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Abstract

Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous
categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare,
apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a
consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense
variant, p.Argl066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four
homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of
deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation
(p-Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat
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formation. Morpholinos against N-terminal zebrafish Ahil, orthologous to where human mutations cluster, produced a ciliopathy,
but targeting near human p.Argl066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein
lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our
findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications,
considering that variants like p.Glu984* identified by preconception screening (‘Kingsmore panel’) do not necessarily indicate JBTS
carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask
dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception

carrier screening.

Introduction

Large-scale sequencing projects have shown that individuals
carry ~100 putative loss-of-function (LoF) alleles. LoF alleles fall
into a range of categories, from mutations in non-essential
genes to truly deleterious mutations in established recessive
disease-causing genes (1). Homozygous LoF variants that do
not elicit overt clinical consequences are strong indicators for
LoF tolerance (and thus non-essentiality) of the affected genes.
Biallelic and, in particular, truncating mutations of genes for
severe congenital recessive disorders in healthy individuals are
therefore very unusual. Such a finding should prompt reassess-
ment of the functional requirement of the affected gene region
or transcript.

AHI1 (Abelson-helper integration site 1; MIM 608894) is such a
gene, associated with a severe recessive congenital disorder, Jou-
bert syndrome type 3 (JBTS3; MIM 608629). JBTS3 is characterized
by psychomotor delay, cerebellar hypoplasia, consecutive ataxia
and an altered respiratory pattern during neonatal development.
Retinal degeneration is frequently found. Renal disease, liver de-
fects or skeletal involvement, symptoms that may be present in
other genetic subtypes of JBTS, are not typical for JBTS3. The hall-
mark of JBTS is a midbrain-hindbrain malformation, named
‘molar tooth sign’ (MTS) because of its appearance on axial mag-
netic resonance imaging.

Here, we report that two homozygous truncating variants in
AHI1 are non-penetrant in humans. A zebrafish model also sup-
ports non-penetrance of AHI1 LoF variations in the respective
gene region. In contrast to obvious non-pathogenic LoFs or
gene losses that provide selective advantages, both AHI1 variants
are extremely rare in the general population. Our findings draw
attention to an underestimated category of major pitfalls in the
interpretation of highly parallel sequencing for diagnostics in pa-
tients and for preconception carrier screening. Large-scale se-
quencing data from consanguineous families provide a rich but
still largely untapped resource that can be used to minimize erro-
neous categorization of variants: seemingly unambiguous patho-
genic variants are unmasked as benign when they are repeatedly
found in healthy probands or patients with unrelated conditions.

Results

Homozygosity mapping and whole-exome sequencing

Family 1

Homozygosity mapping to identify the gene underlying congeni-
tal non-syndromic deafness in this consanguineous Palestinian
family (Fig. 1A) identified three regions with homozygosity by
descent (HBD) in the three affected siblings: A 7.9 Mb interval
on chromosome 6924.1-q24.3, a 14.5 Mb interval on chromosome
7q21.3—q31.1 and a 22.2 Mb region on chromosome 11 (Supple-
mentary Material, Fig. S1A). Sanger sequencing of known deaf-
ness genes within these intervals, SLC26A4 and SLC26A5 (both

