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ABSTRACT

Dendritic cells (DCs) comprise two functionally distinct
subsets: plasmacytoid DCs (pDCs) and myeloid DCs
(mDCs). pDCs are specialized in rapid and massive se-
cretion of type I interferon (IFN-I) in response to nucleic
acids through Toll like receptor (TLR)-7 or TLR-9. In this
report, we characterized a CD56+ DC population that
express typical pDC markers including CD123 and
BDCA2 but produce much less IFN-I comparing with
pDCs. In addition, CD56+ DCs cluster together with
mDCs but not pDCs by genome-wide transcriptional
profiling. Accordingly, CD56+ DCs functionally resemble
mDCs by producing IL-12 upon TLR4 stimulation and
priming naïve T cells without prior activation. These data
suggest that the CD56+ DCs represent a novel mDC
subset mixed with some pDC features. A CD4+CD56+

hematological malignancy was classified as blastic
plasmacytoid dendritic cell neoplasm (BPDCN) due to
its expression of characteristic molecules of pDCs.

However, we demonstrated that BPDCN is closer to
CD56+ DCs than pDCs by global gene-expression pro-
filing. Thus, we propose that the CD4+CD56+ neoplasm
may be a tumor counterpart of CD56+ mDCs but not
pDCs.

KEYWORDS dendritic cells, CD56+ DC, pDC, mDC,
BPDCN

INTRODUCTION

Dendritic cells (DCs) are professional antigen-presenting
cells found in virtually all tissues. The main function of DCs is
to induce T-cell activation, polarization and expansion
against invading pathogens while maintaining tolerance to
self antigens (Steinman, 2007). Three DC subsets have
been identified in the human blood: plasmacytoid dendritic
cell (pDC) and two subsets of myeloid DC (mDC) expressing
CD1c (BDCA1) and CD141 (BDCA3) respectively (Dzionek
et al., 2000; Ziegler-Heitbrock et al., 2010). pDCs are char-
acterized by their specific expression of CD123, BDCA2,
BDCA4 and ILT7 (Dzionek et al., 2000; Cao et al., 2006;
Rissoan et al., 2002). In addition, pDCs express high levels
of interferon regulatory factor 7 (IRF7), Toll like receptor
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(TLR)-7 and TLR-9. Accordingly, they produce large
amounts of type I interferon (IFN-I) upon stimulation with
nucleic-acid ligands of TLR7/TRL9 (Siegal et al., 1999; Cella
et al., 1999). Transcription factors E2-2 and Spi B are
specifically expressed in pDCs and play important roles in
their development and maintenance (Cisse et al., 2008;
Schotte et al., 2004).

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is
a rare hematological malignancy characterized by the clonal
proliferation of pDC-like cells (Facchetti et al., 2008). Neo-
plastic cells from BPDCN patients express pDC specific
molecules, such as BDCA2, CD123, CD4, TCL1, Bcl11A,
CD2AP and Spi B (Petrella and Facchetti, 2010). Addition-
ally, BPDCN cells can produce IFN-I upon TLR7 and TLR9
ligands stimulation although at much lower level comparing
with pDCs (Chaperot et al., 2001). Interestingly, BPDCN
cells also express CD56, which is not present on the majority
of pDCs (Grouard et al., 1997). A small population of DCs in
normal or FLT3 mobilized human blood do express CD56,
which have been proposed as a pDC subpopulation that
gives rise to BPDCN (Petrella et al., 2002; Comeau, 2002).

In this report, we characterized these BDCA2+

CD123+CD56+ DCs from human peripheral blood. Although
they express some pDC featured molecules, the transcrip-
tomic and functional characterizations indicate that they
belong to mDCs rather than pDCs.

RESULTS

CD56+ DCs are functionally distinct from pDCs

BDCA2 and CD123 are commonly used for the identification
of human pDCs in the blood and lymphoid tissues. A sub-
population of BDCA2+CD123+CD56+ (CD56+) DCs have
been reported in human blood and proposed as a pDC
subpopulation related to BPDCN (Petrella et al., 2002;
Comeau, 2002). We first confirmed the presence of CD56+

subset in the HLA-DR+, CD11c−, BDCA2+ and CD123+ DCs
in human blood (Fig. 1A and 1B). The CD56+ subset rep-
resents about 5% of the BDCA2 and CD123 double positive
cells (Fig. 1B, n = 15). It was reported that pDCs can be
divided into two populations by their CD2 expression (Matsui
et al., 2009). We found that the CD56+ DCs universally ex-
press CD2 (Fig. 2A).

