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Summary

Motivated by modern observational studies, we introduce a class of functional models that expand 

nested and crossed designs. These models account for the natural inheritance of the correlation 

structures from sampling designs in studies where the fundamental unit is a function or image. 

Inference is based on functional quadratics and their relationship with the underlying covariance 

structure of the latent processes. A computationally fast and scalable estimation procedure is 

developed for high-dimensional data. Methods are used in applications including high-frequency 

accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for 

studying electrical brain activity during sleep.
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1. Introduction

In many current studies, functional measurements have well-defined stochastic structures 

induced either by the experimental design or by the scientific meaning of the data. For 

example, the Sleep Heart Health Study (SHHS) (Quan et al., 1997; Crainiceanu et al., 2009; 

Di et al., 2009) collected electroencephalograms (EEG) data for thousands of subjects at two 

visits, roughly 5 years apart. At every visit, EEG data were recorded at a frequency of 125 

Hz during sleep. Thus, for each subject and visit, data consist of 125 observations per 

second. Crainiceanu et al. (2009) applied a Fourier transformation to the original data and 

obtained the normalized δ-power as a densely sampled stationary time series. These data 

have a natural hierarchical structure induced by the replicated visits within each subject. 
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More precisely, one can denote the δ-power function for visit j of subject i at time t after 

sleep onset by Yij(t), which can be decomposed into a subject-specific process Xi(t) and a 

visit-within-subject process Uij(t) that quantifies the deviation from the subject-specific 

mean. A second example is provided by Bai et al. (2012) in a recent study of physical 

activity in an elderly population. In this study, each subject wears an accelerometer that 

records three-axis accelerations during in-home activities at a sampling frequency of 10 Hz. 

Bai et al. (2012) introduced activity intensity, a measure of activity expressed in multiple of 

signal standard deviations of inactive periods. Activity intensity is calculated in every tenth 

of one second interval. Figure 1 displays the activity intensity for five subjects during a 5-

day period averaged over 15 minutes for improved display clarity. One possibility of 

analyzing these data is to focus on activity intensity in non-overlapping one-hour intervals. 

Thus, the data for each subject on every day contains 36,000 activity measurements per hour 

for 24 hours. This can be viewed as a three-level hierarchical structure: hour within day 

within subject. More specifically, let Yijk(t) be the activity intensity at time t within hour k on 

day j for subject i. In addition to the subject-specific process Xi(t) and the day-within-subject 

process Uij(t), the remaining part of the variation in Yijk(t) can be explained by the hour-

specific process Wijk(t) that quantifies the deviation of hour k from the average of day j for 

subject i.

Aston, Chiou, and Evans (2010) described a different study of phonetic analysis where the 

authors were interested in studying the fundamental frequency (F0, “pitch”) of spoken 

languages. In particular, they recorded the F0-contours of syllables from 19 nouns 

pronounced by 8 native speakers of the Luobuzhai Qiang dialect in China. Suppose that we 

use Yijk(t) to denote the pitch of syllables within the jth word that are pronounced by subject 

i. Each (i, j) contains more than one curves, indicated by k, because there are multiple 

syllables within a word and every word was spoken under three different contexts. Each 

curve was normalized by the total duration of the corresponding vowel and was sampled at 

11 equidistant time points. Figure 2 displays an example of F0-contours for vowels that 

compose three different words spoken by three speakers. We observe that: (a) the shapes of 

the curves are strongly associated with the vowels; (b) there are substantial variations across 

the speakers and words. For example, speaker “a” has, on average, a lower pitch than the 

other two. Given vowel “i”, curves from word 3 display a steep rising pattern and decay at 

the end of the vowel. But curves from word 2 (labeled by the triangle symbol) are all arch-

shaped. Yijk(t) is jointly affected by at least two random components: the word-generic effect 

Xi(t) and the speaker-inherent effect Zj(t). Unlike the hierarchical models, the two random 

components are mutually independent, yet interact on the pitch contours.

Although these three studies have different designs, they share some common features: (1) 

the fundamental observational unit is a function that can be high-dimensional; (2) data have 

a known structure induced by the sampling design; and (3) analysis of individual levels of 

variability is of interest. One goal of this article is to define a wide class of structured 

functional models with explicit functional effect components; in particular, the model class 

will contain the observed structures in the three examples. We will focus on the common 

structures and provide a consistent statistical framework for all these models. A second goal 

is to characterize the observed variability by uncorrelated latent processes. Through 
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estimating and diagonalization of these covariance operators, we will achieve both 

dimensionality reduction of the original data and statistical modeling on the induced linear 

spaces. From an intuitive perspective, this article shows how to conduct principal 

component analysis (PCA) when data have a particular known and common latent 

correlation structure.

