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Abstract

Effective antiretroviral therapy (ART) blunts viraemia, which enables HIV-1-infected individuals 

to control infection and live long, productive lives. However, HIV-1 infection remains incurable 

owing to the persistence of a viral reservoir that harbours integrated provirus within host cellular 

DNA. This latent infection is unaffected by ART and hidden from the immune system. Recent 

studies have focused on the development of therapies to disrupt latency. These efforts unmasked 

residual viral genomes and highlighted the need to enable the clearance of latently infected cells, 

perhaps via old and new strategies that improve the HIV-1-specific immune response. In this 

Review, we explore new approaches to eradicate established HIV-1 infection and avoid the burden 

of lifelong ART.

HIV-1 infection remains incurable owing to the presence of quiescent, replication-competent 

provirus within a long-lived population of memory T cells, which are capable of reigniting 

new rounds of infection if therapy is interrupted. In adults, this latent pool of virus is 

established within days of infection and is unaffected by the antiviral immune response or 

by current therapy. HIV-1 preferentially infects activated CD4+ T cells, which leads to 

massive depletion of these cells, as well as the accompanying immune suppression and 

exhaustion that are characteristic of HIV-1 infection. Infection begins when the HIV-1 

envelope (Env) engages the CD4 receptor and a CC-chemokine receptor, usually CCR5 and 

rarely CXC-chemokine receptor 4 (CXCR4), on the surface of host cells, which leads to 

fusion of the viral and cellular membranes and thus enables entry of the viral nucleocapsid 

into the cell. The viral RNA genome is reverse transcribed into proviral double-stranded 

cDNA, which together with viral and host cellular proteins forms the pre-integration 
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complex (PIC). This complex is imported into the nucleus, where integration of the proviral 

cDNA into the host genome occurs. In activated T cells, infection proceeds with the 

transcription of viral mRNAs, protein production and the generation of new viral particles. 

In resting T cells, the provirus may enter quiescence, whereby it exists in a latent state as 

part of the host gene in which it is integrated.

Several classes of drugs that target the different stages of the viral life cycle have been 

successfully used in combination antiretroviral therapy (cART) for the treatment of HIV-1 

infection. These include: fusion inhibitors and CCR5 co-receptor antagonists, which block 

viral entry; nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse 

transcriptase inhibitors (NNR-TIs), which block reverse transcription of the viral genome; 

integrase inhibitors, which prevent viral integration; and protease inhibitors, which interfere 

with virion production. However, there are currently no available therapies that target the 

quiescent integrated form of the virus, and unless this persistent latent infection is 

eradicated, HIV-1 will remain a chronic viral infection with the enduring potential to cause 

or spread lethal disease.

Although disappointing, the recent return of viraemia in an infant born to an HIV-1-positive 

mother (known as the ‘Mississippi baby’)1 more than 2 years after the interruption of ART 

suggests that individual latently infected cells may remain dormant for considerable periods 

of time, and perhaps, if the number of latently infected cells is low enough, an antiviral 

immune response may stringently contain infection. HIV-1 rebounded only several months 

after stopping treatment in two patients (known as the ‘Boston patients’) who received bone 

marrow transplants to treat lymphoma2. The shorter time off therapy before rebound in the 

Boston patients might simply reflect a higher number of latently infected cells in the adult 

patients and/or the absence of memory T cells that could harbour quiescent, replication-

competent provirus in the Mississippi baby at birth. Approaches to disrupt latency or 

durably enforce latency, in combination with effective therapeutic agents that continuously 

enhance the immune response to HIV-1 infection, must now be even more seriously 

considered.

In this Review, we briefly describe the main mechanisms that are involved in the 

establishment and maintenance of HIV-1 latency and discuss cellular HIV-1 reservoirs, 

including memory T cells and their precursor cells, as well as myeloid cells, with a focus on 

macrophages. We then discuss the current cell and animal models that are available for the 

study of HIV-1 latency and the proposed strategies to disrupt latent infection and enable 

clearance of persistently infected cells.

HIV-1 latency

Latently infected resting memory CD4+ T cells are the best characterized reservoirs of 

HIV-1 infection. These are a small population of cells that, rather than dying from the direct 

or indirect cytopathic effects that are induced by the virus, persist after infection as long-

lived cells that harbour integrated HIV-1 DNA in their genomes3. This latent reservoir is 

established within days of acute infection4, with continued contributions from active, 

uncontrolled viraemia in the absence of ART, and although early treatment with ART can 
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reduce the size of this pool of infected cells, it cannot prevent the establishment of latent, 

persistent HIV-1 infection5,6.

Infection of resting CD4+ T cells is far less efficient than infection of activated cells7–10, 

which express factors that are crucial for HIV-1 transcription. Latency may primarily be 

established in activated CD4+ T cells that are infected as they transition to the resting 

memory state11. However, recent studies using primary CD4+ T cells that are infected with 

dual-labelled HIV-1 reporter viruses suggest that a small fraction of transcriptionally silent 

infection occurs directly in activated CD4+ T cells that have not yet transitioned to a resting 

state12. Whether this phenomenon occurs in vivo remains to be determined. HIV-1 persists 

in resting cells, but is transcriptionally silent and therefore ‘hidden’ from immune 

surveillance and unaffected by ART4,13. However, as latent HIV-1 still remains replication-

competent and has the ability to re-emerge when therapy is interrupted, it poses a 

considerable barrier to the eradication of HIV-1. Furthermore, there are currently no known 

cellular biomarkers that distinguish latently infected cells from uninfected cells, although it 

has been shown that some latently infected resting CD4+ T cells express high levels of CD2 

(REF. 14).

Despite some evidence to the contrary15,16, ongoing viral replication has been suggested to 

contribute to the persistence of HIV-1 infection even in the presence of therapy. Sensitive 

assays have detected trace levels of viraemia in many ART-treated patients17,18. This 

phenomenon seems to be the result of continuing viral expression from cells that were 

infected before the implementation of ART. However, it has been suggested that ongoing 

viral replication in a pro-inflammatory environment within lymphoid tissue contributes to 

the maintenance of persistent infection. Evidence for ongoing viral replication has 

previously been reported19–21 and cell-to-cell spread of HIV-1 was recently proposed as a 

mechanism that facilitates ongoing replication despite ART22; however, these findings have 

been challenged23–25.

The adequacy of ART is an area of continued controversy. Treatment intensification with 

the integrase inhibitor raltegravir had no effect on low-level viraemia, but it was associated 

with an increase in the generation of circular HIV-1 DNA episomes that contain two copies 

of the two-long terminal repeat circles (2-LTR circles)21,26 and a reduction in the levels of 

recoverable HIV-1 (REF. 27). However, these findings were not seen in all raltegravir 

intensification studies28.

Another recent study observed persistent HIV-1 RNA expression in tissues (although after 

only 6 months of therapy) and low levels of some antiretroviral drugs in some tissues29. 