Next, we purified the CD56+ and CD56− cells to compare
their IFN-I production by TLR7 or TLR9 stimulation. In order
to get higher purity, we added CD2 in our purification pro-
tocol, thus CD123+CD2+CD56+ and CD123+CD2−CD56−

DCs were sorted by FACS for further analysis. Usually the
purity of CD2−CD56− cells was over 95% and the purity of
CD2+CD56+ cells was over 80% with contamination of some
CD2+CD56− cells (Fig. 2B). High level IFNα production upon
TLR7 or TLR9 stimulation is the key characteristic of pDCs.
However, purified CD56+ DCs produced much less IFNα
upon CpG A stimulation comparing to CD56− cells from
same donors (around 10%) (Fig. 2C, left panel). Similar

results were also observed when the purified DCs were
stimulated with influenza virus (Fig. 2C, right panel). In order
to exclude the effect of CD56 antibody binding during pu-
rification, we also compared the IFNα production capacity of
CD56+ and CD56− DCs by intracellular staining without prior
purification. When enriched DCs were stimulated with CpG A
and stained IFNα intracellularly, above 70% of CD56− cells
but only 10% CD56+ cells expressed IFNα (Fig. 2D, left
panel). Similar results were observed by R848, a TLR7 li-
gand stimulation (Fig. 2D, right panel).

CD56+ DCs clustered together with mDCs but not pDCs
by transcriptomic analysis

In order to compare the gene expression of CD56+ DCs and
other DC subsets at whole genome level, we analyzed the
transcriptome of both CD56− pDCs and CD56+ DCs by RNA
sequencing (RNA-seq). Next, we compared the transcrip-
tional profile of CD56+ DCs with cDNA array data of human
DC subsets retrieved from public databases (Robbins et al.,
2008). There were 772 genes expressed in CD56+ DCs at
higher level (over 2 times) than those of CD56− DCs and
2398 genes vice versa. Among those, 648 genes highly
expressed in CD56+ cells (Fig. 3A, left panel) and 1557 lowly
expressed ones (Fig. 3B, left panel) were present in the
cDNA array data of human blood DC subsets (Robbins et al.,
2008). And the names of those differentially expressed ge-
nes are provided in Table S1 and S2. Intriguingly, 547 (91%)
CD56+ DC highly expressed genes present at higher level in
mDCs than pDCs based on cDNA array data (Fig. 3A, right
panel; Table S1). Similarly, 1292 (83%) CD56+ DCs lowly
expressed genes presented at lower level in mDCs than
pDCs (Fig. 3B, right panel; Table S2).

To clarify the relationship of CD56+ DCs and other DC
subsets, we normalized our RNA-Seq data with cDNA data,
then did hierarchical clustering with complete linkage and
principal component analysis (PCA) (11,372 genes). Both
analyses showed that CD56− DCs clustered together with
pDCs as expected, while the CD56+ DCs clustered together
with BDCA3 and BDCA1 mDCs (Fig. 3C and 3D).

CD56+ DCs are functionally analogous to mDCs

TLR expression patterns of pDCs and mDCs are drastically
different. pDCs preferentially express TLR7 and TLR9 while
mDCs express higher levels of TLR2 and TLR4 (Liu 2005;
Cerboni et al., 2013). We found that the expression level of
TLR4 (Fig. 4A) and the amount of TNFα produced upon LPS
stimulation (Fig. 4B and 4C) were similar betweenCD56+DCs
and mDCs. Moreover, CD56+ DCs could produce IL-12 at a
comparable level to mDCs at both RNA (Fig. 4D) and protein
level (Fig. 4E). While pDCs did not produce IL-12 (Fig. 4D and
4E) as previously reported (Kadowaki et al., 2001).

Different from pDCs, mDCs could prompt T-cell prolif-
eration without prior stimulation or activation. In order to
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further characterize the relationship between CD56+ DCs,
pDCs and mDCs, we examined more gene expression that
related to antigen presentation. MHC II molecules and CD86

were highly expressed on CD56+ DCs compared to pDCs at
RNA level (Table S3). These were confirmed at protein level
by FACS analysis (Fig. 4F). Gamma-interferon-inducible
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depleted PBMCs were stimulated with CpG A or R848 then analyzed by FACS for surface markers and IFNα intracellularly.

