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Abstract

This paper presents a systems identification approach for studying the long-term synaptic 

plasticity using natural spiking activities. This approach consists of three modeling steps. First, a 

multi-input, single-output (MISO), nonlinear dynamical spiking neuron model is formulated to 

estimate and represent the synaptic strength in means of functional connectivity between input and 

output neurons. Second, this MISO model is extended to a nonstationary form to track the time-

varying properties of the synaptic strength. Finally, a Volterra modeling method is used to extract 

the synaptic learning rule, e.g., spike-timing-dependent plasticity, for the explanation of the input-

output nonstationarity as the consequence of the past input-output spiking patterns. This 

framework is developed to study the underlying mechanisms of learning and memory formation in 

behaving animals, and may serve as the computational basis for building the next-generation 

adaptive cortical prostheses.
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1. Introduction

Long-term synaptic plasticity has long been postulated as the underlying mechanism of 

learning and memory formation (Hebb, 1949). This hypothesis is supported by diverse lines 

of evidence involving various experimental approaches and animal species (Alkon et al., 

1991; Barnes, 1979; Berger, 1984; Lynch and Baudry, 1984; Martin et al., 1997; McHugh et 

al., 1996; McNaughton et al., 1986; Morris, 1989; Nakazawa et al., 2002; Tonegawa et al., 

1996). Specific forms of activity-dependent synaptic plasticity such as long-term 

potentiation/depression (LTP/LTD) and spike-timing-dependent plasticity (STDP) have 

been revealed and intensively investigated (Bi and Poo, 1998; Bliss and Lomo, 1973; Ito, 

1989; Levy and Steward, 1983; Markram et al., 1997; Caporale and Dan, 2008; Feldman, 

2012). However, the exact nature and functional properties of neural plasticity during 

learning and memory formation are less known, especially in the case of the mammalian 

brain in behaving animals. In fact, for many researchers, whether learning and memory rely 

on LTP-like synaptic plasticity still remains controversial (Bramham, 2010; Stevens, 1998). 

The aim of this paper is to formulate a computational framework for the identification of 

long-term synaptic plasticity and the associated learning rule from natural ensemble spiking 

activities recorded in animals performing learning and memory tasks. It has the potential to 

provide direct evidence and new insights to this fundamental question of neuroscience.

Synaptic plasticity in behaving animals is difficult to study for a variety of reasons. First, 

brain regions underlying learning and memory, like the hippocampus, are massively parallel, 

point- process MIMO systems. In any given brain region, information is represented in the 

ensemble firing of populations of neurons (Deadwyler and Hampson, 1995; Freeman, 1999; 

Georgopoulos et al., 1986; Pouget et al., 2003; Salinas and Abbott, 1994). The input-output 

signals are stimulus- or behaviorally-driven (spontaneous) spike trains, as opposed to the 

artificially delivered electrical stimuli and the evoked responses typically used in the in vitro 

studies of synaptic plasticity (Anderson et al., 1971; Berger et al., 1988a, b). Extraction of 

the neuron-to-neuron connection strength, e.g., synaptic weight or EPSP, and further 

changes of such a strength from ensemble spiking activities, which is a necessary step for 

studying neural plasticity, poses serious modeling and computational challenges (Berger et 

al., 2010; Brown et al., 2004; Song and Berger, 2009). Second, the spike train-to-spike train 

transformation exhibits strong nonlinear dynamical properties due to the numerous 

underlying nonlinear biological mechanisms and processes (Berger et al., 1994; Johnston 

and Wu, 1995). These nonlinear dynamical properties make the quantification of neural 

plasticity, which is equivalent to the identification of the nonstationarity of the nonlinear 

dynamics (Song and Berger, 2009), even more difficult. Third, to study neural plasticity 

caused by learning and memory formation, the experimental paradigm should be designed in 

such a way that both the behavioral performance and the changes of neural representation 

are shaped by the animals’ learning experience instead of incrementally forced by the 

training paradigm. Fourth, reliable and stable unitary recordings of multiple neuron 

ensembles are required during the whole learning process (Buzsaki, 2004). The scope of this 

study is to build mathematical methodologies to address the first two computational 

challenges.
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The proposed modeling strategy consists of three steps (Fig. 1). First, we formulate a 

nonlinear dynamical spiking neuron model to extract and represent the functional synaptic 

strength between the input and output neurons using spiking data. Model structure, 

parameter estimate method, and interpretations of the model variables are described. In this 

step, the model is stationary, i.e., it is not a function of time (Fig. 1, top). Second, we extend 

the model to a nonstationary nonlinear dynamical model to track the changes of the synaptic 

strength over time. In this step, the model becomes a function of time (Fig. 1, middle). 