However, it has been noted that, although intracellular active nucleotide metabolites remain 

stably inside cells during processing30, parent drugs quickly diffuse out of cells31, which 

makes it difficult to obtain accurate measurements of active drug levels. The amount of 

NNRTIs, protease inhibitors or integrase strand transfer inhibitors (INSTIs) that are lost 

from cells during isolation is currently unknown. Furthermore, the fact that low-level plasma 

viraemia remained unaffected following the intensification of therapy and the lack of genetic 

evolution of plasma virus20,32–34,16 leaves many in this field of research convinced that 
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residual viral replication may not be involved in the maintenance of persistent HIV-1 

infection.

Homeostatic proliferation of latently infected cells may alternatively, or additionally, 

contribute to the maintenance of this cell pool35,36. Recent studies have shown an 

enrichment of HIV-1 DNA integrated in, or near to, host genes that are associated with cell 

cycle control. These findings suggest an alternative mechanism for proviral persistence, 

whereby the integration of HIV-1 into such sites could lead to proliferation of the latently 

infected cells37,38. However, further experiments are necessary to fully examine this theory, 

and it is possible that the observed results were reflective of accumulated, defective proviral 

DNA rather than truly replication-competent virus39. Like host gene expression, the latency 

of integrated, proviral DNA is regulated by multiple cellular mechanisms, including 

epigenetic transcriptional silencing, the availability or deficiency of key host factors and 

transcriptional interference (reviewed in detail in REF. 38). Briefly, host transcription 

factors, including nuclear factor-κB (NF-κB), nuclear factor of activated T cells (NFAT), 

AP1 and SP1, are sequestered in the cytoplasm in resting cells and thus do not promote 

HIV-1 transcription until an appropriate cellular activation signal is transmitted (FIG. 1). 

HIV-1 integration into the host genome preferentially occurs within introns of actively 

transcribed host genes40–42. Multiple distinct and complementary mechanisms contribute to 

the establishment of latent proviral infection (FIG. 1).

Epigenetic modifications are involved in the initial establishment and subsequent 

enforcement of transcriptional silencing of the provirus. Independent of the site of 

integration, the viral 5′ LTR is occupied by two specific nucleosomes — Nuc-0 and Nuc-1 

(REF. 43) — that can be marked by repressive post-translational histone modifications44,45. 

Histone deacetylation is associated with transcriptional repression of the HIV-1 promoter, 

and inhibition of histone deacetylases (HDACs) reactivates latent HIV-1 (REF. 46). Histone 

methyltransferases (HMTs), such as EZH2, G9a and SUV39H1, have also been suggested to 

contribute to latency in T cells45,47. These chromatin marks create an environment that 

favours the recruitment of additional factors and complexes that antagonize proviral gene 

expression.

An additional, or complementary, mechanism to suppress the expression of the integrated 

provirus is transcriptional interference, which involves the integration of the provirus in the 

same orientation but down-stream of an actively transcribed host gene (known as promoter 

occlusion) or the integration provirus in the opposite orientation relative to the host gene 

(known as convergent transcription) (FIG. 1). Transcriptional elongation is suppressed by 

sequestration of positive transcription elongation factor b (p-TEFb), which comprises cyclin-

dependent kinase 9 (CDK9) and cyclin T1 (REFS 48,49) and associates with the HEXIM1–

7SK small nuclear RNA (snRNA) regulatory complex. CDK9 is constitutively expressed in 

resting cells in an inactive dephosphorylated form50. HIV-1 Tat recruits p-TEFb to the viral 

promoter, where active CDK9 can promote transcriptional elongation46 (FIG. 1).

Finally, microRNAs (miRNAs) may contribute to latency, although their specific role has 

not yet been fully established (reviewed in REF. 51). The factors and steps that lead to 

complete HIV-1 transcription after reactivation have recently been reviewed46.
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Cellular reservoirs of HIV-1

It is crucial to identify and fully characterize all reservoirs of persistent HIV-1 infection so 

that specific therapies can be devised. The nature of these reservoirs is still a subject of 

controversy. To meet the criteria of a long-lived, latent reservoir of HIV-1 infection, an 

infected cell population must persist for months, restrict viral expression to the extent that 

viral antigen is not presented and harbour quiescent virus that is replication-competent 

following reactivation.

Memory CD4+ T cells

HIV-1 DNA is primarily detected in two subsets of memory CD4+ T cells: central memory 

CD4+ T cells (TCM cells) and transitional memory CD4+ T cells (TTM cells)35. TTM cells are 

characterized by the expression of CD27 but lack expression of the lymph node homing 

receptor CCR7, whereas TCM CD4+ T cells express both CD27 and CCR7. The frequency of 

infection of TCM cells is associated with the presence of human leukocyte antigen-B27 

(HLA-B27) and HLA-B57, which have been shown to have a protective role in long-term 

non-progressors52.

Interleukin-7 (IL-7)-mediated homeostatic proliferation was reported to be the main 

mechanism that maintains latency in TTM cells in patients with low CD4 counts, whereas 

antigen-driven T cell receptor (TCR) activation maintains the reservoir in TCM cells35, 

although in this case the hypothesis holds that antigen-driven activation must not be 

sufficiently strong to induce reactivation of HIV-1 from these cells36. Another recent study 

found that HIV-1 DNA and RNA levels were high among TTM cells in patients who are 

early in the course of infection53. However, preliminary analysis of the frequency of 

replication-competent virus by a quantitative viral outgrowth assay (QVOA) (BOX 1) in 

TCM and TTM cells showed that TTM cells are major contributors to the HIV-1 reservoir in 

only a minority of the patients studied, and in those patients, infection of TTM cells does not 

seem to persist as it does in TCM cells54,187. Owing to the challenges that are inherent in 

comparing measurements of rare events in small populations of cells, further longitudinal 

analyses are needed to clarify whether TTM cells constitute a durable and clinically 

significant reservoir in patients who are successfully treated with ART and who have normal 

CD4 counts.

Box 1

Assays of persistent infection
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The quantitative viral outgrowth assay (QVOA)174,175 measures rare replication-

competent but latent HIV-1 (see the figure, part a). Highly purified latently infected 

resting CD4+ T cells are plated in a serial dilution and are maximally activated to reverse 

latency. Activated peripheral blood mononuclear cells (PBMCs) that are isolated from 

uninfected donors are added to propagate the virus. The QVOA is costly, slow and 

unavoidably requires many cells. Further, it may under-represent the true frequency of 

latent infection, as some ‘non-induced’ proviruses are not recovered following the single 

stimulation that is used in this assay138. Improvements to the QVOA are being sought, 

but it currently remains the most reproducible and reliable method to measure HIV-1 

latency and assess eradication strategies176.