Lin−HLADR+CD11c−CD123+ cells were gated and plotted for CD56 and IFNα. The numbers in each quadrant represent percentage

of total gated cells. One out of four independent experiments is shown.

BDCA2+CD123+CD56+ DCs represent a unique mDC subset RESEARCH ARTICLE

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 299

P
ro
te
in

&
C
e
ll



lysosomal thiolreductase (GILT) is an essential enzyme for
antigen processing, (Singh and Cresswell 2010; Maric et al.,
2001) and we found that GILT and cathepsins were ex-
pressed at much higher levels in CD56+ DCs than pDCs
(Table S3). We next examined the antigen presentation by

CD56+ DCs, pDCs and mDCs. Allogeneic naïve T cells were
co-cultured with purified DCs and analyzed by tritium incor-
poration. The CD56+ DCs stimulated comparable T-cell
proliferation to mDCs, while pDCs did not induce significant
T-cell expansion (Fig. 4G).
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CD56+ DCs are unique mDCs mixed with some pDC
features

CD56+ DCs expressed BDCA2 and CD123, which were
considered as hallmarks of pDCs (Fig. 1B). In order to further
characterize the relationship between CD56+ DCs and
pDCs, we examined more pDC-specific genes at both RNA
and protein levels in other DC subsets. And we found that
BDCA4 and ILT7, two additional pDC specific surface
markers, were expressed on CD56+ DCs but not mDCs
(Fig. 5A). Both E2-2 and SpiB, the two important transcrip-
tion factors for pDC lineage development, were expressed in
CD56+ DCs at slightly lower levels than pDCs in the RNA-
seq data (Table S4) and confirmed by RT-PCR (Fig. 5B, left
two panels). It is worth to pointing out that the expression
levels of E2-2 and SpiB in CD56+ DCs were much higher
than in mDCs (Fig. 5B, left two panels). In addition, pDC
highly expressed genes IRF7, BCL11A and CD2AP

(Marafioti et al., 2008) were also expressed in CD56+ DCs at
a slightly lower level compared to pDCs (Table S4). How-
ever, other pDC specific genes, such as Granzyme B,
TCL1A (Herling et al., 2003), PACSIN1 (Esashi et al., 2012)
and BAD-LAMP (Defays et al., 2011), were expressed at
least 10 times higher in pDCs than in CD56+ DCs in RNA-
seq data (Table S4).

We have already shown that CD56+ DCs produced very
low level IFNα upon CpG stimulation. And this is correlated
with the lower expression level of TLR9 in CD56+ DCs than
pDCs. However, the expression of TLR9 in CD56+ DCs
is clearly higher than in mDCs (Fig. 5B, far right panel).
Interestingly, CD56+ DCs produced comparable levels
of TNFα to those of pDCs upon CpG B stimulation
(Fig. 5C–E). These results argue that CD56+ DCs are
unique comparing other mDCs by maintaining certain pDC
characteristic features.
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Figure 4. CD56+ DCs functionally resemble mDCs. (A) The expression of TLR4 was quantified by RT-PCR with purified DCs. Error

bars represent standard derivation from duplicated PCR samples of the same donor. Data shown are from one representative of 3

independent donors. (B) Lineage depleted PBMC were stimulated with LPS for 6 h, then the stimulated cells were collected and

stained with surface markers followed by intracellular staining of TNFα. CD123+CD56− (pDC), CD123+CD56+ (CD56+) and CD123−

CD11C+ (mDC) in the Lin− HLA-DR+ gate were analyzed for TNFα expression. (C) Summarized data of (B) from 5 independent

donors. (D) Purified DCs were stimulated with mixture of LPS, CpG and IFNγ for 6 h, the expression of IL-12 p35 and p40 were

analyzed by RT-PCR. Data shown are representative of 3 independent experiments. (E) Purified DCs were stimulated mixture of

LPS, CpG and IFNγ for 24 h, and the expression of IL-12 p70 were analyzed by ELISA. Data shown are representative of 2

independent experiments. (F) Expression of HLA-DR and CD86 on different blood DC subsets were analyzed by FACS. (G) Purified

allogenic naive T cells were cocultured with different numbers of CD123+CD56− (pDC, circle), CD123+CD56+ (CD56+, square) and

CD123−CD11C+ (mDC, triangle) DCs . After 5 days, the cocultured cells were pulsed with 1 mCi [3H] thymidine for 18 h before

harvest. Data shown are one representative of 4 experiments.