on chromosome 7), RDX and TECTA (both on chromosome 11),
and of several functional candidate genes did not reveal any
mutations. Subsequent whole-exome sequencing (WES) of one
index patient (II:3) revealed homozygous missense variants
in three genes located in the mapped HBD regions, namely
PTCD1 and MUC17 (both on chromosome 7), and DDX10 (chromo-
some 11). Segregation analysis excluded causality of the PTCD1
variant, which was homozygous not only in the three hearing-
impaired siblings, but also in a healthy sister (II:4). The variants
in MUC17 and DDX10 have both been annotated as rare single-
nucleotide polymorphisms (SNPs) (rs74974199 and rs138955971,
respectively). Because HBD intervals can escape detection when
the interval is very small and based on only very few homozygous
SNPs, we filtered the entire exome for homozygous mutations
irrespective of their chromosomal localization. Although this
did not reveal a strong candidate gene for sensory deafness,
it exposed a homozygous nonsense mutation, p.Argl066*
(c.3196C>T), in exon 25 of AHII. Segregation analysis of the
p-Argl066* variant showed that it was heterozygous in both par-
ents and homozygous in the three deaf siblings (II:3, II:5, II:6) and
a healthy sister (II:4) (Fig. 1A). These results were confirmed by re-
drawn blood samples of Family 1 and by using an alternative pri-
mer pair. In II:4, the AHI1 gene is located within a 37.5 Mb region
of homozygous SNPs (shared by the three deaf individuals II:3,
II:5 and II:6; Supplementary Material, Fig. S2), compatible with
true homozygosity of p.Argl066*ay;;. Furthermore, qPCR with
primers amplifying the binding regions of the primers used for
PCR and Sanger sequencing did not indicate any deletion of
those binding sites that could have led to allelic dropout in PCR
amplification (data not shown). The variant was not present in
the ESP and the TGP databases, or our extended in-house data-
base of 1629 exomes (regularly updated database comprising
not all, but only pre-filtered, rare variants of these exomes), but
it was annotated once in heterozygous state (total MAF = 8.6E
—6; African MAF =1.1E-5) in the EXAC database.

Family 2

Targeted Sanger sequencing of AHI1 in a cohort with clinically
proven JBTS had previously identified the homozygous frame-
shift AHI1 variant, c.3263_3264delGG (p.Trp1088Leufs*16) in
both affected siblings (II:2 and II:4) from this consanguineous
Egyptian family (Fig. 2A and B). In the original publication, this
AHI1 variant was considered to be causative (2). We now carried
out genome-wide homozygosity mapping including additional
samples from four healthy sisters and the parents (first cousins),
which identified a single HBD region with a combined maximum
parametric LOD score of 2.31 in both affected siblings, on chromo-
some 6q23.2-q24.3 (Fig. 2C). This region contains ~90 genes,
including AHI1. WES of II:2 did not identify homozygous candidate
variants in any other gene from that locus, but it revealed the pres-
ence of another homozygous AHI1 variant, p.Ser761Leu (Fig. 2A and
B). As can be expected from linkage data, both AHII variants co-
segregate with JBTS in Family 2. Neither p.Trp1088Leufs*16 nor
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Figure 1. Family 1 with autosomal recessive non-syndromic deafness and a non-manifesting homozygous AHI1 nonsense variant. (A) Pedigree (grey symbols: deaf
individuals). Whole-exome sequencing of a sample from the index patient, I1I:3, did not identify a mutation either in any known deafness gene or in any strong
candidate gene in any of the mapped HBD regions shared by II:3, II:5 and II:6. Four siblings were homozygous for the AHI1 nonsense variant p.Argl066* (in
purple = considered non-pathogenic). For clarity, the one-letter code (R1066%) was applied for variant designation. (B) Electropherograms depicting wild type (left),
homozygosity (middle) and heterozygosity (right) for p.Argl066*. (C-F) Cranial MRI of individuals II:4 (at the age of 34 years) and II:5 (at the age of 32 years) in
comparison to MRI of two children with JBTS. (C1-F1) Axial sections at the level of the mesencephalon/superior cerebellar peduncles (scp): normal dimensions and
orientation of the scp in C1 and D1, ‘molar tooth sign’ with thickened and elongated scp in E1 and F1 (red arrows). (C2-F2) Coronal sections, showing normal
appearance of intervening vermis between the cerebellar hemispheres in C2 and D2, but ‘vermal cleft’ due to partial absence of the vermis in E2 and F2 (yellow
arrows). (C3-F3) Mid-sagittal views illustrate normal brain stem morphology and normal tent-like triangular shape of the fourth ventricle in C3 and D3; the ‘tip’ of the
fourth ventricle roof (fastigium) is at the level of mid-pons. In E3 and F3, the shape of the fourth ventricle is distorted, with rostral displacement of the fastigium, now
at the level of mesencephalic-pontine boundary (blue arrowheads point to fastigium).