Quantitative PCR (qPCR) measures total or integrated HIV-1 DNA, or cell-associated 

RNA (caRNA), in cells and is the most commonly used method to quantify persistent 

HIV-1 infection177. Two-long terminal repeat (2-LTR) circles may be a marker for low-

level replication in patients on antiretroviral therapy (ART), but this is controversial177. 

The caRNA may be a useful measure of residual virus expression or of the frequency of 

latent infection178. As caRNA indiscriminately measures functional, defective or abortive 

viral RNA, levels of caRNA in patients treated with ART may not reliably correlate with 

the frequency of replication-competent HIV-1 (REF. 178). Nevertheless, changes in 

caRNA levels can enable the assessment of anti-latency interventions in vivo130,132,133.

Single-copy assays of plasma HIV-1 RNA, which are an ultrasensitive, well-established 

method to quantify low-level plasma viraemia in patients receiving ART, might 

contribute to monitoring eradication therapies179. Droplet digital PCR (ddPCR) (see the 

figure, part b) is under development to improve assay precision for low levels of HIV-1 

DNA and caRNA180–182. The droplet technique enables the sample and PCR reaction 

mixture to be partitioned into thousands of individual droplets such that each contains a 

single copy of the target, which facilitates precise endpoint quantification.

However, PCR-based assays cannot distinguish defective proviruses from intact 

ones183,184. HIV-1 DNA forms are detected about 300-fold more often than replication-

competent HIV-1 in QVOAs185. ELISA, enzyme-linked immunosorbent assay; PHA, 

phytohaemagglutinin.

Other T cell subsets

In addition to the well-established memory CD4+ T cell reservoir, it is possible that less 

differentiated populations of CD4+ T cells function as long-term, cellular reservoirs. The 

role of CD34+ haematopoietic progenitors as additional reservoirs for HIV-1 has been 

controversial for many years55; for example, HIV-1 infection and the establishment of latent 

infection in CD34+ haematopoietic progenitor cells in patients on ART have been 

reported56,57, but these studies were not confirmed by others58,59. If progenitor cells are 

durably latently infected, they could be a source of persistent HIV-1 production when these 

cells go through proliferative cycles. However, the initial description of HIV-1 infection in 

these haematopoietic stem and progenitor cells found that proliferation resulted in the death 

of these infected cells in vitro56,57. Therefore, although this reservoir might be established 

before therapy, it would be expected to decay over time during treatment.
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In addition to memory CD4+ T cells, latent infection of naive CD4+ T cells in patients on 

ART has also been shown, although this event seems to occur with even lower 

frequency35,60. A recent study reported that CD4+ memory stem cells (TSCM cells) 

constitute a novel HIV-1 reservoir that may not be large but that seems to be stable over 

time61. TSCM cells are a population with characteristics of stem cells: they have a less 

differentiated phenotype and are reported to be extremely long-lived62,63. The contribution 

of these TSCM cells to the total HIV-1 reservoir, which is reported to be less than 10%, may 

be especially relevant in patients with small TCM cell reservoirs.

Preliminary work also detected the presence of replication-competent virus and HIV-1 DNA 

in γδ T cells, which are a subset of CD3+ T lymphocytes that harbour alternative TCRs 

formed by γ-chains and δ-chains54. The biology of γδ T cells differs from conventional αβ T 

cells; for example, γδ T cells do not recognize peptide antigens but rather recognize lipid 

antigens in a major histocompatibility complex (MHC)-unrestricted manner64–68. These 

differences in the signalling and activation of γδ T cells suggests the induction of latent 

HIV-1 provirus in γδ T cells may have different requirements.

Persistent infection of macrophages

Enduring infection of macrophages, their precursors or other myeloid lineage cells, such as 

dendritic cells, has long been a concern. Infection of macrophages, with the potential for 

both high-level viral production in the presence of macrophage-derived pro-inflammatory 

cytokines, and the potential for durable viral production, given the resistance of 

macrophages to viral cytopathicity in vitro, was first demonstrated nearly 30 years ago69–71. 

HIV-1 has been recovered from the circulating monocyte pool of patients treated with 

ART72, but the durability of this reservoir has not been carefully measured as it has in 

memory T cells. Brain astrocytes, microglia and other related cellular lineages in the brain 

have been shown to support a restricted infection that could persist despite ART73,74. 

However, even after years of study, a clear demonstration that macrophages and these other 

related cells are truly latent viral reservoirs is lacking. Such cells have not fulfilled the strict 

definition of latency, which is the recovery of cells from a patient or animal on durable, 

suppressive ART that produce virions only following activation.

However, although definitive proof is lacking, several characteristics of these cell types 

would seem to make them ideal reservoirs for long-term infection. The long-standing view 

of macrophages as terminal cells in the myeloid differentiation pathway has recently 

changed, and the ability of macrophages to self-renew and repopulate tissues has been 

appreciated75. This presents the possibility that, like T cells, infected macrophage 

populations could persist despite low-level virion production and clearance of some infected 

cells, if at least one-half of the dividing macrophages escaped viral cytolysis. It is crucial to 

be clear about the difference in persistence of HIV-1 infection in myeloid cells — in which 

cells may survive for long periods of time while viral genomes are in a state of non-latency 

and low-level HIV-1 expression — and true virological latency in CD4+ T cells — in which 

the viral genomes must be mostly silenced, without any appreciable expression of viral 

proteins. This distinction results in key differences in methods to detect persistent infection 

in myeloid cells and to eliminate persistent infection (BOX 1); for example, the challenge of 
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disrupting latent infection in CD4+ T cells may be of little relevance in macrophages if 

productive infection already persists owing to very low-level viral expression. If this is the 

case, we would instead need to develop interventions to assist in the clearance of persistently 

infected myeloid cells.

Recent advances in the implementation of fully effective ART in the non-human primate 

(NHP) SIV model system (see below) offer hope that this controversy will soon be 

resolved76, as extensive and conclusive tissue sampling of optimally treated animals should 

be possible. In addition, recently developed humanized mouse models of latent HIV-1 

infection will address this question in the context of the human virus in human cells77. The 

flexibility of the humanized BLT (bone marrow–liver–thymus) mouse has recently enabled 

the generation of animals that have macrophages but that do not have T cells78. If infection 

persists in this model system in the presence of continuous therapy, this would provide 

definitive proof of a latent reservoir in macrophages.

Model systems of HIV-1 latency

No model can fully recapitulate the complexities of the latent reservoir in vivo. However, as 

clinical trials will always necessarily limit therapeutic interventions to those with reasonable 

expectations of safety and efficacy, models will continue to have a crucial role in HIV-1 

eradication research (FIG. 2).