The structured functional models in this article fall into functional linear mixed model 

(FLMM) framework. Early work (Guo, 2002; Herrick and Morris, 2006; Morris and Carroll, 

2006) mainly use splines or wavelets smoothing in model fitting. Brumback and Rice (1998) 

and Guo (2004) have specifically studied functional nested and crossed designs. More recent 

work like Staicu, Crainiceanu, and Carroll (2010) and Zhou et al. (2010) consider spatial 

correlation in the nested model. While all these models can be viewed as particular cases of 

FLMM, model fit and inference remains difficult, and is currently done on a model-by-

model basis. We conclude that none of these previous articles have addressed the class of 

complex functional structures discussed here. Moreover, very fast algorithms for high-

dimensional data had not been available. We aim to introduce a data-driven approach that 

applies to both nested and crossed designs, but is generalizable to a much broader model 

space. We introduce latent processes to capture explicit levels of variability using the same 

concept from standard mixed effects models. The only difference is that random effects are 

now replaced with random processes. Computational feasibility is achieved via principal 

component decomposition of covariance operators for latent processes, and by loss-less 

projections of high-dimensional data. The approaches are methodologically related to PCA 

decomposition (Staniswalis and Lee, 1998; Yao et al., 2003; Yao, Müller, and Wang, 2005; 

Di et al., 2009; Aston et al., 2010; Greven et al., 2010). Among those, Aston et al. (2010) 

project the whole function onto a vector space, where the vector entries are the first few 

principal scores of the function. Through multiple linear mixed effects models which link 

principal scores with the covariates, they are able to assess the effect of covariates on the 

outcome function. Alternatively, multilevel functional PCA (MFPCA, Di et al. [2009]) 

decomposes the intra-subject and inter-subject covariance operators in the two-way nested 

model, while inference is based on the scores separated by levels of variability. Longitudinal 

functional PCA (LFPCA, Greven et al. [2010]) uses a similar approach to model the 

longitudinal dynamics of functional observations at multiple visits. In this article, we 

generalize these ideas to analyze functional observations collected under the most common 

nested and crossed designs, and expand the number and type of models for functional data. 

We propose structured functional principal component analysis (SFPCA) as a method to 

decompose the variability via PCA for any functional model with a particular linear 

structure. We claim SFPCA to be the first algorithm for FLMM to efficiently handle dense 

and high-frequency measurements.

We organize the article as follows: in Section 2, we provide a list of structured functional 

models that SFPCA is applied to and connect them with the symmetric sum method of 

moments (MoM) estimators described in Koch (1968); Section 3 discusses SFPCA and its 

implementation, with extension to high-dimensional settings; Section 4 describes simulation 

studies for low-dimensional, high-dimensional and noisy settings; Section 5 applies SFPCA 

to the scientific questions described in Section 1.
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2. Structured Functional Models

Koch (1967) provides a comprehensive list of linear models for scalar data that emerge from 

various experimental designs. We contend that these models have natural extensions to 

functional data and that the models may be analyzed by decomposing the corresponding 

covariance operators. Table 1 lists the proposed designs that are grouped based on sampling 

schemes (Brumback and Rice, 1998; Guo, 2002; Yao et al., 2005; Morris and Carroll, 2006; 

Baladandayuthapani et al., 2008; Di et al., 2009; Staicu et al., 2010; Zhou et al., 2010; Liu 

and Guo, 2012).

Let Y(t) indicate the observed outcome function. The most general model format is that 

 latent processes + εt, where μ(t) is the mean curve of fixed effect, 

 (0, σ2) is the white noise. The latent processes are assumed to be zero-mean 

and square integrable, so that they are identifiable and the standard statistical assumptions 

for scalar outcomes can mirror to functional data. Consequently, the total variability of a 

functional outcome is decomposed into sum of process-specific variations plus σ2. These 

models capture a wide variety of correlation structures in modern functional data studies. In 

the following, we build up the intuition behind the functional nested and crossed designs, 

and connect them to the data examples that are discussed in the Introduction. For 

presentation purpose, we first assume “noise-free” models where σ = 0. Our methods are 

extended to “noisy” scenarios in Section 3.4.

2.1. Nested Designs

A one-way nested model (N1) is the simplest variance component model for functional data. 