Third, we utilize a Volterra modeling approach to identify the synaptic learning rule that can 

explain the changes of the synaptic strength as the consequence of the input-output spiking 

activities (Fig. 1, bottom). We elucidate the relationship between the Volterra kernel and the 

STDP learning rule, and further test the proposed modeling methods with simulations.

2. Materials and Methods

2.1. Nonlinear dynamical spiking neuron model

First, a model structure is required for the extraction of the synaptic strength from the 

spiking activities of the input-output neurons. In such a model, the synaptic strength, as well 

as other parameters, should be estimated from the input-output spiking activities. This is a 

non-trivial task, since both inputs and output are point-process signals containing only the 

timings of the spikes and the synaptic strength thus need to be inferred instead of directly 

measured. We use the nonlinear dynamical spiking neuron model we previously developed 

for such a task (Song and Berger, 2009; Song et al., 2007, 2009a, b; Song et al., 2013).

In this approach, a spiking neuron is represented as a multi-input, single-output (MISO) 

model with a physiologically plausible structure (Fig. 2).

(1)

(2)

Variable x represents input spike trains; y represents the output spike train; w represents the 

pre-threshold membrane potential of the output neurons, that is expressed as the summation 

of the post-synaptic potential u caused by input spike trains, the output spike-triggered after-

potential a, and a Gaussian white noise ε with standard deviation σ. A threshold, θ, 

determines the generation of the output spike and the associated feedback after-potential (a).

The feedforward transformation from x to u and the feedback transformation from y to a 

take the form of a second-order Volterra model K and a first-order Volterra model H, 

respectively.
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(3)

(4)

The zeroth-order kernel, k0 , is the value of u when there is no input. It determines the 

spontaneous firing rate of the output neuron. First-order kernels  describe the linear 

relation between the nth input xn and u, as functions of the time intervals (τ) between the 

present time and the past time. Second-order self kernels  describe the nonlinear 

interactions between pairs of spikes within the nth input xn as they affect u. Second-order 

cross kernels  describe the nonlinear interactions between pairs of spikes from 

different inputs (xn1 and xn2 ) as they affect u. N is the number of inputs. Higher-order 

kernels are not included in this study for simplicity. h is a linear feedback kernel that 

transforms the output spike to the after-potential a. Mk and Mh are memory lengths of 

feedforward and feedback processes, respectively.

To reduce number of parameters and avoid overfitting, basis functions are utilized in model 

estimations (Song et al., 2013). Basis functions b can take the forms of Laguerre basis 

(Marmarelis, 1993; Marmarelis, 2004; Song et al., 2009c; Song et al., 2009d) or B-spine 

basis (de Boor, 1972). With input and output spike trains x and y convolved with b:

(5)

(6)

Equations 3 and 4 are rewritten into:
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(7)

, , , and ch are the model coefficients of , , , and h , respectively. 

c0 is equal to k0. Given the kernels are smooth and continuous functions, the number of basis 

functions L can be much smaller than the memory length (Mk and Mh).

In Equation 7 and 8, v and vv can be calculated from the known x, y and b. The Volterra 

series essentially expresses the nonlinear relationship between u and x into a linear 

relationship between u and [v, vv]. The joint effect of the threshold θ and the Gaussian noise 

ε is equivalent to a probit link function that maps the value of u + a into the probability of y 

is equal to 1. The whole model thus can be expressed as a generalized linear model with the 

nonlinearity structured in the Volterra series. Therefore, this MISO model can be termed as 

a generalized Volterra model (GVM) (Song et al., 2009a, b). As a special case, the first-

order GVM is equivalent to the commonly used generalized linear models (Paninski et al., 

2004; Okatan et al., 2005; Pillow et al., 2005; Truccolo et al., 2005; Eldawlatly et al., 2009; 

Chen et al., 2011; Zhao et al., 2012).

Due to the point-process nature of the input and output signals, all model variables are 

dimensionless. In addition, the values of k, h, u, a, w, ε, σ, and θ can be scaled; θ and k0 can 

be translated, without influencing the probability of generating output spikes. So in practice, 

k0, k1, k2s, k2x, and h are first estimated with a unitary σ and a zero-valued θ using the 

Matlab® glmfit function, and then normalized with the absolute value of k0. In the final 

format, σ is equal to1/|k0|; θ is equal to zero; the baseline value of w (i.e., k0) is -1 (Song et 

al., 2007, 2009a). The Laguerre parameter controlling the asymptotic decaying rate of the 

basis functions, and the total number of basis functions L, are optimized with respect to the 

log-likelihood function (Song et al., 2013).