Cell models of latency

Cell models have been particularly useful for understanding the basic mechanisms that are 

involved in establishing and maintaining latency as well as for the initial screening of 

latency-reactivating agents79 (FIG. 2a–c). Although resting memory CD4+ T cells constitute 

the major latent HIV-1 reservoir in humans, studies using these cells are limited by the very 

low frequency of infection80. Primary cell models aim to overcome these limitations by 

establishing latent HIV-1 infection in CD4+ T cells that have been isolated from HIV-1-

negative donors at a higher frequency. As such cells are not immortalized or clonal, primary 

cell models might offer a more physiologically relevant representation of latency than cell 

lines, and their responsiveness to stimuli might be more representative of in vivo biology. 

Several cell models are currently being used81–88 (reviewed in REFS 89,90), and there are 

important differences in the cell subsets, viral strains and mechanisms that are used to 

establish latency89,90 (TABLE 1). A careful comparison of latent HIV-1 reactivation by 

different stimuli across multiple primary cell models revealed diverse responses to the same 

stimuli. In addition, such responses are not uniformly consistent with results obtained using 

QVOA in resting CD4+ T cells that have been isolated from aviraemic patients infected with 

HIV-1 (REF. 89) (BOX 1). For example, HIV-1 expression can be induced in J-lat clones 

and primary cells from patients by HDAC inhibitors, whereas several primary cell models of 

latency are resistant to the effects of HDAC inhibitors. Given the complexity and diversity 

of latency in vivo and the varying responses of these models, information from primary cell 

models may be expanded by evaluating responses in more than one model91.
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Humanized mouse models

The establishment of successful mouse models of latent HIV-1 infection required substantial 

adaptation of the host (FIG. 2d,e), as mice are not naturally susceptible to HIV-1 infection 

(reviewed in REF. 92). The development of the humanized BLT mouse77,93–97, which is 

characterized by a complete reconstitution of human immune cells, including full mucosal 

immunity, has greatly increased the ability to study the distribution of infection and 

latency77,96,98–102 (FIG. 2e). A recent study102 extensively characterized sites of residual 

active viraemia during ART in blood and multiple tissues and found reduced, but detectable, 

residual viral RNA expression in all tissues (especially lymphoid tissues), despite adequate 

tissue drug concentrations. The humanized BLT mouse model also enables manipulation of 

the immune system to generate HIV-1-resistant cells and/or an enhanced immune response 

via transgenic or short hairpin-mediated modifications of CD34+ stem cells before 

transplantation103,104. Further adaptations of humanized mice that are aimed at isolating 

discrete cell populations of interest are currently being developed; for example, using a 

novel T cell-only humanized mouse model105, a recent study showed that latency is 

established in resting CD4+ T cells despite the absence of monocytes, macrophages, B cells 

and dendritic cells.

NHP models

Animal models are well-suited for the study of the anatomical and cellular distribution of 

latent infection in the setting of ART treatment, as well as for the evaluation of certain high-

risk treatments that would be unethical for initial human trials (FIG. 2f). SIV and 

recombinant viral strains derived from SIV (such as RT-SHIV and SHIV) cause a 

pathogenic disease course in Asian macaques that is similar to that of HIV-1 in humans, and 

treatment with ART results in plasma viral decay106–110 and the establishment of inducible 

replication-competent virus in resting CD4+ T cells106,111. Neurotropic strains of SIV, such 

as SIV/17E-Fr, have also been used to establish models of central nervous system (CNS) 

disease during infection and ART107,112–114. These studies have shown the establishment of 

HIV-1 DNA early in the course of infection, despite the initiation of ART during acute 

infection, although the specific cellular reservoirs within the brain tissue were not delineated 

and studies were limited by reliance on evaluation of HIV-1 DNA rather than replication-

competent virus. The development and application of recombinant RT-SHIV115 has 

provided further approaches to characterize latent reservoirs following treatment with 

clinically relevant ART regimens116,117. RT-SHIV-infected macaques that were treated with 

ART were found to have a widespread distribution of both viral RNA and DNA, especially 

in the gut and lymphoid tissues116.

The SIV–macaque model was also key to understanding the role of the immune response in 

controlling HIV-1 infection118. Recent studies using a rhesus cytomegalovirus (CMV) 

vector vaccine in macaques, followed by infection with SIV, led to suppression of viraemia 

below the limit of detection in 50% of animals119,120. Although correlates and mechanisms 

of protection are still under investigation, interestingly, the rhesus CMV vector induced a 

non-canonical, MHC II-restricted CD8+ T cell response. It is unclear how directly 

translatable the magnitude of the results will be in human trials, especially for patients who 

started ART during chronic therapy. Autologous pre-infected CD34+ haematopoietic stem 
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cell (HSC) transplants have also been used in SIV-infected macaques as a tool to investigate 

the potential contribution of non-haematopoietic reservoirs to the persistence of HIV-1 

(REF. 121). In addition, transplantation of autologous HSCs that were genetically 

engineered to be HIV-1-resistant has also been explored as a therapeutic strategy in 

macaques122. However, although similar to humans, the macaque immune response to SIV 

is distinct, and results that are obtained in macaques might not translate to the human 

system.

Strategies to disrupt latent infection

Several modalities to target the latent reservoir have been proposed. These interventions aim 

at inducing proviral expression to enable clearance of the virus and infected cells123 (FIG. 1; 

TABLE 2). Early attempts to reactivate virus production via global T cell activation using 

OKT3 and IL-2 in combination led to toxic levels of immune activation, and thus current 

strategies focus on reactivating the virus in the absence of T cell activation124. However, 

most of these approaches have been validated only in cell line models of HIV-1 latency, and 

only a few have been tested in resting CD4+ T cells that have been isolated from aviraemic 

patients51,91,125–128.

Many primary cell models of latency have recently been developed, and the responses of 

these models to a panel of reagents that are known to induce LTR expression were compared 

in a comprehensive study89. Although some of these models reflect the responses that have 

been obtained in resting CD4+ T cells that have been isolated from aviraemic patients, none 

precisely reflects the responses of cells from patients to every type of anti-latency modality 

that has been tested89. Furthermore, a recent report using resting CD4+ T cells from 

aviraemic patients showed that latency-reversing agents, such as HDAC inhibitors, only 

weakly induced HIV-1 transcription129, but it is difficult to directly compare the precise 

assays and conditions that were used in this study to those measured in a clinical trial130. 

Therefore, in primary polyclonal cell models of HIV-1 latency, cell-specific factors present 

a challenge to the use of ex vivo cell systems for the validation of potential anti-latency 

approaches, and even the research assays that are used to evaluate cells from patients still 

lack a relevant clinical endpoint (that is, depletion of latent infection) to validate the 

relevance of the effects measured.