In (N1), the observed outcome Yi(t) is represented as a sum of a deterministic mean function, 

μ(t), and a level-specific stochastic process Xi(t). Xi(t) are assumed to be i.i.d., with mean 

zero and covariance operator KX(t, s) = Cov{Xi(t), Xi(s)}; KX may be thought of as the 

functional counterpart of scalar covariance. The variability of Yi(t) is completely determined 

by that of Xi(t), that is, KY = KX. In conventional functional data analysis (Ramsay and 

Silverman, 2005), Xi(t) would be expressed via a set of spline or wavelet basis, or data-

driven principal components (Ramsay and Silverman, 2005; Di et al., 2009; Greven et al., 

2010). Irrespective of the basis functions, KX is determined by the first two moments of the 

representation coefficients and a quadratic form of the basis functions.

The two-way functional nested design (N2) is the functional equivalent of a one-way 

analysis of variance (ANOVA) model. Originally motivated by the two-way sampling 

design of EEG data in SHHS (Di et al., 2009), the model expands (N1) with a subject-visit 

specific process Uij(t) that has covariance KU(t, s) = Cov{Uij(t), Uij(s) . Thus, the observed 

total variability of Yij(t)} is decomposed into subject-specific and subject-visit specific 

variability. These two parts are modeled through KX and KU – the functional covariance 

operators of Xi(t) and Uij(t). To ensure identifiability, the random processes Xi(t) and Uij(t) 

are assumed to have mean zero and be uncorrelated. This assumption also guarantees that KY 

= KX + KU.
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Additional levels of nesting can be included in the model to accommodate higher 

hierarchies. For example, the three-way nested model (N3) provides an appropriate 

framework for modeling the activity intensity data described in Section 1. In addition to the 

subject-specific process Xi(t) and the subject-visit specific process, Uij(t), the remaining 

variation in Yijk(t) is modeled through Wijk(t), which quantifies the hourly deviation from the 

average activity intensity level of day j for subject i. The most general functional nested 

model (NM) admits arbitrarily many levels of nesting. If the activity intensity is followed for 

weeks or months, a four-way or five-way model may be more descriptive, given the possible 

repeated patterns of activity from week to week or from month to month. As in the 

preceding models, mutual independence is imposed for model identifiability. The total 

variability is decomposable into level-specific functional variance components as KY = K1 + 

K2 + ··· + Kr, where . Here we use the notation from 

Table 1 for the multilevel hierarchical model with an arbitrary number of levels (NM).

2.2. Crossed Designs

Another group of designs admits crossing between levels. For example, the two-way crossed 

design (C2) is a functional analog of two-way ANOVA with an interaction term. It 

emphasizes a joint effect of two uncorrelated processes Xi(t) and Zj(t), as well as their 

interaction Wij(t), on the outcome Yij(t). The two-way crossed model with sub-sampling 

(C2s) applies to experimental designs where repeated measurements occur within each 

combination (i, j) induced by the first-level processes Xi(t) and Zj(t). In addition to the first-

level crossing Wij(t) as in (C2), Uijk(t) accounts for variation in the replicates. For the 

phonetic example, Xi(t) and Zj(t) model the main effects of speakers and words, while Wij(t) 

models their interaction. Since multiple F0-contours may fall in category (i, j), we use Uijk(t) 

to capture the residual variation.

In general, we can consider an m-way crossed functional model (CM) with arbitrary number 

of crossings. In this model, r (r > 2) uncorrelated latent processes have exchangeable first-

level effects on Y(t). Any subset of s (s ≤ r) processes out of r may have interactions, 

resulting in d functional additive terms in the model. For notational convenience, we express 

this model using d sub-index sets,  that define the model structure. For 

example, (C2s) with four terms can be written as  and 

, , , and . The assumptions 

on correlation structures stay the same as the previous designs. We now show how to 

efficiently estimate these models.

3. Structured Functional PCA

We develop SFPCA to efficiently reduce dimensionality and extract signals for the class of 

functional models introduced in Section 2. This approach models latent processes 

parsimoniously via principal components (PCs) by Karhunen–Loéve expansion. SFPCA 

starts with estimating the covariance operators of latent processes. Following Koch (1968), 

we employ the MoM approach based on symmetric sums. By extending his approach to 

functional settings, we construct unbiased estimators of covariance matrices on a grid of p 
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points . After estimating the covariance operators, we conduct spectral 

decomposition to obtain eigenfunctions and principal scores that serve as coordinates in the 

space spanned by eigenfunctions. Note that the fixed effect is not of our main interest and 

can be estimated using existing methods. Without loss of generality, we assume that the data 

are already demeaned and we mainly focus on the random effects.