The Volterra kernels quantitatively describe the input-output nonlinear dynamics of the 

neuron. A more intuitive representation is the single-pulse and paired-pulse response 

functions (r1 and r2) derived from the kernels.

(9)
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(10)

(11)

 is essentially the postsynaptic potential (PSP) elicited by a single spike from the nth 

input neuron;  describes the joint nonlinear effect of pairs of spikes from the nth input 

neuron in addition to the summation of their first order responses, i.e., . 

 represents the joint nonlinear effect of pairs of spikes with one spike from 

neuron n1 and one spike from neuron n2 (Fig. 3)

In this formulation, the ensemble neuronal input-output properties is represented by the 

GVM coefficients (S = [k, h]). All coefficients are simultaneously estimated from the input 

and output spike trains (x and y). Specifically, single-pulse response function r1 can be 

interpreted as the PSP, which is typically used as the measure of synaptic strength in 

experimental studies on long-term synaptic plasticity.

2.2. Nonstationary nonlinear dynamical spiking neuron model

The nonlinear dynamical spiking neuron model has provided a quantitative way to infer 

synaptic strength from spiking input-output activities. In order to study the long-term 

synaptic plasticity, we extend the GVM to be time-varying for the tracking of system 

nonstationarity. In this case, the GVM coefficients are estimated recursively from the input-

output spikes and the changes of the nonlinear dynamics are tracked by the temporal 

evolution of the kernel functions (Fig.1, middle).

We develop the nonstationary model by combining the GVM with the point-process 

adaptive filtering method (Chan et al., 2008; Eden et al., 2004). In this approach, GVM 

coefficients (c) are taken as state variables while the input-output spikes are taken as 

observable variables. Using adaptive filtering methods, state variables are recursively 

updated as the observable variables unfold in time. The underlying change of system input-

output properties then is represented by the time-varying GVM (S(t) = [k(t), h(t)]) 

reconstructed with the time-varying coefficients c(t).

Specifically, the probability of observing an output spike at time t, i.e., P(t), is predicted by 

the GVM at time t-1 based on the inputs up to t and output before t. Secondly, the difference 

between P(t) and the new observation of output y(t) is used to update the GVM coefficients. 

Using the stochastic state point process filtering algorithm, coefficient vector C(t) and its 

covariance matrix W(t) are both updated iteratively at each time step t as in:

(12)
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(13)

(14)

Q is the coefficient noise covariance matrix. erf is the Gauss error function. In this method, 

W acts as the adaptive “learning rate” that allows reliable and rapid tracking of the model 

coefficients.

2.3. Identification of the synaptic learning rule

The nonstationary GVM above describes how the ensemble neuronal input-output properties 

evolve overtime. In the third step, we aim to explain how the nonstationarity happens by 

identifying the underlying synaptic learning rule (Fig. 1, bottom).

Given the estimated nonstationary model S(t), the change at time t can be calculated as ΔS(t) 

= S(t) - S(t-1), i.e., Δk(t) = k(t) - k(t-1), Δh(t) = h(t) - h(t-1), and ΔS(t) = [Δk(t), Δh(t)]. Given 

that ΔS(t) is caused by the preceding input and output activities (z = [x, y]), the sought 

ensemble synaptic learning rule L is essentially the causal relationship between the spatio-

temporal pattern z and ΔS(t) (Fig. 4). ΔS(t) can be expressed as a Volterra functional power 

series of z in a finite memory window (ML) as:

(15)

In this formulation, L0 is the zeroth-order learning rule describing the input/output activity-

independent drift of the system; L1 is the first-order learning rule describing the linear 

relation between the changes of the GVM and the input or output activities; L2 is the second-

order learning rule describing how the pair-wise nonlinear interactions between input/output 

spikes change the GVM; L3 is the third-order learning rule describing how the triplet-wise 

nonlinear interactions between input/output spikes change the MIMO model (Note that there 

are redundancies in L2 and L3 when n1, n2 and n3 contain same inputs. Equation 15 is used 

nonetheless for its simplicity). Higher-order learning rules are not included for simplicity.