p-Ser761Leu was present in the ESP, the TGP or the EXAC database, or
in 1629 in-house exomes. However, p.Trp1088Leufs*16 has been
documented in dbSNP (rs387906269), but no MAF is available.
Although compound heterozygous mutations are less likely
to be the cause of JBTS in Family 2, we also filtered for genes car-
rying at least two rare variants in II:2. This revealed heterozygous

missense variants in two other JBTS genes, CSPP1 (c.3281A>G/
p.Glu1094Gly and c.3478C>T/p.Pro1160Ser) and CEP164 (c.100C>
T/p.Arg34Trp and c.1480C>A/p.Pro494Thr). Haplotypes from
genome-wide SNP genotyping were not compatible with a causa-
tive role of compound heterozygous CSPP1 mutations. For the
CEP164 locus, haplotypes would be compatible with JBTS



Family 2

WT/1088fs*
WT/S761L

WT/1088fs*
WT/S761L

Human Molecular Genetics, 2015, Vol. 24, No. 9 | 2597

1 2 3 4 5§ 6 7 8 9 10 11 12 131415 16 17 18192282 X
T T T T

+ LoD +

@

o
L

LOD score )

|

I 523vs. ! 20ys. | 19 ys. “18\;5. | 12 ys. vas, oF tt | 1 e
e i | J

WT/1088fs*

WT/1088fs*
WT/S761L

1088fs*/1088fs*
S761L/S761L

WT/WT
WT/WT

1088fs*/1088fs*

S761L/5761L WT/S761L

U0 e AnMAnn AAARAN ol =

WT/WT
WT/WT

1500 CM 2000 2500 3000 3500

D

C WD5
g\ Sy

WD6 g’

- HS-Witriad
. -
H743 ML H743 s761L ~
winn = )

w171

Figure 2. Family 2 with JBTS and two homozygous AHI1 variants. (A) Pedigree (black symbols: JBTS). The sample of II:2 was subjected to WES. A deceased sister and a
healthy brother (whose samples were not available for genotyping) are not shown due to space constraints. For clarity, abbreviated codes (1088fs*, S761L) were used
for the AHI1 variants p.Trp1088Leufs*16 and p.Ser761Leu. Both homozygous variants co-segregate with the JBTS phenotype. S761L is considered to be the disease-
causing mutation and therefore depicted in red. The 1088fs* variant is considered non-pathogenic and therefore depicted in purple. (B) Electropherograms depicting
heterozygosity (1, I:1) and homozygosity (2, II:2) for 1088fs*, as well as heterozygosity (3, I:1) and homozygosity (4, II:2) for S761L. (C) Genome-wide homozygosity
mapping implicating the parents and all siblings shown in (A) identified a single HBD region with a combined maximum parametric LOD score of 2.31 in both affected
siblings, for a region on chromosome 6q23.2-q24.3 that contains AHI1. (D) Left: Structure of AHI1 protein as predicted by the WDSP algorithm. Middle: More detailed
structure of the WD3- and WD4-repeats (with some loops deleted for clarity) that show the hydrogen bond network formed by residues H743-S761-W771 (red/green)
and its hydrophobic environment (corresponding residues in blue). Right: The superposition of simulated WD3 and WD4 structures for S761 (wild type, green) and
S761L (mutant, pink) shows the overall conformational changes caused by the S761L mutation.

resulting from compound heterozygous mutations in this gene
(data not shown). Because both CEP164 variants are categorized
as benign polymorphisms by MutationTaster (3), and p.
Pro494Thr represents an annotated SNP with a documented glo-
bal MAF of 0.006 in the general population, CEP164 is very unlikely
to be the causative gene for JBTS in Family 2.

Evolutionary conservation and prediction of WD40
structure in wild-type and in mutant AHI1 protein

AHI1 has seven WD40-repeats (Supplementary Material, Table S1).
p-Ser761Leu in Family 2 affects an evolutionarily highly conserved
residue of AHI1 in the 4th WD40-repeat (WD4) (Supplementary
Material, Fig. S3A). In contrast to wild-type AHI1 (Supplementary
Material, Fig. S3B), ScanProsite (4) fails to predict the WD-repeat
in AHI1, ser7611eu (SUpplementary Material, Fig. S3C). We therefore
modeled the structure of AHI1 (Fig. 2D) as recently described
for POC1B, another WD40 protein that we found to be mutated
in a family with severe retinal dystrophy and JBTS (5). The
p-Ser761 residue is predicted to form a hydrogen bond network
with p.His743 and p.Trp771 (Fig. 2D) (6), surrounded by hydrophobic