We use two-way crossed design (C2) as the main example. Details for other models in Table 

1 can be found in Appendix B. Let Xi(t), Zj(t) and Wij(t) be mutually uncorrelated mean-zero 

random processes as described in Section 2. Their covariance operators are KX, KZ, and KW, 

respectively, where KX(t, s) = E{Xi(t)Xi(s)}, KZ(t, s) = E{Zj(t)Zj(s)} and KW(t, s) = 

E{Wij(t)Wij(s)}. Using the Karhunen–Loéve expansion for Xi(t), Zj(t)}, and Wij(t), model 

(C2) becomes

(1)

where , , and  are the eigenfunctions of the covariance operators KX, KZ, 

and KW. The scores , , and 

 are mutually independent random variables with mean 0 and 

variance , , and , respectively, where , , and  for 

every k, l, and m Normality of scores not necessary for the results in this article, but may be 

a convenient mild assumption.

3.1. Level-Specific Spectral Decomposition

Consider the case when most variability of each latent process is captured by the first N1, 

N2, and N3 principal components of Xi(t), Zj(t), and Wij(t), model (1) can then be 

approximated as . We 

vectorize the functional outcome on the discrete sampling points , and define Y = 

(Y11, . . . , Y1J1, . . . , YI1, . . . , YIJI) to be a p × n matrix with Yij := {Yij(t1), Yij(t2), . . . , 

Yij(tp)}T and . For notational simplicity we assume a balanced design where Ji = 

J, though such assumption is not necessary. Let  and 

 be the first N1 principal components observed at 

time grid . Similar definitions apply to  and . Hence the truncated 

model is further expressed into matrix form as .

We will show in the next section how to obtain K̂
X, K̂

Z and K̂
W. Given the availability of 

such estimators, we obtain , , and  to be their first N1, N2, and N3 eigenvectors, 

where Nk (k = 1, 2, 3) is selected so that  and q is a threshold 

between (0, 1).  denotes the estimated eigenvalues for the corresponding covariance 
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matrix. Let , , and  be the diagonal matrices for the first N1, N2, and N3 

eigenvalues. We can estimate the truncated set of principal scores as the best linear unbiased 

predictor (BLUP) of the mixed effect model , where 

,  and . The BLUP estimators for 

two-way crossed model (C2) and three-way nested model (N3) are provided in Appendix A.

3.2. MoM Covariance Operator Estimation

By extending the idea of symmetric sum MoM estimators in Koch (1968), we show that our 

estimated covariance matrices will be of the form K̂
X = YGXYT, K̂

Z = YGZYT, and K̂
W = 

KGWYT, where GX, GZ, are GW are design-specific matrices of dimension n × n. In fact, for 

all the structured functional models, MoM estimators of covariance operator are 

representable in the “sandwich” form, YGYT. We illustrate the detailed calculation for the 

covariance operators for the two-way crossed design (C2) and three-way nested design (N3). 

Results for other design schemes are provided in Appendix B.

3.2.1. Two-way crossed design (C2)—For model (C2), we have

Let nij = 1 if Yij is observed and 0 otherwise; , , , 

, and . Define Dn×n = diag{N1, N2, . . . , NI} with Ni = ni0Ini0, 

, and . Pn×n = diag{P1, . . . , PI} with Pi = 

diag{n01, . . . , n0ni0
} of dimension ni0 × ni0, FJ×n = (f1, . . . , fJ)T is the second-level analogy 

E, where fj is a vector with value 1 on observations with second-level process Zj(t) and 0 

otherwise. If HZ = 2(KW + KZ), HX = 2(KW + KX), and HXZ = 2(KW + KZ + KX), then the 

results above indicate the following explicit MoM estimators

Thus, the covariance operators can be estimated as K̂
Z = (ĤXZ – ĤX)/2 =: YGXYT, K̂

X = 

(ĤXZ – ĤZ)/2 =: YGXYT and K̂
W = (ĤX + ĤZ – ĤXZ)/2 =: YGWYT.
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3.2.2. Three-way nested model—Consider model (N3), where Yijk(t) = Xi(t) + Uij(t) + 

Wijk(t), i = 1, 2, . . . , I; j = 1, 2, . . . , Ji; k = 1, 2, . . . , nij, and W, U, and X are the three latent 

processes nested in orders. Similar to the approach for (C2), we have

Let Yijk = {Yijk(t1), . . . , Yijk(tp)}T, , , , 

, . D1 diag {N11, . . . , NIJI} where Nij = nijInij, and D2 

diag N1, . . . , NI}, where Ni = ni. Ini.; , 

. If HW = 2KW, HU = 2(KW + KU) and Hx = 2(KW + KZ + KX), we 

obtain

(2)

Hence, K̂
W = ĤW/2, K̂

U = (ĤU – ĤW/2, and K̂
X = (ĤX – ĤU/2 all have the form YGYT. In 

general, multi-way nested and crossed designs can be estimated through a similar work flow 

(see Appendix B for details).