Nevertheless, the use of small-molecule inhibitors that target HDACs and induce 

transcription at the HIV-1 LTR remains the most well-characterized strategy to purge latent 

HIV-1 (REF. 131), and several HDAC inhibitors have advanced into clinical trials132–134 

(TABLE 2). A single 400 mg dose of the class I HDAC inhibitor vorinostat, can disrupt 

latency in humans, as measured by the expression of HIV-1 RNA in isolated resting CD4+ T 

cells130. The finding of increased levels of HIV-1 RNA transcription on the first day of 

therapy has been replicated in a study in which 14 daily doses of vorinostat were 

administered133 and in another study with the HDAC inhibitor, panobinostat, which was 

administered three times a week for 4 weeks with weekly off-drug intervals132. These 

studies measured HIV-1 RNA in total CD4+ T cells rather than in isolated resting CD4+ T 

cells. In addition, these studies found that, compared with a single baseline pre-dose 

measurement, the levels of unspliced HIV-1 RNA within total CD4+ T cells is increased 
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throughout the dosing period and is still increased 84 days after the initial dose of the HDAC 

inhibitor.

However, a subsequent follow-up study observed a dampened response to vorinostat 

following administration of multiple daily doses to patients who responded to the single 

dose135. Preliminary gene expression analysis of resting CD4+ T cells treated ex vivo with a 

single dose of vorinostat shows a complex multiphasic cascade of host gene expression 

(D.M.M., unpublished observations). Furthermore, dose–response measurements in patients 

who received multiple doses of vorinostat showed an exposure–effect relationship with 

clockwise hysteresis (that is, the response to the initial dose was higher than the response to 

the subsequent doses), which is consistent with tolerance to vorinostat exposure136. Taken 

together, these results suggest that further understanding of the kinetics of the effects of 

vorinostat on a crucial subset of host genes — perhaps those that maintain repression of 

HIV-1 transcription — may be necessary to design a dosing regimen that can lead to 

effective and durable induction of latent HIV-1 genome expression.

Reactivation of HIV-1 expression by itself may not lead to reservoir clearance, and whether 

virion production is necessary to achieve viral clearance has not been proven. It is plausible 

that any viral antigen that is expressed by a latently infected cell that has been stimulated 

may be sufficient for natural killer cell- or cytotoxic T lymphocyte (CTL)-mediated 

clearance137. Clinical trials to test this hypothesis are in the planning stage.

Successful strategies to disrupt latency are likely to include cycles of combination therapy 

that target distinct mechanisms that maintain latency. As shown in recent work138, about 

10% of integrated provirus that does not express detectable HIV-1 RNA following a single 

round of maximal mitogen stimulation may still be fully replication competent, which 

suggests that more than a single round of in vivo T cell stimulation will be required to purge 

the reservoir.

A combinatorial effect of drugs that inhibit HDACs or HMTs, or that induce protein kinase 

C isoforms (to induce NF-κB-mediated LTR transcription), have been described in various 

transformed cell line systems, but how these results will be successfully translated to 

implementation in vivo is unclear139–142. Synergistic combination drug therapy to target 

latent provirus is difficult to define and measure. Synergy of multiple drugs that target 

different mechanisms of latency might induce the expression of a greater proportion of latent 

proviruses or induce expression to a greater extent, which might lead to the death of infected 

cells or improve the recognition and clearance of infected cells by the immune system. 

However, the level of proviral expression that will result in cell death or in immune 

recognition and clearance has yet to be determined. It seems likely that a highly potent 

induction of the latent virus could result in host toxicity and/or levels of viral expression that 

could not be contained by ongoing ART. Synergy has often been described as a combined 

effect that is greater than the sum of the effect of two separate modalities. However, a recent 

study cautioned against this simplistic definition of synergy, given the complexity of 

biological systems, and suggested the use of the Chou–Talalay method143 to more 

accurately measure the effects of multiple antiretroviral drug therapy.
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cART suppresses plasma viraemia and controls HIV-1 infection by targeting specific viral 

enzymes and inhibiting fusion and entry, which enabled the development of well-established 

laboratory models that predict clinical effects. Combination cancer chemotherapy and 

immunotherapy have only recently been successfully used after many years of intense 

research. Lessons from both fields may offer insights into how to proceed with 

combinatorial latency eradication approaches.

An important area for future study is to establish validated cell and animal model systems 

that can reliably evaluate combinatorial approaches to disrupt HIV-1 latency. An initial 

study in the humanized mouse model that examined the effect of a novel immunotoxin that 

recognized and killed cells expressing HIV-1 Env when added to an antiretroviral drug 

regimen has recently been reported102, but the impact of interventions on latent persistent 

infection has not yet been successfully tested in this model or in NHPs. Many questions 

arise in such investigations, such as: which response parameters are predictive of disruption 

of latency in vivo; what is the temporal manner in which reagents are delivered, in series or 

in parallel, in what order and for what duration; do these reagents access all the relevant 

tissue compartments in which latently infected cells reside; do these reagents induce 

clearance without other interventions; if interventions work via a host cell response (for 

example, vaccines, antibodies or cytokines; see below), do host-targeted anti-latency 

therapies affect such adjunctive therapies?

Clearing persistently infected cells

The induction of latent proviral expression may not be sufficient to clear latently infected 

cells by viral cytopathic effects alone144, but the expression of HIV-1 antigens may enable 

the immune system to identify latently infected cells. However, continuous antigenic 

stimulation during HIV-1 infection leads to chronic immune activation and immune 

exhaustion, and therefore HIV-1-specific effector cells are depleted or dysfunctional as they 

lose antiviral function and proliferative capacity145. An effective eradication strategy is 

likely to require interventions to improve the HIV-1-specific immune response (FIG. 3).

Therapeutic vaccines

HIV-1 infection compromises T cell effector function and also provokes B cell exhaustion, 

which may result in an inadequate antibody response146. The objective of a therapeutic 

vaccine is to enhance the immune response against infection using a controlled in vivo 

exposure to HIV-1 antigens. The rebound viraemia that was observed in the Mississippi 

baby after 27 months of ART interruption poignantly illustrates the need for a robust, 

durable antiviral immune response that eliminates every single infected cell. Mutations that 

confer resistance to CTLs are prevalent in the latent reservoir147,148 and present a 

formidable but not insurmountable challenge that might be overcome in the setting of a 

small reservoir in which the restriction of viral escape is enforced by ART, by a vaccine that 

targets carefully chosen conserved, autologous or polyclonal epitopes, or by novel strategies.

Several therapeutic HIV-1 vaccines have been tested, including whole inactivated virus, 

recombinant proteins or viruses, DNA vectors or dendritic cell presentation of autologous 

antigens (reviewed in REF. 149) (FIG. 3a). Some vaccines improved HIV-1-specific 
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immune responses150,151, but none so far has enabled sustained interruption of ART, and 

this metric may be inappropriately stringent for the goal of eradication in the setting of 

ongoing ART and anti-latency therapies. Furthermore, such vaccines have not yet been 

tested for the most relevant factors in the context of eradication strategies, such as: the 

recognition of relevant epitopes in the context of infection emerging from the latent state; a 

reduction of low-level viraemia that persists during ART; or a decrease in the frequency of 

latently infected cells. These aspects should be considered in future studies.