Since ΔS(t) has been estimated, x and y are known, Equation 15 is essentially a linear model 

and the learning rule L thus can be estimated with the standard least-squares method. In 

practice, basis functions and penalized likelihood estimation methods can be utilized to 

reduce the total number of coefficients and select the significant terms in Equation 15. 
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Compared with the existing learning rules such as (a) the classical Bienenstock-Cooper-

Munro (BCM) model of synaptic modification and (b) the STDP, this formulation provides 

a general form of ensemble learning rule defining how the changes of GVM are determined 

by the spatio-temporal patterns of the input-output spikes. Linear and nonlinear interactions 

between multiple input/output spikes with different inter-spike intervals are explicitly 

included in this formulation (Fig. 4).

3. Results

3.1. Nonlinear dynamical model of the hippocampal CA3-CA1

We have applied the nonlinear dynamical modeling to the hippocampal CA3 to CA1 in 

rodents and nonhuman primates (Berger et al., 2011; Berger et al., 2012; Hampson et al., 

2012b; Hampson et al., 2012c; Hampson et al., 2013; Song et al., 2007, 2009a), and the 

prefrontal cortex layer 2/3 to layer 5 in nonhuman primates (Hampson et al., 2012a; Song et 

al., 2012). In these applications, the input-output spike trains are recorded from well-trained 

animals, where the input and output signals as well as the input-output transformations are 

stabilized, and thus sufficiently described by stationary GVMs. Figure 5 shows a GVM of a 

hippocampal CA1 neuron estimated from a rodent performing a delayed-nonmatch-to-

sample (DNMS) task. Results show that this neuron receives inputs from 6 out of 24 CA3 

neurons. The single-pulse and paired-pulse response functions (r1 and r2) are the PSPs and 

paired-pulse facilitation/depression functions inferred from the CA3-CA1 spiking activities. 

The zeroth-order kernel is -1. The threshold is 0. The standard deviation of the Gaussian 

noise is estimated to be 0.418. This MISO model can accurately predict the output spike 

train based on the input spike trains (Fig.5, bottom-middle) as verified with the out-of-

sample Kolmogorov-Smirnov test based on the time-rescaling theorem (Fig. 5, bottom-

right). In this stationary model, all model variables are time-invariant.

3.2. Simulation studies on nonstationary nonlinear dynamical model

We have tested intensively the nonstationary nonlinear dynamical modeling algorithm with 

synthetic input-output spike train data obtained through simulations. In all simulations, the 

inputs are Poisson random spike trains with mean firing rates range from 2 Hz to 6 Hz.

3.2.1. Step changes—First, we simulate a second-order, 2-input, single-output spiking 

neuron model with step changes. The total simulation length is 8000 s. At 4000 s, the first-

order kernel and the second-order self kernel of the first input (i.e.,  and ) decrease the 

amplitudes by half with the same waveforms; the first-order kernel and the second-order self 

kernel of the second input (i.e.,  and ) double the amplitudes with the same 

waveforms. Other kernels (i.e., k0, , and h) remain constant during the whole 

simulation. Using the simulated input-output spiking data, we apply the nonstationary 

nonlinear dynamical modeling algorithm to track the changes of the kernels. Results show 

that all kernels as well as the changes of the kernels can be recovered accurately from the 

simulated input-output spike trains (Fig. 6). In this nonstationary model, model variables 

become time-varying.
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3.2.2. LTP and LTD-like changes—We further test the capability of the nonstationary 

modeling algorithm to track biologically plausible forms of synaptic plasticity. A first-order, 

2-input system with concurrent LTP- and LTD-like changes at different inputs is simulated 

(Fig. 7). The total simulation length is 9000 s. At 3000 s, the kernels of the first input and 

the second input have LTP-like change (i.e., a near instantaneous increase followed by an 

exponential decay to a potentiated level double the initial amplitude) and LTD-like change 

(i.e., an exponential decay to half of the initial amplitude), respectively. Results show that 

the estimated kernels (red) track faithfully the actual kernels (black) during the whole 

simulation, given the LTP-like change being much more challenging than the step change.

3.2.3. Input-independent changes—In our formulation of the nonstationary model, the 

zeroth-order time-varying kernel k0(t) (i.e., c0(t)) in Equation 13) describes the input-

independent nonstationarity, i.e., changes of the output firing probability caused by latent 

factors other than the observed input spike trains. To test whether the algorithm can 

gracefully handle this type of nonstationarity, we modify the step-change simulation in 

Section 3.2.1 by varying the input-independent, baseline firing probability following a linear 

chirp (Fig. 8, top) and a random noise sequence (Fig. 8, bottom). Results show that the 

estimated baselines (red) rapidly converge to the actual baselines (black) in both simulations 

without interfering the estimation of higher-order kernels, which represent the input-

dependent nonstationarities.