3.3. Structured High-Dimensional Data

Given the current research emphasis on high-dimensional data, linear models are still 

difficult to fit. Here we show that the entire model class described in Table 1 can be fitted 

using fast approaches. Note that the estimation procedures in the previous sections assume 

that the MoM estimators of the covariance operators can be constructed and decomposed. 

When the dimension of observations, p, is moderate, the methods described in Section 3 are 

straightforward. However, if the observations are high-dimensional, such as p > 10,000, the 

approach is no longer feasible. Calculating and storing a p-dimensional covariance operator 

K̂
p×p is computationally expensive, and conducting spectral decomposition will become 

prohibitive. One could possibly smooth and down-sample the data assuming that the data are 

generated from low-rank intrinsic features. But in many scenarios, data are densely sampled 

for us to explore finer information and we would like to preserve the high resolution. Thus, 

we propose an alternative approach based on a rank-preserving transformation. This 

algorithm allows efficient calculation of the eigenfunctions and eigenvalues without 
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requiring either storing or diagonalizing the estimated covariance matrices in high-

dimensional space.

We outline the algorithm as follows. Throughout this section, we assume that . Hence, 

the induced covariance matrix is at most of rank n. Zipunnikov et al. (2011) propose an 

approach that avoids calculating the covariance operators in the original p-dimensional 

space. Consider (C2) as an example: the idea is to map the model onto a lower-dimensional 

space and obtain , where the matrix C should 

be of dimension m × p and . An arbitrarily chosen C will lose information from the p-

dimensional data. However, we can show that we are able to find a C such that Ỹij span a 

space that preserve the ordering and important features from the original data space. One 

possible choice would be to start with the whole data matrix, Y, which can be obtained by 

column binding individual data vectors, Yij. Suppose that Y = VS1/2UT is the singular value 

decomposition (SVD) of Y, let C = VT. Given that Yij = VỸij, the data in the reduced-

dimensional space Ỹij contain enough information from the original space.

Model becomes . 

Theorem 1 in Zipunnikov et al. (2011) shows that this transformation preserves full 

information for the linear PCA model. The eigenfunctions for the original model can be 

recovered by left multiplying V to the eigenfunctions obtained in the new model, and the 

eigenvalues remain unchanged. This is straightforward to implement, as the number of 

operations involved in the SVD of Y is linear in p. After obtaining the SVD of Y, each 

column Yij can be represented as Yij = VS1/2Uij, where Uij is a corresponding column of 

matrix UT. Therefore, the vectors Yij differ only via the factors Uij of length n, which is 

much lower-dimensional. Comparing this SVD representation of Yij with the original model 

(C2), it follows that the structured separation of the variability modeled by high-dimensional 

latent processes Xi, Zj, and Wij is identical in the structured separation of the low-

dimensional vectors Uij. This is the key observation which motivates our approach. This 

model has an “intrinsic” dimensionality that is induced by the sample size n. The low-

dimensional model is estimable using SFPCA in Section 3 and requires only O(n3) 

calculations.

We obtain , , and  as the induced BLUP in the lower-dimensional model, with the 

matrices AX, AZ, and AW replaced by their corresponding estimates , , and . 

Furthermore, , , and  in the original space may be recovered by left multiplying 

V onto , , and . We provide the formula for final estimates and their detailed 

derivation for two-way crossed model (C2) and three-way nested model (N3) in Appendix 

A. Up until the last step, all the calculations can be conducted in O(n3) complexity. 

Therefore, fitting the model in a reduced-dimensional space guarantees the high-dimensional 

principal components in a p-linear time. This means that complex statistical models for 

high-dimensional data sets can be fitted quickly.
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3.4. Model with Noise

So far we have assumed that the data are measured without noise. However, the algorithm 

can be naturally extended to “noisy models.” When the noise component has a smooth 

covariance structure on the functional domain and can be expressed as another latent process 

such as Uij(t) in model (N2) and Wijk(t) in model (N3), SFPCA directly applies. When there 

is white noise ε ~ (0, σ2) along the function and σ2 > 0, we propose several approaches to 

smooth either the raw data or the covariance matrix estimators.

Take model (N3) as an example, suppose that the observed data are Ỹijk(t) = Yijk(t) + εijkt. 

The symmetric sum MoM estimators as in equation 2 become H̃ ỸGỸT and EH̃ = EH̃ + σ2I, 

where H̃ = YGYT. For low-dimensional data where rank preserved projection in Section 3.3 

is not necessary, we estimate EĤ by smoothing the off-diagonal surface of H̃ as in 

Staniswalis and Lee (1998), and proceed with SFPCA algorithm as in the “noise-free” 

scenarios. However, we encounter multiple difficulties when applying this approach to high-

dimensional functional data. First, it is computationally infeasible to conduct bivariate 

smoothing on the p × p covariance matrix when say, p ≥ 10,000. Second, although the white 

noises remain to be i.i.d. when projected onto the lower-dimensional space, the one-to-one 

mapping of the eigenvalues and principal scores between the p-dimensional model and the 

reduced n-dimensional model no longer holds after smoothing the covariance matrix in the 

reduced-dimensional space.