residues p.Phe740, p.Val742, p.lle747, p.Leu750, p.Met759, p.
Val767 and p.Val769. Due to this hydrophobic environment, the
hydrogen bonds are very strong. Our earlier studies suggest that
each hydrogen bond may cause ~15 kj/mol stabilization (7). The
p.Ser761Leu mutation is predicted to eliminate the two hydrogen
bonds, causing a significant destabilization of the protein. To
study the effect of the p.Ser761Leu mutation on structure, we
performed preliminary molecular dynamics simulations of
wild-type and mutant AHI1. The initial stereo-structures were
generated by the WDSP. The simulations were carried out using
our recently developed protein force field RSFF1 (see Methods
for details). Because of the steric effect of p.Leu761, both p.His743
and p.Trp771 are rotated (Fig. 2D, right). Conformational changes
are found in the Loop_da that connect WD3 and WD4 and in the
long Loop_cd of WD4 (Supplementary Material, Table S1). We
postulate that the structural changes caused by p.Ser761Leu af-
fect the interaction of AHI1 with its binding partners. Dasen
et al. (8) found that the p.Ser715Pro mutation of the TLE1 protein
abolished its interaction with Hesx1.5. p.Ser715is part of the TLE1
hydrogen bond network p.Asp719-p.His691-p.Ser715-p.Trp725
(Supplementary Material, Table S2). As predicted for the AHI1
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mutation p.Ser761Leu, the TLE1 mutation also disrupts the
hydrogen bond network. Because p.Asp-p.His-p.Ser/p.Thr-p.Trp
and p.His-p.Ser/p.Thr-p.Trp hydrogen bonds are widely present
in WD40 proteins, we expect that mutations of these residues,
especially His and Ser/Thr, are deleterious.

Clinical investigations

Family 1

None of the four homozygous AHI1 mutation carriers in this
non-syndromic deafness family presented any symptoms or
any medical history compatible with JBTS. Cranial MRI was avail-
able from II:4 and II:5 and ruled out an MTS (Fig. 1C and D).
Detailed ophthalmological investigation of II:4 showed no retinal
abnormalities, and abdominal ultrasound failed to detect renal
abnormalities.

Family 2

Two siblings from this family have JBTS with retinitis pigmentosa
(RP), compatible with JBTS3, the subtype caused by AHI1 muta-
tions (9), and have been reported previously (2).

AHI1 protein analysis

Western blotting with two antibodies against the N-terminal
half of AHI1 showed three isoforms in fibroblast lysates from
II:4, a homozygous carrier of the AHI1 variant of Family 1
(p-Argl066%), and from a wild-type control proband (Supplemen-
tary Material, Fig. S1B). The observed bands correspond to iso-
form 2 (ca. 120 kDa), to isoform 3 (ca. 65 kDa) and to a fourth
isoform (ca. 50 kDa) of AHI1 (10).

Zebrafish model of human mutations

We used zebrafish to investigate the pathogenicity of disruptions
in the 3’ region of zebrafish ahil, corresponding to the locations of
the truncating human variants p.Argl066* and p.Trp1088Leufs*16.
Ahil protein structure is conserved between zebrafish and human,
so we designed a morpholino, e23i23, to alter splicing of a 3’ exon
in the region of the gene that encodes the SH3 domain (Fig. 3A).
RT-PCR results show an in-frame deletion that abolishes a large
portion of the SH3 domain and a concomitant depletion in the
normal transcript (Fig. 3B and E). When we analyzed embryos
injected with this morpholino for any resulting phenotype, we
found that body axis, brain and ear morphologies were compar-
able to those of uninjected controls (Fig. 3D and E). As a positive
control, we injected a previously reported splice-blocking morpho-
lino (11), SPLS, that targets a more 5’ region of the ahil transcript
(Fig. 3A). In our hands, this morpholino resulted in nearly total
knockdown of the normal transcript and we observed strong cilio-
pathy defects consistent with the previous study (Fig. 3F).