3.2.4. Larger number of inputs—To validate the capability of the algorithm to tack 

simultaneous gradual changes with larger number of inputs, we design a first-order, 8-input 

system with sigmoidal changes. Among the eight inputs, three inputs increase amplitudes 

following a sigmoidal curve; three inputs decrease amplitudes following a sigmoidal curve; 

two inputs remain constant. The output mean firing rates before and after the sigmoidal 

changes are 3.677 Hz and 5.112 Hz, respectively. The total simulation length is 9000 s. 

Results show that all eight estimated kernels converge to the actual kernels during the 

simulation (Fig. 9).

3.3. Relationship between Volterra kernels and STDP

Equation 15 provides a general representation of the ensemble learning rule underlying the 

changes of the neuronal input-output function. It utilizes a Volterra power series to describe 

how the GVM variables change as the consequence of the interactions between the input-

output spikes. Before testing the identification method with simulation, it is instructive to 

elucidate the relation between the Volterra kernels and the most accepted synaptic learning 

rule, i.e., STDP (Fig. 10).

According to the STDP rule, the change of synaptic weight between a presynaptic neuron 

and a postsynaptic neuron is determined by the timings of the presynaptic and postsynaptic 

spiking activities (τx and τy). If a presynaptic (i.e., input) spike precedes a postsynaptic spike 

within a short time window (i.e., τx > τy), the synaptic weight will be enhanced; if the 

opposite happens (i.e., τx < τy), the synaptic weight will be reduced. The relationship 

between the amount of synaptic weight change and the spike timings, i.e., the STDP 

function, can be described with two exponential curves (Fig. 10, left). Since in this STDP 
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expression the synaptic weight change depends only on the pair-wise interaction between a 

presynaptic spike and a postsynaptic spike, the Volterra expression of the learning rule 

contains only the second-order cross term between x and y. In the case of a single-input 

system, Equation 15 is reduced to:

(16)

In , The STDP function describes only the steady-state level of synaptic weight 

change. Another factor contributes to  is the induction dynamics of the STDP, i.e., the 

synaptic weight does not change instantaneously following a delta function; instead, it 

relatively slowly builds up and then stabilizes following a smooth induction function I (Fig. 

10, right). The STDP function and the induction function I jointly determine the shape of 

 (Fig. 10, middle-top). In other words, this form of cross kernel between x and y is the 

Volterra representation of the STDP and induction functions.

3.4. Simulations studies on learning rule identification

We further test the learning rule identification method with simulated input-output spiking 

data. A first-order, single-input, single-output spiking neuron model is built with the GVM 

structure (Fig. 11). In this model, the first-order feedforward kernel k1 has a typical EPSP 

shape determined by two exponentials with the time constants at 30 ms and 150 ms, 

controlling the onset and decay rates, respectively. The peak amplitude is 0.3. The feedback 

kernel has a negative exponential shape to model the refractory period of spike generation. 

The time constant and peak amplitude are 10 ms and -1. Noise standard deviation σ is 0.4. 

During the simulation, input spike train x is fed into the model to generate output spike train 

y. The synaptic strength between the input and output neurons, i.e., k1, is changed following 

the standard STDP rule and the induction function. In this simulation, the shape of k1 

remains the same; only the amplitude is changed. For convenience, we use k1 to represent 

both the peak amplitude and the whole kernel function. The left (LTD) half of the STDP 

function is a single exponential with time constant and peak amplitude at 33.7 ms and 

-0.018. The right (LTP) half of the STDP function is a single exponential with time constant 

and peak amplitude at 16.8 ms and 0.032. Both sides share the same induction function 

determined by two exponentials with time constants at 900 ms and 4500 ms, for onset and 

decay rates, respectively. Without loss of generality, the integral of the induction function is 

set at 1. To prevent the intrinsic instability of the simulated system, we adjust the input 

patterns based on the level of k1. When k1 crosses below a threshold, the input x changes 

from a 5 Hz Poisson random train to a 50 Hz burst to cause more potentiation and increase 

of k1; when k1 is above a threshold, x is shifted to spike within 10 ms after output spikes to 

cause more depression and decrease of k1. This simple method ensures k1 to fluctuate in a 

stable manner. The total length of simulation is 200 s.
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Using the nonstationary GVM method, we first track the changes of the synaptic strength, 

i.e., k1(t), and compare them with the actual values. Results show that k1(t) can be accurately 

recovered from the simulated input-output spike trains (Fig. 12, top).