Therefore, we recommend a pre-processing by smoothing the raw data before conducting 

SFPCA. There is a trade-off between the signal from the raw data and the smoothness in the 

pre-processed data. As we have observed in our simulation settings, the first eigenvalues 

from the smoothed data are usually under-estimated. An alternative approach for the high-

dimensional functional data is to apply a “structured” twist of the fast covariance estimation 

(FACE) algorithm (Xiao, Li, and Ruppert, 2013; Xiao et al. 2014). Their algorithm 

implements a computationally fast sandwich smoother on the sample covariance matrix YYT, 

and directly provides the eigenvalues and eigenfunctions without explicitly constructing the 

smoothed covariance matrix. Since the covariance matrix for each latent process in SFPCA 

techniques has the uniform sandwich expression YGYT, we are able to define the new data 

matrix Ỹ := YG1/2 and directly apply FACE to Ỹ. We refer to that article for more details.

4. Simulations

To better understand how SFPCA performs in practice, we conduct simulation studies for 

both low- and high-dimensional functional data, under various experimental designs and 

signal-to-noise ratios.

(3)
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For the three-way nested model (N3), we generate the high-dimensional data based on the 

true model 3, where i = 1, . . . , I; j = 1, . . . , J; k = 1, . . . , K; N1 = N2 = N3 = 4, 

, 1, 2, 3, 4; ; p = 50,000, I = 50, J = 5, and K 

= 5. The eigenfunctions are specified as

ϕl
X (t) ϕm

U (t) ϕh
W (t)

sin(2πt) 1 ∕ 2 l

cos(2πt) sin(6πt) 3(2t − 1)

sin(4πt) cos(6πt) 5(6t 2 − 6t + 1)
cos(4πt) sin(8πt) 5(20t 3 − 30t 2 + 12t − 1)

We vary the standard deviation of the white noise σ to be 0, 0.1, 0.5, and 1, and conduct 100 

simulations under each scenario. To compare the estimation accuracy, the number of PCs 

N1, N2, and N3 are treated as known. Figure 3 shows the estimated eigenfunctions when σ = 

0.5. Overall the shape of the functions are well recovered. As we go from lower (Xi) to 

higher (Wijk) hierarchies, the estimation gets better because the level-specific sample size 

increases. Within each latent process, the first few eigenfunctions with larger eigenvalues 

are better estimated than the later ones. Table 2 lists the mean square errors (MSEs) of 

estimated  and eigenvalues under different signal-to-noise ratio. More results for this 

simulation can be found in Appendix C.

We have also conducted simulation studies for (C2) model under different sample sizes and 

by smoothing the off-diagonal matrix. The results are also presented in Appendix C.

5. Data Applications

SFPCA can be applied to various types of structured data including the three examples 

discussed in the Introduction. The SHHS data were analyzed in details in Di et al. (2009) 

with MFPCA, which is a special case of the methodology considered in this article. Here we 

provide results for the phonetic study and the accelerometer data.

5.1. Phonetic Study

The phonetic study of Luobuzhai Qiang dialect consists of F0-contours from 8 subjects 

speaking 19 words under 3 contexts. Every word contains up to 4 syllables, each 

corresponding to one of the five vowels: “ə”, “a”, “e”, “i”, and “u”. The pitch values of the 

contours are measured at 11 equidistant time points that are standardized based on the total 

duration of the vowel. As previously observed, given the balanced study design, the 

marginal shapes of the contours are correlated with the associated vowels. In addition, each 

curve demonstrates speaker-specific and word-generic variations. To assess the effect of 

these covariates with relatively simple specification, Aston et al. (2010) assume that all the 

latent processes are on the same space expanded by a common set of eigenfunctions, and 

that covariates are associated with pitch levels through the principal scores – weights of the 
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eigenfunctions. Here we relax these assumptions and attempt to fully evaluate the variability 

of each latent process as indicated by the data structure. We fit a two-way crossed model 

with subsampling (C2s) as in Table 1, but absorb the speaker-word interaction Wij(t) into 

Uijk(t). More specifically, the observed pitch contours Yijk(t) is modeled as μ(t, vijk) + Xi(t) + 

Zj(t) + Uijk(t), where μ(t, vijk) is the fixed effect determined by vowel vijk ∈ {“ə”, “a”, “e”, 

“i”, “u”}, Xi(t) and Zj(t) are two independent first-level random effects for speaker i = 1, 

2, . . . , 8 and word j = 1, 2, . . . , 19, respectively. Uijk(t) accounts for all the remaining 

variability such as the tone, stress and intonation of the syllables. By applying the SFPCA 

algorithm, we extract the PCs as shown in Figure 4.