BDCA2+CD123+CD56+ DCs represent a unique mDC subset RESEARCH ARTICLE

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 301

P
ro
te
in

&
C
e
ll



BPDCN is closely related to CD56+ DCs, but not pDCs
by global gene expression profiling

In a previous report, we have found that BPDCN shows both
myeloid and pDC characteristics (Cerboni et al., 2013). In
order to clarify the relationship among BPDCN, pDC and
CD56+ DCs, we analyzed the differentially expressed genes
between BPDCN and pDCs. We identified 127 genes ex-
press at higher levels in BPDCN than in pDC in cDNA array
data (Fig. 6A, left panel; Table S7), but 93 (73%) of them are
highly expressed in CD56+ DCs compared to pDCs in our
RNA-seq data (Fig. 6A, right panel). Similarly, there are 1143
genes expressed at lower levels in BPDCN cells than in
pDCs (Fig. 6B, left panel; Table S8), and 778 (68%) of them
are highly expressed in the CD56+ DCs than pDCs (Fig. 6B,
right panel). The global gene expression profiling data sug-
gests that BPDCN is more closely related to the CD56+ DCs
than pDCs.

DISCUSSION

CD4+CD56+ hematologic malignancy with primary cuta-
neous presentation has been well documented and is pro-
posed as the malignant counterpart of pDC precursors
(Chaperot et al., 2001; Adachi et al., 1994; Brody 1995;
Uchiyama 1998; Petrella et al., 1999) and was named as
blastic plasmacytoid dendritic cell neoplasm (BPDCN)
(Facchetti et al., 2008). Here in this report, we characterized
a BDCA2+CD123+CD56+ blood DC subset, which has been
considered as a subpopulation of pDCs (Petrella et al.,
2002). We demonstrated that the CD56+ DCs clustered with
mDCs by transcriptional profiling at whole genome level.
Accordingly, CD56+ DCs responded to TLR4 stimulation and
prime naïve T cells without prior stimulation. And this agrees
with our previous finding that BPDCN are characterized by
their mixed pDC and myeloid signature (Sapienza et al.,
2014). However, CD56+ DCs are distinguished from other
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mDCs by expressing pDC specific molecules. Thus, we
propose that CD56+ DCs represent a unique mDC subset
and their function in immune response warrant further
characterization.

Besides BPDCN, another pDC related tumoral condition,
pDC proliferations in patients with myeloid disorders (PPMD),
has also been reported (Petrella and Facchetti 2010). The
tumor cells of BPDCN and PPDM share the common char-
acteristic phenotype of pDCs: lin−, CD4+, CD68+, CLA+,
CD123+, BDCA2+, Bcl11A+ and CD2AP+. However, CD56
expression, which is the hallmark of BPDCN, is not detected
in PPDM (Petrella and Facchetti 2010; Vermi et al., 2004).
Granzyme B (GrB) expresses at high level in pDCs (Rissoan
et al., 2002) and is also positive in PPMD (Vermi et al., 2004).
However, most reported BPDCN cases are GrB negative
(Chaperot et al., 2001; Petrella et al., 2002; Pilichowska et al.,
2007; An et al., 2013). Here in this study, we show CD56+

DCs express much lower level of GrB compared to pDC
(Table S4). We speculate that PPMD may be the tumor
counterpart of pDC, while BPDCN may represent the coun-
terpart of CD123+CD56+ DCs. This hypothesis needs to be
further investigated in the future by transcription profiling at
whole genome level for both DC subsets and their tumor
counterparts.