Given k1(t), we further estimate the learning rule, i.e., the second-order cross kernel . 

In order to reduce the number of open parameters, we expand the kernel with three sets of 

Laguerre basis functions as:

(17)

where

(18)

(19)

(20)

(21)

In the equations above, c are the sought learning rule coefficients. They are split into cxy and 

cyx to represent the two halves of the cross kernel for x preceding y and y preceding x, 

respectively. Subscript A represents the STDP amplitude. Subscript ψ represents the STDP 

induction. Since all v can be calculated with the predefined basis functions, and the known x 

and y, Equation 17 is essentially linear and c can be estimated with a least-squares method. 

With the estimated coefficients,  can be reconstructed as:

(22)

 constitutes a general representation of the synaptic learning due to the fact that it does 

not require the independence of the STDP function and the induction function. In this study, 

however, since these two functions are assumed to be independent,  is equal to the 

outer product of the two functions. The left (LTD) side of the STDP function can be 
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obtained by integrating the vertical vectors in the upper half of  along its diagonal line; 

similarly, the right (LTP) side of the STDP function can be obtained by integrating the 

horizontal vectors in the lower half of  along its diagonal line. The induction function 

for LTD can be obtained by integrating the diagonal vectors in the upper half of  along 

the vertical axis; similarly, the induction function for LTP can be obtained by integrating the 

diagonal vectors in the lower half of  along the horizontal axis. The induction function 

is then normalized to have a unitary integral. The STDP functions are scaled accordingly.

Figure 12 shows the final identification results using the same 200 s input-output spiking 

data. It is evident that both the STDP function and the induction function are faithfully 

recovered with this method (Fig. 12B, C).

4. Discussion

This paper describes a systems identification approach for studying the STDP-like synaptic 

learning rule using spiking activities in learning animals. In this formulation, synaptic 

strength is represented as input-output (linear or nonlinear) dynamics between neurons; 

long-term synaptic plasticity is defined as a form of nonstationarity of such input-output 

dynamics; synaptic learning rule is essentially the function governing the formation of the 

long-term synaptic plasticity based on the input-output spiking patterns. As a special case, 

STDP is equivalent to a second-order learning rule describing the pair-wise interactions 

between single input spikes and single output spikes. Using simulated input-output data, we 

have shown that this modeling problem can be solved with a series of systems identification 

methods; it is possible to infer STDP-like synaptic learning rule purely from the input-output 

spiking activities.

The MISO model and the multi-input, multi-output (MIMO) model, which consists of a 

series of MISO models, have been used intensively as a tool to identify the neuronal 

functional connectivity (Song and Berger, 2009; Song et al., 2013), e.g., hippocampal CA3-

CA1, and build cortical prostheses for restoring cognitive functions, e.g., hippocampal 

memory prosthesis (Berger et al., 2011; Berger et al., 2012; Deadwyler et al., 2013; 

Hampson et al., 2012b; Hampson et al., 2012c; Hampson et al., 2013). Previous results have 

shown that the MIMO model can predict accurately the output (e.g., hippocampal CA1) 

spike trains based on the ongoing input (e.g., hippocampal CA3) spike trains. Electrical 

stimulation with the spatio-temporal patterns of the predicted output spike trains can restore 

or even enhance the memory function during a spatial delayed nonmatch-to-sample task 

(DNMS) in rodents. Since all these previous models are stationary, their success must be 

due to the fact that these applications only involve learned behaviors in well-trained animals, 

where the behavioral performance and the spatio-temporal pattern representations of 

behaviors (or memory events) are all stabilized, and as a consequence, the MIMO input-

output transformations can be sufficiently described by stationary MIMO models. The 

resulting hippocampal prostheses essentially replicate the input-output properties of the 

hippocampal CA3-CA1 after learning and memory formation. To build hippocampal 

memory prostheses capable of learning and memory formation in a self-organizing manner, 

on the other hand, it is required to identify and further mimic the nonstationary behaviors 
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and the underlying learning rules of the MIMO input-output properties. The identification 

methods described in this paper provide a computational framework for studying such 

nonstationary properties and the identified functional learning rule may potentially be used 

as the computational basis for developing the next-generation, adaptive hippocampal 

memory prostheses.