Cell-based therapies

One potential strategy to clear persistently infected cells is the adoptive transfer of HIV-1-

specific CTLs152. In a primary cell model of latency, Gag-stimulated CTLs are much more 

effective at clearing reactivated HIV-1-infected cells than freshly isolated CD8+ T cells144. 

Preliminary work shows that expansion of T cells against multiple overlapping peptides 

from different HIV-1 antigens enables increased clearance of reactivated latently infected 

cells ex vivo153.

Other cytotoxic immune cells are of interest owing to their potential to clear infected cells, 

in some cases using mechanisms that complement the action of CTLs154. Natural killer 

cells, lymphokine-activated killer (LAK) cells155 and γδ T cells156 are also very effective at 

eliminating virally infected targets. However, similarly to CTLs, these immune effectors 

require priming for optimal function. In oncology applications, effector cells are primed 

with cytokines, such as IL-15, that have been administered directly in vivo or used ex vivo 

for activation before reinfusion157,158. Monoclonal antibodies could also improve effector 

cell engagement with the infected targets and, in the case of natural killer cells, mediate 

targeted lysis via antibody-dependent cellular cytotoxicity (ADCC)159,160 (FIG. 3b).

Gene therapy

Effector cells can also be genetically engineered to increase their efficiency and redirect 

them to the desired targets. Such approaches have been pioneered in oncology, whereby T 

cells are genetically modified to express chimeric antigen receptors (CARs) with improved 

antigen specificity161. This strategy has been adapted to target HIV-1 by genetically 

modifying peripheral blood cells with a molecularly cloned TCR that redirects cells to viral 

antigens (FIG. 3c). Encouraging results were shown in a study in which a TCR from a 

patient who had a sustained and robust CTL response against the HIV-1 p17 Gag-derived 

antigen SL9 was cloned and expressed in primary CD8+ cells162, and a Phase 1 clinical trial 

is being carried out (clinicaltrials.gov identifier NCT00991224). Nonetheless, this novel and 

promising tool should be carefully explored owing to potential off-target toxicities163. 

Although such approaches might be too resource-intensive to be implemented on a global 

scale, they may provide proof-of-concept that could lead to strategies that are appropriate for 

global implementation.

Reversing immune exhaustion

Chronic HIV-1 infection leads to the upregulation of inhibitory co-receptors, such as PD-1, 

on T cells164 and cytotoxic T lymphocyte-associated protein 4 (CTLA4) (REF. 165), which 

are cellular markers of immune exhaustion91 that have an important role in the ineffective 
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viral immune response. Blockade of the PD-1 pathway reverses this state of exhaustion and 

restores the ability of T cells to inhibit HIV-1 replication in vitro and in vivo in animal 

models166 and thus presents a promising potential therapeutic intervention (FIG. 3a) that 

will soon be tested in a clinical trial (clinicaltrials.gov identifier NCT02028403).

Immunotoxins and radioimmunotherapy

Immunotoxins are bifunctional chimeric proteins that consist of a targeting portion, such as 

an antibody or a ligand, and a toxin effector domain167. Initial clinical trials using 

immunotoxins did not have a sustained impact on immunological or clinical endpoints168, 

perhaps owing to the lack of support from an ART regimen. The addition of the 

immunotoxin 3B3-PE38 (REF. 169) to ongoing ART was recently shown to reduce tissue 

levels of HIV-1 RNA in a humanized mouse model102 to several logs below the levels that 

are seen with ART alone (FIG. 3d). Moreover, radioimmunotherapy using radiolabelled 

antibodies that target the HIV-1 envelope proteins gp120 and gp41 led to a depletion of 

chronically HIV-1-infected cells in a severe combined immunodeficiency–peripheral blood 

lymphocyte (SCID–PBL) mouse model that does not allow viraemia and viral replication170. 

However such short-term animal studies cannot yet address potential off-target effects, such 

as hepatotoxicity, that are seen with older immunotoxins168.

Conclusions

Efforts to develop therapies that could eradicate HIV-1 infection or achieve a durable 

remission of viraemia in the absence of ART have recently accelerated and expanded. 

Although this initial period of renewed effort has been marked by much progress and 

enthusiasm, both the scientific and the patient community must be prepared for the 

prolonged effort that will be required to overcome both the expected and the unforeseen 

challenges ahead. First, and perhaps most daunting, is the need to target latency within 

specific cellular reservoirs to disrupt viral quiescence so that residual infection can be 

cleared (FIG. 4). An alternative strategy would be to permanently repress HIV-1 gene 

expression or to directly destroy the genome. Recent advances with gene-modifying 

technologies such as zinc-finger nucleases, TALENs (transcription activator-like effector 

nucleases) and the CRISPR–Cas (clustered, regularly interspaced short palindromic repeats–

CRISPR-associated proteins) system are exciting171,172. Although these approaches would 

be more elegant, their implementation would require tremendous advances in gene delivery, 

as efficient and effective delivery systems to destroy the viral genomes in rare cells 

throughout the body are not currently available.

The several approaches to disrupt HIV-1 latency by inducing proviral expression seem to be 

promising and might be implemented in the foreseeable future. As reactivation of the latent 

reservoir may be governed by stochastic mechanisms (that is, some latent genomes remain 

silent even in the event of a single round of maximal mitogen stimulation)138, combinatorial 

latency-reversing therapy that is safe enough to enable multiple administrations may be 

needed. Ongoing work aims at designing an effective dosing regimen. Potency must be 

balanced with minimizing toxicity, and the potential impact of any latency-reversing agent 

on the immune system must be carefully considered.
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In addition, a parallel effort must be made to develop immune-based therapies to ensure and 

accelerate the process of viral clearance. This effort should be linked to studies of the 

disruption of latency, as the modalities are likely to be combined. Therefore, given the broad 

efforts to discover reagents that disrupt latency in resting TCM cells as a first step towards 

viral eradication therapies, systems must be developed to study the interactions between 

anti-latency approaches that might be used in combination, as well as the interactions 

between such agents and immunotherapeutic agents that might be used as a potential cure.

The development of approaches to eradicate HIV-1 infection will take time and durable 

investment in research towards this goal. It is possible that therapies that result in the 

depletion of persistent infection and the augmentation of the immune response might lead to 

an intermediate result. Termed by many as a ‘functional cure’, this is a state in which HIV-1 

infection is not cleared but is so tightly controlled by the immune response that the patient is 

no longer infectious and is clinically stable in the absence of ART. If so, to make such an 

investment superior to once-a-day ART (or less with the long-acting therapeutic agents that 

are currently under development), interventions that result in a functional cure would also 

have to spare patients the chronic immune activation that is seen in natural ‘elite controllers’ 

of HIV-1 infection173, with its attendant risks of long-term morbidity, as otherwise life-long 

ART might then be clinically preferable.