It is worth pointing out that the human CD123+CD56+ DCs
are similar to a CX3CR1

+CD8α+ mouse DC subset, which
also exhibits mixed characteristics of pDC and mDC (Ghosh
et al., 2010). The CX3CR1

+CD8α+ mouse DCs are

developmentally dependent on E2-2 and express pDC
specific genes (Spi-B, Siglec H, Bst2). However, CX3CR1

+

CD8α+ DCs do not produce IFNα upon TLR7 and TLR9
stimulation (Ghosh et al., 2010). The CX3CR1

+CD8α+ DC is
transcriptionally similar to mouse CD8− mDCs, but not to
CD8+ mDCs (Ghosh et al., 2010). The developmental rela-
tionship between human CD56+ DCs and mouse
CX3CR1

+CD8α+ DCs needs further investigation.
Taken together, we have demonstrated that human

CD56+ DCs were very close to mDC by both transcriptomic
analysis and functional characterization. Thus, we propose
that CD56+ DC should be classified as mDC, but not pDCs.
And we propose that BPDCN should be classified as mDC
but not pDC related leukemia.

MATERIALS AND METHODS

FACS analysis of DC subsets in human blood

For analysis of DC subsets in human peripheral blood, single cells

were first gated by light scatters and dead cells were excluded by

yellow fluorescent reactive live/dead cell dye staining (Life Tech-

nologies, Carlsbad, USA), then the lineage positive cells were gated

out by specific markers (CD3, CD14, CD16, CD19). HLA-

DR+CD123+BDCA2+ cells were further divided by their CD2 and

CD56 expression. Antibody stained peripheral blood mononuclear

cells (PBMC) were analyzed with LSRfortessa (BD Biosciences,

Franklin Lakes, NJ, USA) and data were analyzed with Summit 4.3
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Figure 6. Global gene expression of BPDCN, pDCs and CD56+ DCs. (A) Heat map of 127 genes highly expressed in BPDCN

comparing with pDCs by cDNA array (left panel) and their expressions in CD56+ DCs relative to CD56− pDCs by RNA-Seq (right

panel). (B) Heat map of 1143 genes highly expressed in pDCs comparing with BPDCN by cDNA array (left panel) and their

expressions in CD56+ DCs relative to CD56− pDCs by RNA-Seq (right panel).
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(DAKO, Denmark). Detailed information of antibodies used for flow

cytometry analysis was shown in Table S5.

DC enrichment and in vitro stimulation

DCs were enriched by lineage (CD3, CD14, CD16, CD19) depletion,

then lineage negative cells (2 × 105 in 200 μL culture medium) were

stimulated with TLR ligands or viruses for 4 h followed by another 2 h

in the presence of Golgi Blocker (BD Biosciences, Franklin Lakes,

NJ, USA). Cells were stained with surface markers and perme-

ablized and stained with antibodies against various cytokines. TLR

ligands were purchased from Invivogen (San Diego, CA, USA)

and used at following concentrations: LPS (1 μg/mL), CpG 2216

(2 μg/mL), R848 (2 μg/mL). Heat inactivated influenza virus

A/PR8/34 was used at 10 MOI for stimulation.

DC purification and stimulation

The lineage (CD3, CD14, CD16, CD19, CD20) depleted PBMC were

stained with HLA-DR (APC-Cy7), CD2 (PE-Cy7), CD11c (APC),

CD56 (PerCP-cy5.5) and CD123 (BV421). Lin−HLA-

DR+CD123+CD11c− CD2+CD56+ and Lin−HLA-DR+CD123+CD11c−

CD2−CD56− DCs were sorted with BD FACSAriaIII (BD Biosciences,

Franklin Lakes, NJ, USA). In some experiments, Lin−HLA-

DR+CD123−CD11c+ mDC were sorted as control. Purified DCs

(1 × 104 in 200 μL culture medium) were stimulated with different

TLR ligands at the concentration mentioned above. For IL-12 pro-

duction, purified DCs were stimulated with LPS, CpG 2006

(1 μmol/L) and IFNγ (50 ng/mL). IFNα, IL-12 and TNFα levels in the

supernatant were quantified by ELISA.

RNA-seq and data analysis

RNA extraction and sequencing were done by BGI Tech (Shenzhen,

Guangdong, China). The gene expression level was measured by

the number of uniquely mapped reads per kilobase of exon region

per million mappable reads (RPKM). The RNA-seq raw data was

aligned to the reference genome (hg19) (Trapnell et al., 2009). The

gene expressions of other cell types used in our study were obtained

from cDNA array data by Scott H Robbins (Robbins et al., 2008).

