogate dataset computed from 

the Misses (red) in the 3 same ROIs. Figure adapted from Cottereau et al. (2014b).
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