Discussion

The criteria for classifying a genetic variant of a known disease
gene as pathogenic must be stringent and include the variant’s
allele frequency and cosegregation with the phenotype in the
patient’s family and in additional families. The precise classifi-
cation of variants is required for the reliability of online mutation
repositories such as HGMD, a major database accessed by mo-
lecular biologists, clinicians and genetic counselors (12).
Heterozygous variants in recessive disease genes that are
incidentally identified in healthy individuals (e.g. in preconcep-
tional carrier screening with unremarkable family history) or in

a patient whose phenotype is unrelated to the respective gene
(e.g. whole-exome or whole-genome sequencing) may be difficult
to interpret in terms of their pathogenicity. In contrast, homozy-
gous inactivation of severe recessive disease genes usually
results in obvious clinical phenotypes. Of all mutations, truncat-
ing and frameshift mutations in known disease genes are there-
fore most likely to be pathogenic (13). For genes not known to be
implicated in monogenic disease, homozygous LoF variants in
healthy individuals are strong indicators of LoF tolerance of the
affected genes. Genes involved in embryonic development and
cellular metabolism, such as AHI1, are rarely LoF tolerant. AHI1
encodes a highly conserved ciliary protein, Jouberin, with a cru-
cial role in embryonic, in particular cerebellar and cortical, devel-
opment. The longest AHI1 isoform is a 1196-residue (137 kDa)
protein with a coiled-coil region, seven WD40-repeats and a
Sarcoma homology 3 (SH3) domain. These motifs are known to
participate in cell signaling and intracellular trafficking. AHI1
mutations, which are mostly truncating, cluster in the N-termin-
al half of AHI1 that contains the WD-repeats, but not the SH3
domain, and cause the severe autosomal recessive ciliopathy,
JBTS3 (OMIM 608629).

The lack of an overt clinical effect (including an MTS in cranial
MRI) of the p.Argl1066* mutation in AHI1 (Fig. 1C and D) is surpris-
ing, because this mutation does not have the features typical of a
neutral LoF variant: (i) There are no close homologs, hence com-
pensation for AHI1 inactivation by functional redundancy is un-
likely. (ii) The mutation is predicted to remove a significant part
(10%) of the full-length AHI1 protein, including the SH3 domain.
(iii) The p.Argl066* variant is present at very low frequency in the
ExAC database (one out of 116 180 alleles; last accessed on 20
January 2015), and absent from the ESP and TGP databases, and
from our extended in-house database of 1629 exomes. Rather,
the truncating nature of the p.Argl066* variant is comparable to
the majority of previously described AHI1 mutations in JBTS3 pa-
tients, and in heterozygous state, it would have been classified as
a pathogenic allele (2). The only indication of the benign charac-
ter of the p.Argl066* variant was its homozygous occurrence in
three siblings with an unrelated condition (non-syndromic deaf-
ness) (14) and in their completely healthy sister. Three rare mis-
sense variants affecting AHI1 codon 1066 are currently listed in
the EXAC database (last accessed on 20 January 2015). Two of
them [p.Argl1066Pro and p.Argl066Gln (rs544992761)] have been
found four times in 114848 alleles, and one missense variant,
p-Argl066Gly, has been found only once. In contrast to the homo-
zygous nonsense mutation described herein, these variants were
all heterozygous, thus not adding any information about the
essentiality of this AHI1 region.

Of note, one of the three main AHII isoforms (transcript vari-
ant/isoform 2, RefSeq NM_017651.4) consists of only 21 coding
exons (compared with 26 exons in the full-length protein, isoform
1; RefSeq NM_001134831.1) that encode a protein of 1053 residues
(120 kDa) lacking the SH3 domain (15). In contrast to the AHI1 full-
lengthisoform 1,isoform 2, running at ~120 kDa, was more strong-
ly expressed in culture fibroblasts from a homozygous mutation
carrier (II:4) than from a control individual. The apparently pre-
dominant shorter isoforms (10) are therefore not affected by the
p-Argl066* mutation except that their relative levels of expression
are switched around between homozygous mutation carrier and
control proband. The reason for this may be a culture-induced
shift of expression ratios or interindividual variations.