The scientific and medical challenges in the effort to eradicate HIV-1 infection are 

formidable and complex. Ultimately, given the scope of the HIV-1 pandemic, strategies to 

eradicate the disease must be implemented globally. However, to move the field forwards, 

early proof-of-concept studies are likely to involve approaches that are not widely feasible; 

for example, bone marrow transplantation or extremely early HIV-1 treatment may never be 

practical, but the successes and failures of these approaches can provide valuable insights. 

Although disappointing, the very recent viral rebound that was observed in the Mississippi 

baby1 after more than 2 years after ART interruption provides valuable clues. Viral rebound 

after such a long period of time without viraemia in the absence of measurable HIV-1-

specific immunity suggests, akin to the Boston patients2, that individual latently infected 

cells may remain virologically dormant for a considerable period of time before generating 

viraemia. The short duration of aviraemia in the Boston patients compared with the longer 

time off therapy in the Mississippi baby case might simply reflect a lower number of latently 

infected cells or some immune protection conferred during initial exposure to HIV-1 in the 

Mississippi baby. Approaches to disrupt latency, or even robustly enforce latency, may 

succeed if the infected cell population is small enough and durable mechanisms to enhance 

the HIV-1 immune response are present.

As efforts advance, additional obstacles to clear HIV-1 infection are likely to be uncovered, 

and careful consideration must be given to the ethics of translational research with otherwise 

healthy volunteers infected with HIV-1. The recent reinvigoration of efforts to gain a 

detailed understanding of the biology and pathogenesis of viral latency should give hope that 

we can overcome these obstacles. The journey towards a cure for HIV/AIDS has begun.
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Glossary

Activated CD4+ T 
cells

Antigen-specific CD4+ T cells that have undergone stimulation of 

their T cell receptor–CD3 complexes. Activation of a T cell 

increases the surface expression of many proteins, including CD69 

and CD25, and induces functional responses, such as proliferation 

and cytokine production

HIV-1 reservoirs Infected cell populations that enable the persistence of replication-

competent HIV-1 in patients treated with antiretroviral therapy 

regimens in the order of years. The HIV-1 reservoir comprises 

both latent HIV-1 infection and other as-yet incompletely defined 

sources of persistent HIV-1

Resting memory 
CD4+ T cells

Antigen-specific CD4+ T cells that have reverted to the G0 state of 

the cell cycle from a previously activated state but retain the 

capability to rapidly respond to a second antigenic exposure

Latent HIV-1 Quiescent, replication-competent provirus that exists within a 

long-lived population of resting cells and that is capable of 

initiating new rounds of infection if therapy is interrupted

Two-long terminal 
repeat circles

(2-LTR circles). The joining of the two ends of the linear 

unintegrated HIV-1 DNA (each end having a complete long 

terminal repeat) into a circularized form of DNA

Homeostatic 
proliferation

A physiological process that controls stable and constant cell 

number without cellular differentiation. Interleukin-7 has a crucial 

role in maintaining normal T cell levels

Central memory 
CD4+ T cells

(TCM cells). Antigen-specific CD4+ T cells that lack immediate 

effector function but that mediate rapid recall responses and have 

the capacity to migrate from the blood to the secondary lymphoid 

organs

Transitional 
memory CD4+ T 
cells

(TTM cells). Antigen-specific T cells that transition to the effector 

memory state and have lost the surface expression of the homing 

receptor CC-chemokine receptor 7 but retain the expression of the 

tumour necrosis factor receptor CD27

CD34+ 

haematopoietic 
progenitors

Human haematopoietic cells that give rise to the myeloid and 

lymphoid lineages and can be identified by the expression of 

CD34, CD150 and CD48, but that lack CD244. These cells 

typically comprise 5% of the total cell population in the bone 

marrow
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CD4+ memory stem 
cells

(TSCM cells). Antigen-specific T cells with a broadly naive 

phenotype but with high surface expression of CD95 (also known 

as Fas ligand), which is a type II transmembrane protein that is 

expressed at high levels by all memory cells

Chou–Talalay 
method

A method in which a combination index (CI) is used to express 

the synergy of drugs. A CI <1 indicates synergy, a CI=1 suggests 

an additive effect and a CI >1 is indicative of antagonism
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Figure 1. Mechanisms involved in the maintenance of HIV-1 latency and strategies to disrupt 
latency
HIV-1 latency is maintained by several mechanisms. a | Transcription factors (TFs), 

including nuclear factor-κB (NF-κB) and nuclear factor of activated T cells (NFAT), are 

sequestered in the cytoplasm, which leads to transcriptional silencing. Bryostatin and 

prostratin induce activation of NF-κB, leading to its translocation to the nucleus where it 

activates HIV-1 transcription. b | The HIV-1 long terminal repeat (LTR) is flanked by the 

Nuc-0 and Nuc-1 nucleosomes that, when latent, can encode repressive post-translational 

histone modifications. Histone deacetylases (HDACs), which are recruited by transcription 

factors (such as YY1 and CBF-1), remove the acetyl groups from chromatin. Histone 

methyltransferases (HMTs), such as SUV39H1, G9a and EZH2, deposit methyl groups onto 

histones. HDACs and HMTs enforce the repressive state. Both HDAC inhibitors and HMT 

inhibitors can induce transcription from quiescent LTR promoters. HIV-1 DNA can also be 

methylated, although recent evidence suggests that DNA methylation is an epiphenomenon 

that does not play a part in HIV-1 latency. Bromodomain-containing (BRD) proteins have a 

complex role in HIV-1 transcription initiation and processivity. Recent evidence suggests 

that BRD2 has a unique role in enforcing HIV-1 latency, and therefore, BRD inhibitors such 

as JQ1 may be of use as latency-reversing agents. c | Transcriptional interference may 

contribute to the regulation of HIV-1 latency. If viral DNA is integrated within an intron of 

an upstream host gene, readthrough of RNA polymerase II (Pol II) displaces key 

transcription factors on the HIV-1 LTR (known as promoter occlusion). Conversely, if the 

viral genome is integrated in the opposite polarity relative to the host gene, host RNA Pol II 

complexes may induce premature termination of HIV-1 transcription (known as convergent 

transcription). d,e | The positive transcription elongation factor b (p-TEFb) complex (which 

comprises CDK9 and cyclin T1 (CycT1)) is sequestered in an inactive ribonucleoprotein 

complex with HEXIM1–7SK small nuclear RNA (snRNA). BRD4 may compete with the 

viral Tat activator for binding to p-TEFb. Hexamethylene bisacetamide (HMBA) releases p-

TEFb from the HEXIM1–7SK snRNA inhibitory complex and the small-molecule inhibitor 

JQ1 may antagonize BRD4, both of which enable induction of latent HIV-1 expression.
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Figure 2. Current model systems to study HIV-1 latency
a–c | Cell models. Cell line models (part a) are derived from immortalized T cell clones (for 

example, from Jurkat-derived cell lines) or promonocyte clones (for example, U1), and they 

have uniformly integrated copies of proviral HIV-1 DNA. By contrast, primary cell models 