The speaker-specific deviation from the population average explains 45% of the total 

variation in the data, among which the majority (99.86%) is captured by the first PC that 

indicates equal weights over time. Similarly, PC 1 for the word-specific process Zj(t) also 

stays constant over time. This is consistent with the findings in Aston et al. (2010): most of 

the variations across speakers or words arise from the “shift” in the average pitch level. 

However, instead of further modeling the overall principal scores to determine whether the 

“shift” is speaker- or word-dependent as in Aston et al. (2010), we can claim that 

corresponds to speaker heterogeneity and  accounts for word difference. Under the 

threshold of 99%, we only keep one PC for Xi(t), two for Zj(t) and three for Uijk(t). The fact 

that more PCs are selected to represent the features of Zj(t) and Uijk(t) implies greater 

complexity induced by the inherent word and syllables effects. To further evaluate the 

effects of speaker- or word-related covariates, we can conduct regression analysis 

specifically to principal scores of each latent process.

Furthermore, with SFPCA we can quantify the relative effect size (Shou et al., 2013) of 

speakers versus words based on the portion of variation explained by Xi(t) or Zj(t) (45% vs. 

12% in Figure 4), indicating that subject heterogeneity is about 3 times larger than that of 

word-to-word difference. In fact, it also helps us to select the current model over model μ(t, 

vijk) + Xi(t) + Zj(t) + Wij(t) + Uijk(t) because the estimated variation explained by Wij(t) is 

negligible compared to other latent processes. Such assessment cannot be obtained using the 

very interesting analysis from Aston et al. (2010), as it would require an explicit modeling of 

the functional space. The two approaches are complementary and should be pondered in 

particular applications.

5.2. Accelerometer Data

In the accelerometer study, each participant has their activity intensity values recorded for 5 

days during active periods (after waking up and before bedtime), which are identified using 

methods developed by Bai et al. (2012). Bai et al. (2012) mainly focuses on predicting 

movement type based on the three-axis accelerometer records. Here we are more interested 

in using the same data set to assess the variability of energy expenditure in the population 

and from day to day. As Figure 1 indicates a periodic pattern every hour, we model the 

observed curves into three hierarchies: hours within days within each subject.

The three-way nested model (N3) is applied to decompose the variance of the data. For the 

original data set which contain 36,000 measurements per hour, we can implement SFPCA 
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using methods described in Section 3.3 for high-dimensional data. However, with the 

interest of understanding the circadian patterns of daily activity, it is more informative to 

smooth the data by averaging energy expenditure within every minute and conduct SFPCA 

on the summarized data. For simplicity, we also truncate the observations at the end of the 

study that do not complete an entire hour. Therefore, there are 60 measurements for every 

curve with a maximum of 19 curves per day for each subject. The first four principal 

components for the three levels of latent processes are displayed in Figure 5. The first 

component for the patient-specific process Xi(t) accounts for the heterogeneity of average 

activity level in the population. While the remaining few demonstrate either one-peak or 

double-peak energy expenditure pattern within one hour. Compared to subject-specific and 

hour-specific effects, the day-to-day variation (8.3%) accounts for a much smaller portion of 

the total variability. The majority (about 76%) of the total variability is contained in the 

hour-to-hour heterogeneity. This indicates in a quantitative way that people follow a similar 

routine everyday, but their energy expenditures change dramatically within one day, 

depending on the type of activity they are involved in during a particular hour. The relative 

effect size of different processes can also be evaluated as in the previous example.

6. Discussion

The defining characteristic of many functional studies is the existence of a specific structure 

in correlations with regard to the experimental design, which can directly affect inference. 

Thus, there is an increasing demand for methods that (1) respect study design; (2) model 

multiple levels of variation; (3) are computationally feasible in high dimensions. In response 

to this demand, we have introduced a class of structured functional models that include 

nested and crossed designs, and proposed a statistical framework, SFPCA, that analyzes 

these models. Given the independence assumption of latent processes, the covariance 

structures of the observed outcome are fully captured by the variance operators of the 

random processes. SFPCA is a set of efficient tools that estimate and analyze the covariance 

structures using a uniform protocol for all the models. It uses functional PCA for 

dimensionality reduction and feature extraction.