To investigate whether pathogenicity of truncating AHI1 variants
could depend upon their location within the gene, we generated
zebrafish models. In contrast to zebrafish treated with a morpholino
affecting the N-terminal region where human mutations cluster
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Figure 3. Zebrafish studies. (A) The predominant ahil transcript in zebrafish embryos consists of 27 exons. The position of the previously published splice-blocking MO,
SPL8, is indicated with a dark blue arrowhead at the splice acceptor site of exon 13. The e23i23 morpholino used in this study is indicated with a light blue arrowhead at the
splice donor site of exon 23. (B) A reduction in the normal splice form, visualized as a 438 bp fragment in the control lane, is observed in €23i23MO-injected embryos at
2 dpf. A smaller running band containing an in-frame 63 bp deletion of the 23rd exon is observed in the e23i23 samples (red arrow). (C) The SPL8 morpholino strongly
reduces the normal splice product of 517 bp at 2 dpf. No mis-spliced product was observed in our experiments. (D) The structure of the Ahil protein is conserved
between human and zebrafish, with intact coiled-coil, WD-repeat and SH3 domains. Uninjected control shows normally elongated body axis, normal brain formation
and an otic vesicle with two distinct otoliths (red brackets). (E) The predominant splice form in e23i23 morpholino-injected embryos encodes a protein lacking 21
amino acids of the N-terminal region of the SH3 domain (black arrowhead). e23i23MO-injected embryo is morphologically indistinguishable from controls.
(F) Embryos injected with the previously described SPL8 morpholino (11) are depleted of the normal ahil transcript and exhibit a phenotype consistent with a severe
ciliopathy, including hydrocephaly (asterisk), curved body axis and otic vesicle abnormalities. Scale bars: 250 pm.

(Fig. 4A), we observed no ciliopathy phenotype after deleting a
significant portion of the SH3 domain near the sequence corre-
sponding to the localization of the human p.Argl066* variant.
Hence, the SH3 domain (and downstream AHI1 peptide se-
quence) may not be essential for AHI1 function. Transcript 2
(Fig. 4E) may define the functionally indispensable part of
the gene, and mutations located more 3’, such as p.Argl066*
(Fig. 4C), remain clinically silent. Consistent with this interpret-
ation, all JBTS3-associated AHI1 mutations cluster between
the N-terminus and the WD-repeats. The only exception is a
homozygous truncating mutation (c.3263_3264delGG/p.Trp1088
Leufs*16; Fig. 4A and C) in the same exon as p.Argl066* (exon
25). This frameshift mutation was identified by targeted AHI1
mutation screening in two siblings with a JBTS3 phenotype
who were born to consanguineous parents (2) (here termed ‘Fam-
ily 2’). p.Trp1088Leufs*16 has been documented in dbSNP as
rs387906269, but no MAF is available, indicating that this is a
very rare variant. Our genome-wide homozygosity mapping
using samples of additional siblings and both parents of family
2, combined with WES of one index patient, confirmed AHI1 as
the gene responsible for JBTS. Remarkably, the unimpaired pheno-
type of the zebrafish model for C-terminal AHI1 truncations and

intensive structural modeling strongly indicate that the causative
mutation in this family is not the C-terminal frameshift variant
p-Trp1088Leufs*, but rather is a missense mutation, p.Ser761Leu,
residing in the JBTS3 mutation cluster region (Fig. 4A, B and E).
We therefore consider p.Trp1088Leufs*16, like p.Argl066*, a very
rare neutral LoF variant. The p.Trp1088Leufs*16 mutation is par-
ticularly misleading not only because of the variant type (frame-
shift), but also because mapping and WES indicate that AHI1
undoubtedly is the disease gene in this family.

The pilot study for a preconception carrier screen of 448 se-
vere recessive childhood diseases identified a healthy heterozy-
gous carrier of a novel C-terminal AHII nonsense variant,
p.Glu984* (Fig. 4A and F), located between the WD-repeat region
and the two apparently non-pathogenic LoF variants discussed
in our study (16). A conclusive assessment of the p.Glu984* vari-
ant is currently not possible. Instead, further studies are needed
to define the extent of the proposed C-terminal LoF-tolerant
region of AHI1. This region might be limited to the transcript 3-
specific sequence or it may extend to the transcript 2 sequence
downstream of the WD-repeats. Even if both parents carried
the heterozygous p.Glu984* mutation, they might have no ele-
vated risk for JBTS in their offspring, rather than the 25% risk of
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Figure 4. Schemes of the AHI1 gene and the encoded AHI1/Jouberin protein. (A) AHI1 gene with numbers for coding exons (4-29). The three AHI variants investigated herein
are indicated above the gene scheme. Known JBTS-causing AHI1 mutations clustering within exons 7-16 and the p.Glu984* variant [identified in the pilot study for the
preconception carrier screen for 448 severe recessive childhood diseases (16)] are indicated below the scheme. Variants considered to be non-pathogenic or of uncertain
pathogenicity (p.Glu984") are depicted in purple. Variants considered to represent disease-causing mutations are in red. Exon colors refer to the protein regions they
encode (B-F). (B) AHI1 wild-type protein (the position of the presumably pathogenic p.Ser761Leu mutation is indicated), (C) truncated AHI1 protein predicted to result
from the p.Trp1088Leufs*16 variant (in grey: 15 unrelated residues before truncation), (D) truncated AHI1 protein predicted to result from the p.Argl066* variant,
(E) AHI1 isoform encoded by NM_017651.4 (‘transcript variant 2’). The position of p.Ser761Leu mutation in this isoform is indicated. (F) AHI protein truncation
predicted to result from the p.Glu984* variant that had been identified in a carrier screen (16).