Our learning rule identification algorithm consists of two steps. The first step relies on 

accurate estimation of the kernel changes. The second step is based on the assumption that 

the synaptic learning rule is STDP-like, i.e., the kernel changes depend on the interactions 

between presynaptic and post-synaptic spikes. We have shown that the nonstationary 

modeling algorithm can (a) handle various forms of kernel changes with larger number (e.g., 

eight) of inputs, and (b) differentiate between input-dependent changes and input-

independent changes. In addition, given the facts that (a) existing STDP-like learning rules 

involve only a single input and a single output as in our simulation study on the learning rule 

identification method (Section 3.4), and (b) STDP-like learning rules do not take arbitrary 

forms (Caporale and Dan, 2008; Feldman, 2012), i.e., they are all continuous functions with 

stereotypical shapes that can be easily handled by a Laguerre-Volterra model (e.g., the 

standard STDP function involves only a single term in the Volterra formulation and two 

Laguerre basis functions), these two steps of the algorithm can naturally work together to 

achieve reliable estimation of the STDP-like learning rules, as shown in our simulation 

results.

Naturally, our next step will be applying these methods to experimental data, i.e., input-

output spike trains recorded from animals performing a learning task. For example, we can 

record from the rat hippocampal CA3 and CA1, a well-defined pair of input-output regions, 

during the training of the memory-dependent DNMS task. Different from our previous 

studies on the hippocampal CA3-CA1, the new experiments may focus on the learning 

(training) phase of the behavioral task where the animal's performance improves over time. 

Preliminary results have shown that the spatio-temporal pattern representations of memory 

events (i.e., functional cell types) do evolve over time during the training of DNMS task 

(Goonawardena et al., 2010). The CA3 and CA1 spike trains simultaneously recorded during 

the training sessions will likely be the most relevant experimental data for the proposed 

computational studies.

In this study, we have tested the learning rule identification algorithm with a simple form of 

STDP. With the experimental data, we may use the full Volterra expression (Equation 15), 

as opposed to the reduced second-order cross kernel expression of STDP in this study, to 

identify the ensemble synaptic learning rule. Previous studies have shown the existence of 

single spike rule (Kempter et al., 1999; van Rossum et al., 2000), triplet rule, and quadruplet 

rule of STDP (Pfister and Gerstner, 2006; Wang et al., 2005). These learning rules, together 

with their induction functions, are equivalent to the first-order, third-order, and fourth-order 

learning rule kernels of the Volterra expression, respectively. A formal approach of 

identifying the learning rule from experimental data would be including all possible terms 

(e.g., zeroth-order, first-order, second-order, third-order, and even fourth-order terms) into 

the model and then using statistical model estimation methods (e.g., regularized estimation) 

to characterize and select the significant terms (Song et al., 2013). The resulting ensemble 
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learning rule should provide a more thorough description of the long-term synaptic 

plasticity.

It should be noted that a spiking neuron with the standard paired spike STDP rule is 

intrinsically unstable since the STDP rule is unbounded, i.e., there is no mechanism to 

saturate the synaptic weight or prevent it from being negative. In this study, we solve this 

problem with a rather empirical method: the input patterns, rather than the neuronal input-

output properties, are adjusted to keep the synaptic weight fluctuating within a certain range. 

The main reason behind this strategy is to use the standard STDP function in the simulation 

and show how it is related to the Volterra kernels. One way to implement a stable model is 

to add upper and lower bounds to the synaptic weight, so that the synaptic weight is 

nonnegative and the input will not drive the synaptic weight to very large values. The caveat 

of this method is that the synaptic weight tends to stay at the maximal or minimal values 

after a certain length of running time and stops showing plasticity. Another way is to make 

the changes of synaptic weight depend on not only the input-output spike timing as in the 

standard STDP learning rule, but also the current value of the synaptic weight (van Rossum 

et al., 2000): a higher value of synaptic weight will bias the system to more depression and a 

lower value will cause more potentiation. This method will guarantee the synaptic weight to 

fluctuate, although, at the same time, an ever changing synaptic weight may make it difficult 

to form long-term memories. The strategy used by real neurons to maintain stability still 

remains unclear and poses an interesting question to the exact nature of synaptic learning 

rule. Performing and extending the computational studies outlined in this paper on 

experimental data recorded during learning and memory formation seems to be a sensible 

approach to answer this question.
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Highlights