The target gene regions of microarray probes were retrieved from

the annotation file for human U133 Plus 2.0 (http://www.affymetrix.

com). To compare gene expressions from both RNA-seq and cDNA

array experiments, we only considered the reads that have at least

one nucleotide overlap with the gene regions targeted by microarray

probes. Heat maps were generated with differentially expressed

genes between CD2+CD56+ and CD2−CD56− DCs (larger than 2

times difference). Transcriptome comparison of CD2+CD56+ DCs

and other blood cells lineages were carried out with two different

mathematical methods, hierarchical clustering with complete linkage

(Eisen et al., 1998) and principal component analysis (PCA) (Alter

et al., 2000). Detailed methods of RNA-seq and data analysis were

provided in the supplemental file.

BPDCN microarray data of 6 cryopreserved tissue samples

(Sapienza et al., 2014) by Affymetrix microarray platform were nor-

malized with the rank invariant method using Lumi (Bioconductor)

(Du et al., 2008). Statistics for differential expression were applied by

Limma (Bioconductor), (Smyth 2004) and we defined BPDCN sig-

nificant differential expressed genes on normalized data as adjusted

P-value less than 0.05. One hundred and twenty seven BPDCN

highly expressed genes and 1143 BPDCN lowly expressed genes

were matched to our RNA-seq datasets of pDC and CD56+ DCs

(genes with RPKM less than 10 were deleted). Heat maps were

displayed using the R software.

RT-PCR

RNA was extracted from purified DCs and reverse transcribed with

Oligo dT primers. Quantitative real time PCR (RT-PCR) was per-

formed using cDNA with EF1α gene as internal control. Primers for

RT-PCR are listed in Table S6.

T-cell proliferation assay

Human CD4+CD45RA+ naïve T cells were purified from PBMC by

negative selection with magnetic beads (Miltenyi Biotech, Germany).

Different numbers of FACS purified DCs were cultured with 5 × 104

allogeneic naïve T cells in 96-well round-bottomed plates in 200 μL

culture medium. After 5 days of DC and T cell co-culture, cells were

pulsed with 1 mCi [3H]-thymidine for 18 h before harvest. Radioac-

tive uptake was measured with a TopCount NXT micro-plate scin-

tillation and luminescence counter (PerkinElmer).

ACKNOWLEDGMENTS

This work was supported by grants from Beijing Municipal Science &

Technology Commission (SCW 2014-09), Chinese Academy of

Science (KJZD-EW-L10-02) and Ministry of Health

(2013ZX10001002) to L.Z. The authors thank Dr. Lishan Su for cri-

tical reading this manuscript and Mr. Anthony Curtis for English

editing. H.Y. and L.Z. designed the project, analyzed data and wrote

the paper; P.Z., Y.C. and T.J. analyzed and interpreted the RNA-seq

data and wrote the paper; P. P. participated in the analysis of BPDCN

data; X.Y., Z.Y., Q.S., S.W. and G.L. performed experiments and

analyzed data. The authors declare no financial conflict of interest in

relation to this work.

ABBREVIATIONS

BPDCN, blastic plasmacytoid dendritic cell neoplasm; DCs, dendritic

cells; IFN-I, type I interferon; IRF7, interferon regulatory factor 7;

mDC, myeloid DC; PBMC, peripheral blood mononuclear cell; PCA,

principal component analysis; pDC, plasmacytoid DC; TLR, toll like

receptor.

COMPLIANCE WITH ETHICS GUIDELINES

Haisheng Yu, Peng Zhang, Xiangyun Yin, Zhao Yin, Quanxing Shi,

Ya Cui, Guanyuan Liu, Shouli Wang, Pier Paolo Piccaluga, Taijiao

Jiang and Liguo Zhang declare that they have no conflict of interest.

All procedures followed were in accordance with the ethical

standards of the responsible committee on human experimentation

(institutional and national) and with the Helsinki Declaration of 1975,

as revised in 2000 (5). Informed consent was obtained from all

patients for being included in the study.

RESEARCH ARTICLE Haisheng Yu et al.

304 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll

http://www.affymetrix.com
http://www.affymetrix.com


OPEN ACCESS

This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and

the source are credited.