The extensive simulation studies clearly demonstrate a great potential of the methodology to 

recover level-specific features of the latent processes. When we apply SFPCA to two studies 

that collected accelerometeric and phonetic data, we are able to distinguish various layers of 

effects that are inherent in the data. Similar to Section 5 in Koch (1967), our methods are 

extendable to the cases when the covariance matrices differ across levels.

Future work should focus on developing more efficient unbiased method of moments 

estimators that are adaptable to unbalanced designs. The development of combined 

methodology that infuses both “naked” (nested/crossed) design-induced structures, with 

covariate-driven parts such as the one proposed in Greven et al. (2010), is an important, 

although challenging step in generalizing this framework. Our methodology has a few 

potential limitations. Two most important ones are more rigorous treatment of noise (Di et 

al., 2009), and possible accommodation of sparsity in the functional observations (Di, 

Crainiceanu and Jank, 2014).
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Figure 1. 
Activity intensity measurements over 5 days for 4 subjects. Original data contain 10 

observations per second. This plot shows the average of activity intensity in non-overlapping 

15 minute intervals for improved display clarity.
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Figure 2. 
F0-contours for 3 words (triangles for word 2, dots for word 3, and multiplication signs for 

word 4) spoken by 3 speakers (the lightest color for speaker “a”, a slightly darker color for 

speaker “c”, and the darkest color for speaker “g”). Each contour was measured at 11 equal 

distant time points within a vowel (“ə”, “a”, “e”, “i”, or “u”) when a particular word was 

spoken by one of the eight speakers. Every word was repeated under three different 

contexts.
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Figure 3. 
The estimated eigenfunctions for three latent processes over 100 simulations when σ 0.5 are 

shown in gray (we randomly plot 50 out of 100 estimates). The true eigenfunctions are 

displayed in black curves.=The first- and second-level hierarchies X and U are captured by 

two sets of trigonometric basis. The third-level process W is polynomial. Within each 

process, the first few eigenfunctions in correspondence with larger percentages of variance 

explanation are better estimated than the later eigenfunctions. The eigenfunctions for W are 

better estimated than X and U because we observe more levels of independent realizations 

for W.

Shou et al. Page 18

Biometrics. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Principal components for process Xi(t), Zj(t), and Uijk(t) using two-way crossed model with 

sub-sampling (C2s) to analyze the phonetic data. The top row show the first four PCs for the 

speaker-specific effect Xi(t), while the second row display PCs for word effect Zj(t). The 

proportion of variation explained by every principal component within each latent process is 

listed inside the plotting window. The estimated percentages of total variation explained by 

the latent processes are shown in front of the rows.
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Figure 5. 
Principal components for process Xi(t), Uij(t), and Wijk(t) using three-way nested model (N3) 

to analyze the accelerometer data. The proportion of variation explained by each PC 

component is listed in the plots. The top row show the first four PC components for the 

patient-specific effect X(t), the second row display results for the day-specific effect U(t) 

and the third row are estimated principal components for hour-specific effect W(t). The 

proportion of variation explained by each latent process is labeled on the left side.
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Table 1

Structured functional models. For nested models, i = 1, 2,..., I; j = 1, 2,..., Ji; k = 1, 2,..., Kij; i1 = 1, 2,..., I1, i2 = 

1, 2,..., I2i1,..., ir = 1, 2,..., Iri1i2...ir–1. For crossed designs, i = 1, 2,..., I; j = 1, 2,..., J; k = 1, 2,..., nij; (C2s) 

“Two-way sub” stands for “Two-way crossed design with subsampling”; (CM) contains combinations of any s 

(s = 1, 2,..., r) subset of the r latent processes, as 'well as repeated measurements within each cell. 

, u is the 

index for repeated observation in cell (ik1,ik2,...ikr). ε.t, is the white noise distributed as (0, σ2).

Nested (N1) One-way Yi(t) = μ(t) + Xi(t) + εit

(N2) Two-way Yij(t) = μ(t) + Xi(t) + Uij(t) + εijt

(N3) Three-way Yijk(t) = μ(t) + Xi(t) + Uij(t) + Wijk (t) + εijkt

(NM) Multi-way Y i1i2⋅ir
(t) = μ(t) + Ri1

(1)(t) + ⋯ + Ri1⋯ir

(r) (t) + ∊i1i2⋯irt

Crossed (C2) Two-way Yij(t) = μ(t) + Xi(t) + Zj(t) + Wij(t) + εijt

(C2s) Two-way sub Yijk(t) = μ(t) + Xi(t) + Zj(t) + Wij(t) + Uijk(t) + εijkt

(CM) Multi-way Y i1i2⋯iru
(t) = μ(t) + RS1

(t) + ⋯ + RSd
(t) + ∊i1i2⋯irut
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