1. Formulation of a nonstationary nonlinear dynamical modeling approach for the 

identification of long-term synaptic plasticity using natural spiking activities

2. Elucidation of the relationship between Volterra kernels and spike-timing-

dependent plasticity functions

3. Test of nonstationary modeling and learning rule identification methods with 

simulated spiking input-output data
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Figure 1. 
Schematic diagram of the three modeling steps. X: input sequences; Y: output sequences; S: 

spiking neuron model; L: learning rule for S. In Step 1, S is not a function of time. In Steps 2 

and 3, S varies with time. During learning, S evolves as the consequence of input and output 

activities following a learning rule. Colored boxes indicate the functions need to be 

identified in each modeling step.
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Figure 2. 
Multi-input, single-output (MISO) nonlinear dynamical model of spiking neuron. The MISO 

model takes a physiologically plausible structure. All model variables are simultaneously 

estimated from the input-output spiking activities.
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Figure 3. 
Physiological interpretation of the MISO spiking neuron model variables. k0 (r0) is resting 

membrane potential. r1 is the postsynaptic potential. r2 is the paired-pulse facilitation/

depression function. h is the output spike-triggered after-potential. u is the synaptic 

potential. σ is the standard deviation of the Gaussian noise.
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Figure 4. 
Schematic diagram showing the learning rule (L) from the ensemble spatio-temporal pattern 

of input/output spike trains (z: [x, y]) to the changes of the MISO GVM (Δk1). For 

simplicity, only two inputs and one first-order kernel (k1 between input x1 and the output y) 

are shown.
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Figure 5. 
A stationary MISO GVM of a hippocampal CA1 neuron. r1 are the single-pulse response 

functions. r2 are the paired-pulse response functions for the same input neuron. k2x are cross 

kernels for pairs of neurons. h is the feedback kernel. Output spike train is predicted with the 

model and the input spike trains. The model is validated with a out-of-sample, Kolmogorov- 

Smirnov (KS) test based on the time-rescaling theorem. In the KS plot, dashed lines are the 

95% confidence bounds.
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Figure 6. 
Tracking a second-order, 2-input, single-output system with step changes. First-order 

kernels (k1) and second-order self-kernels (k2s) have step changes at 4000 s. Zeroth-order 

kernel (k0), second-order cross-kernels (k2x) and feedback kernel (h) remain constant. 

Memory length is 500 ms for k1, k2s, and k2x, 1000 ms for h. The amplitude of kernel is 

color coded. Only diagonal values of second-order kernels are plotted for simplicity. A: 

actual kernels; E: estimated kernels.
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Figure 7. 
Tracking a first-order, 2-input system with LTP- and LTD-like changes. Black line: peak 

amplitudes of the actual kernels; red dots: peak amplitudes of the estimated kernels. Interval 

between successive estimation points plotted is 20 s.
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Figure 8. 
Tracking the input-independent baseline k0 (c0). Top panel: k0 is a linear chirp from 0 Hz at 

0 s to 0.0125 Hz at 2500 s. Bottom panel: k0 is a random noise sequence with mean at -3 and 

low pass filtered at 0.05Hz.
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Figure 9. 
Tracking a first-order, 8-input system with sigmoidal changes. Left column: actual and 

estimated kernels across simulation time. The memory length is 200 ms. Right column: peak 

amplitudes of actual kernels (black) and estimated kernel (red for positive kernels and blue 

for negative kernels) across simulation time with a 1 s resolution.
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Figure 10. 
Relationship between the STDP function, the induction function (I), and the second- order 

cross kernel (k2x) of input (x) and output (y). Left column: STDP function. Center middle: 

the integral of the STDP function in k2x. Right column: the induction function I and its 

representation in k2x. The integral of I describes the STDP dynamics. The STDP function 

determines the steady-state change ( Δk̄) of the synaptic weight k. Center top: the k2x 

representation of the STDP function and the induction function. This k2x is calculated as the 

element-wise product of the k2x of STDP function and the k2x of I. Note that I is not plotted 

in scale for better visualization. White arrows indicate the directions of the STDP and 

induction functions in the cross kernel.
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Figure 11. 
Simulation of a first-order, single-input, single-output spiking neuron model with STDP 

learning rule. During the simulation, presynaptic spikes x and postsynaptic spikes y change 

the feedforward kernel k1 following the STDP and the induction functions. STDP function 

determines the steady-state change ; The induction function I defines the STDP Δk̄1 

dynamics.
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Figure 12. 
Identification of STDP and induction functions from spiking input-output data. A: peak 

amplitudes of the first-order feedforward kernel k1. B: STDP functions. C: induction 

functions. In all plots, back: actual; red: estimated.
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