REFERENCES

Adachi M, Maeda K, Takekawa M et al (1994) High expression of

CD56 (N-CAM) in a patient with cutaneous CD4-positive

lymphoma. Am J Hematol 47(4):278–282

Alter O, Brown PO, Botstein D (2000) Singular value decomposition

for genome-wide expression data processing and modeling. Proc

Natl Acad Sci USA 97(18):10101–10106

An HJ, Yoon DH, Kim S et al (2013) Blastic plasmacytoid dendritic

cell neoplasm: a single-center experience. Ann Hematol 92

(3):351–356

Brody JP, Allen S, Schulman P et al (1995) Acute agranular CD4-

positive natural killer cell leukemia. Comprehensive clinicopatho-

logic studies including virologic and in vitro culture with inducing

agents. Cancer 75(10):2474–2483

Cao W, Rosen DB, Ito T et al (2006) Plasmacytoid dendritic cell-

specific receptor ILT7-Fc epsilonRI gamma inhibits Toll-like

receptor-induced interferon production. J Exp Med 203

(6):1399–1405

Cella M, Jarrossay D, Facchetti F et al (1999) Plasmacytoid

monocytes migrate to inflamed lymph nodes and produce large

amounts of type I interferon. Nat Med 5(8):919–923

Cerboni S, Gentili M, Manel N (2013) Diversity of pathogen sensors

in dendritic cells. Adv Immunol 120:211–237

Chaperot L, Bendriss N, Manches O et al (2001) Identification of a

leukemic counterpart of the plasmacytoid dendritic cells. Blood 97

(10):3210–3217

Cisse B, Caton ML, Lehner M et al (2008) Transcription factor E2-2

is an essential and specific regulator of plasmacytoid dendritic

cell development. Cell 135(1):37–48

Comeau MR (2002) Van der Vuurst de Vries AR, Maliszewski CR,

Galibert L. CD123bright plasmacytoid predendritic cells: pro-

genitors undergoing cell fate conversion? J Immunol 169(1):75–

83

Defays A, David A, de Gassart A et al (2011) BAD-LAMP is a novel

biomarker of nonactivated human plasmacytoid dendritic cells.

Blood 118(3):609–617

Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing

Illumina microarray. Bioinformatics 24(13):1547–1548

Dzionek A, Fuchs A, Schmidt P et al (2000) BDCA-2, BDCA-3, and

BDCA-4: three markers for distinct subsets of dendritic cells in

human peripheral blood. J Immunol 165(11):6037–6046

Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster

analysis and display of genome-wide expression patterns. Proc

Natl Acad Sci USA 95(25):14863–14868

Esashi E, Bao M, Wang YH, Cao W, Liu YJ (2012) PACSIN1

regulates the TLR7/9-mediated type I interferon response in

plasmacytoid dendritic cells. Eur J Immunol 42(3):573–579

Facchetti F, Jones D, Petrella T (2008) Blastic plasmacytoid

dendritic cell neoplasm. In: Swerdlow S, Campo E, Harris N

et al (eds) WHO classification of tumours of haematopoietic and

lymphoid tissues, 4th edn. International Agency for Research on

Cancer (IARC), Lyon, pp 145–147

Ghosh HS, Cisse B, Bunin A, Lewis KL, Reizis B (2010) Continuous

expression of the transcription factor e2-2 maintains the cell fate

of mature plasmacytoid dendritic cells. Immunity 33(6):905–916

Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ

(1997) The enigmatic plasmacytoid T cells develop into dendritic

cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185

(6):1101–1111

Herling M, Teitell MA, Shen RR, Medeiros LJ, Jones D (2003) TCL1

expression in plasmacytoid dendritic cells (DC2s) and the related

CD4+ CD56+ blastic tumors of skin. Blood 101(12):5007–5009

Kadowaki N, Ho S, Antonenko S et al (2001) Subsets of human

dendritic cell precursors express different toll-like receptors and

respond to different microbial antigens. J Exp Med 194(6):863–

869

Liu YJ (2005) IPC: professional type 1 interferon-producing cells and

plasmacytoid dendritic cell precursors. Annu Rev Immunol

23:275–306

Marafioti T, Paterson JC, Ballabio E et al (2008) Novel markers of

normal and neoplastic human plasmacytoid dendritic cells. Blood

111(7):3778–3792

Maric M, Arunachalam B, Phan UT et al (2001) Defective antigen

processing in GILT-free mice. Science 294(5545):1361–1365

Matsui T, Connolly JE, Michnevitz M et al (2009) CD2 distinguishes

two subsets of human plasmacytoid dendritic cells with distinct

phenotype and functions. J Immunol 182(11):6815–6823

Petrella T, Facchetti F (2010) Tumoral aspects of plasmacytoid

dendritic cells: what do we know in 2009? Autoimmunity 43

(3):210–214

Petrella T, Dalac S, Maynadie M et al (1999) CD4+ CD56+ cutaneous

neoplasms: a distinct hematological entity? Groupe Francais

d’Etude des Lymphomes Cutanes (GFELC). Am J Surg Pathol 23

(2):137–146

Petrella T, Comeau MR, Maynadie M et al (2002) ‘Agranular CD4+

CD56+ hematodermic neoplasm’ (blastic NK-cell lymphoma)