(part b) are derived from HIV-1-negative donor CD4+ T cells, and latency is established 

following infection using different protocols. Studies in cells obtained from aviraemic, 

antiretroviral therapy (ART)-treated patients (part c) can be studied ex vivo for their 

response to putative latency-reversing agents and other stimuli. d,e | Humanized mouse 

models. Several humanized mouse models have been developed by engraftment of mice 

with various human tissues. Humanized severe combined immunodeficiency (SCID) mice 

(part d) are generated by transplanting irradiated SCID mice with human thymus and foetal 

liver tissue that develops into a human thymic organoid and supports HIV-1 infection, but 

only within this organoid. As HIV-1 replication is limited to the thymus, latency is only 

established in naive T cells. Engraftment of the human immune system was vastly improved 

with the development of the humanized NSG (NOD SCID gamma) mouse (not shown), 

which is generated by transplanting irradiated NOD/SCID/IL-2Rγ chain knockout mice with 

human CD34+ stem cells. Humanized BLT (bone marrow–liver–thymus) mice are generated 

by implanting human foetal thymus and liver cells into NOD SCID or NSG mice and 

transplantation of human CD34+ stem cells (part e). The reconstitution of the human 

immune system and the systemic modelling of HIV infection and latency is most robust in 

this mouse model. f | Non-human primate models. SIV infection in rhesus and pig-tailed 

macaques is similar to the progression of HIV-1 infection in humans. When susceptible, 

SIV-infected animals respond to ART. However, SIV is not susceptible to non-nucleoside 

reverse transcriptase inhibitors (NNRTIs) and its envelope sequence is functionally 

divergent from that of HIV-1. The recombinant SIV viruses RT-SHIV and SHIV are aimed 

at overcoming these limitations using HIV-1 reverse transcriptase and envelope, 

respectively. RT-SHIV enables the use of clinically relevant ART combinations, and SHIV 

models have wider immunotherapeutic potential and can use both CC-chemokine receptor 5 

(CCR5) and CXC-chemokine receptor 4 (CXCR4) co-receptors. PBMCs, peripheral blood 

mononuclear cells.
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Figure 3. Strategies to eliminate latently infected cells
The induction of latent proviral expression and ensuing viral cytopathic effects may not be 

sufficient to clear latently infected cells. An effective eradication strategy is likely to require 

interventions to enhance the HIV-1-specific immune response. Approaches include in vivo 

administration of molecules that improve immune function and the ex vivo stimulation of 

cells that have been isolated from patients infected with HIV-1. a | In vivo administration of 

cytokines, antibodies, inhibitors of the PD-1 pathway or components of a therapeutic 

vaccine present a promising potential therapeutic intervention for enhancing immune 

responses or reversing immune exhaustion. b | Another potential strategy involves ex vivo 

priming of immune effectors for optimal function. Specific cell populations isolated from 

infected individuals, such as cytotoxic T lymphocytes (CTLs), natural killer cells or γδ T 

cells, are stimulated with cytokines, antibodies or HIV-1 peptides and are subsequently 

reinfused. c | Patient-derived effector cells can also be genetically engineered to increase 

their efficiency and redirect them to the desired targets. Peripheral blood cells that have been 

isolated from patients can be genetically modified with a molecularly cloned T cell receptor 

(TCR) that redirects cells to viral antigens, and T cells can be modified to express chimeric 

antigen receptors (CARs) with improved antigen specificity. d | Immunotoxins that consist 

of a targeting portion, such as an antibody or a ligand, and a toxin effector domain can be 

administered in vivo for targeted killing of virally infected cells. Radiolabelled antibodies 

that target HIV-1 proteins could deplete chronically HIV-1-infected cells. ADCC, antibody-

dependent cellular cytotoxicity.
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Figure 4. Barriers to HIV-1 eradication
The frequency of latently infected, resting central memory CD4+ T cells is stable in patients 

despite years of antiretroviral therapy (ART). Therefore, the rate of creation of these cells 

must closely match their rate of destruction. Although the frequency of such infected cells is 

proportional to the exposure to viraemia over time during initial, acute infection, the 

initiation of ART seems to completely block the generation of latently infected cells via new 

infection. As low-level viraemia seems to originate, at least in part, from the expression of 

virus within the latently infected central memory CD4+ T cell pool33,186, this latent reservoir 

must be maintained by one or more mechanisms, such as: new infection at extremely low 

frequency; the ability of some cells to resist death or clearance despite virion production; or 

the homeostatic or aberrant proliferation of a proportion of the cell pool without virion 

production and/or cell clearance.
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Table 2

Ongoing or recently completed clinical trials to disrupt HIV-1 latency

Mechanism to 
disrupt latency

Compound Clinical trials* Comments

PTEN inhibitor Disulfiram Short-term disulfiram administration to accelerate 
the decay of the HIV-1 reservoir in antiretroviral-
treated HIV-1 infected individuals 
(NCT01286259)

Completed: a transient increase in 
single-copy assay viraemia was 
observed in six patients at different 
times after disulfiram dosing; however, 
the size of the HIV-1 latent reservoir 
remained unaffected123

HDAC inhibitor Romidepsin Evaluating the safety and efficacy of single-dose 
romidepsin in combination with antiretroviral 
therapy in HIV-1-infected adults with suppressed 
viral load (NCT01933594)

Enrolling

HDAC inhibitor Romidepsin Safety and efficacy of romidepsin and the 
therapeutic vaccine vacc-4x for reduction of the 
latent HIV-1 reservoir (REDUC; NCT02092116)

Ongoing

HDAC inhibitor Panobinostat (Novartis) Safety and effect of panobinostat on HIV-1 
expression in patients on suppressive HAART 
(CLEAR; NCT01680094)

Completed: a 2.1–14.4-fold increase in 
cell-associated RNA was observed in all 
patients and remained increased 4 
weeks after panobinostat 
administration; however, no change in 
integrated HIV-1 DNA was observed132

HDAC inhibitor Vorinostat The effect of vorinostat on HIV-1 RNA 
expression in resting CD4+ T cells of HIV-1-
infected patients on stable ART (NCT01319383)

Enrolling

HDAC inhibitor Vorinostat A pilot study to assess the safety and effect of 
vorinostat on HIV-1 transcription in patients 
receiving suppressive combination anti-retroviral 
therapy (NCT01365065)

Completed: a significant increase in 
cell-associated RNA was observed in 
88% of patients during vorinostat 
dosing; no significant change in DNA 
was observed133

*
The clinicaltrials.gov identifier is given in brackets.

ART, antiretroviral therapy; HAART, highly active ART; HDAC, histone deacetylase; PTEN, phosphatase and tensin homologue.
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