originates from a population of CD56+ precursor cells related to

plasmacytoid monocytes. Am J Surg Pathol 26(7):852–862

Pilichowska ME, Fleming MD, Pinkus JL, Pinkus GS (2007) CD4+/

CD56+ hematodermic neoplasm (“blastic natural killer cell lym-

phoma”): neoplastic cells express the immature dendritic cell

marker BDCA-2 and produce interferon. Am J Clin Pathol 128

(3):445–453

Rissoan MC, Duhen T, Bridon JM et al (2002) Subtractive

hybridization reveals the expression of immunoglobulin-like

transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in

human plasmacytoid dendritic cells. Blood 100(9):3295–3303

Robbins SH, Walzer T, Dembele D et al (2008) Novel insights into

the relationships between dendritic cell subsets in human and

mouse revealed by genome-wide expression profiling. Genome

Biol 9(1):R17

Sapienza MR, Fuligni F, Agostinelli C et al (2014) Molecular profiling

of blastic plasmacytoid dendritic cell neoplasm reveals a unique

BDCA2+CD123+CD56+ DCs represent a unique mDC subset RESEARCH ARTICLE

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 305

P
ro
te
in

&
C
e
ll



pattern and suggests selective sensitivity to NF-kB pathway

inhibition. Leukemia 28:1606–1616

Schotte R, Nagasawa M, Weijer K, Spits H, Blom B (2004) The ETS

transcription factor Spi-B is required for human plasmacytoid

dendritic cell development. J Exp Med 200(11):1503–1509

Siegal FP, Kadowaki N, Shodell M et al (1999) The nature of the

principal type 1 interferon-producing cells in human blood.

Science 284(5421):1835–1837

Singh R, Cresswell P (2010) Defective cross-presentation of viral

antigens in GILT-free mice. Science 328(5984):1394–1398

Smyth GK (2004) Linear models and empirical bayes methods for

assessing differential expression in microarray experiments. Stat

Appl Genet Mol Biol 3:1–25

Steinman RM (2007) Lasker Basic Medical Research Award.

Dendritic cells: versatile controllers of the immune system. Nat

Med 13(10):1155–1159

Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering

splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

Uchiyama N, Ito K, Kawai K, Sakamoto F, Takaki M, Ito M (1998)

CD2−, CD4+, CD56+ agranular natural killer cell lymphoma of the

skin. Am J Dermatopathol 20(5):513–517

Vermi W, Facchetti F, Rosati S et al (2004) Nodal and extranodal

tumor-forming accumulation of plasmacytoid monocytes/interfer-

on-producing cells associated with myeloid disorders. Am J Surg

Pathol 28(5):585–595

Ziegler-Heitbrock L, Ancuta P, Crowe S et al (2010) Nomenclature of

monocytes and dendritic cells in blood. Blood 116(16):e74–e80

RESEARCH ARTICLE Haisheng Yu et al.

306 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll


	Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC
subset
	ABSTRACT
	INTRODUCTION
	RESULTS
	CD56+ DCs are functionally distinct from pDCs
	CD56+ DCs clustered together with mDCs but not pDCs
by transcriptomic analysis
	CD56+ DCs are functionally analogous to mDCs
	CD56+ DCs are unique mDCs mixed with some pDC
features
	BPDCN is closely related to CD56+ DCs, but not pDCs
by global gene expression profiling

	DISCUSSION
	MATERIALS AND METHODS
	FACS analysis of DC subsets in human blood
	DC enrichment and in vitro stimulation
	DC purification and stimulation
	RNA-seq and data analysis
	RT-PCR
	T-cell proliferation assay

	ACKNOWLEDGMENTS
	ABBREVIATIONS
	COMPLIANCE WITH ETHICS GUIDELINES
	OPEN ACCESS
	REFERENCES