deleterious recessive mutations. This would have major implica-
tions for reproductive decision making.

Many previously reported mutations have recently been
reclassified as likely benign because of their high frequency in
datasets from large-scale exome and genome sequencing studies
(17-20). In some cases, this reclassification questions the categor-
ization of the respective genes as disease causing. For example,
our findings from large-scale sequencing of known deafness
genes recently disqualified MYO1A as a dominant deafness
gene: most MYO1A ‘mutations’, including truncating variants,
had MAFs above the threshold for dominant mutations and
were present in both heterozygous and homozygous state in
healthy individuals (21). Here, we propose that even homozygos-
ity for rare truncating variants in undoubted disease genes must
be assessed more rigorously before assignment of pathogenicity.
In addition to the nature of the variant, the location of the
sequence change within the gene is very important, and more
research is needed to define those regions of disease genes that

are vulnerable to pathogenic mutations and those that tolerate
LoF variants. LoF-tolerant regions of disease genes, as we have
identified for AHI1, can be unmasked by systematic analysis of
large-scale genome sequencing studies for biallelic mutations
in healthy individuals (22-24). In their survey, MacArthur et al.
(1) considered novel LoF variants as likely disease causing only
when they affect ‘all known transcripts of genes in which other
null mutations have been convincingly associated with disease’.
We strongly agree with this strict definition; although AHI1 muta-
tions undoubtedly cause severe congenital disease, this gene
seems partially dispensable. We propose that LoF variants in
transcripts previously not associated with disease-causing mu-
tations require careful evaluation. Such efforts are required to
avoid erroneous interpretation, particularly in preconception
carrier screening when couples make reproductive decisions.
It will also, as in Family 2, help avoid misclassification of non-
causative truncating mutations in known disease genes in
patients with phenotypes expected for the affected genes.



Materials and Methods

Patients

All samples in this study (patients and healthy relatives) were ob-
tained with written informed consent for the genetic analyses
performed in this study. All clinical investigations have been con-
ducted according to the principles expressed in the Declaration of
Helsinki. The study was approved by the institutional review
board of the Ethics Committee of the University Hospital of
Cologne. Family 1 is a consanguineous Palestinian family (the
parents of the patients are first-degree cousins) with three sib-
lings affected by congenital deafness. To exclude any mix-up of
samples, new samples were taken from all family members,
and AHI1 (RefSeq NM_001134831.1) genotyping was repeated
with the previously used primers, but also with an alternative
pair of primers. Family 2 is a previously reported consanguineous
Egyptian family (2) with two siblings affected by JBTS and RP.

Homozygosity mapping

We performed genome-wide linkage analysis of the parents and
the six siblings (Family 1) and of the parents and six siblings
(Family 2, as displayed in Fig. 2A) as previously described (25).
We used 10K SNP arrays (Family 1; Affymetrix GeneChip
Human Mapping 10K Array, version 2.0; Affymetrix, Santa
Clara, CA, USA) and the Illumina HumanCoreExome-12v1-1
BeadChip (Family 2; Illumina Inc., San Diego, CA, USA), respect-
ively, according to the manufacturer’s protocol. Linkage analysis
was performed assuming autosomal recessive inheritance, full
penetrance, consanguinity and a disease gene frequency of
0.0001. Multipoint LOD scores were calculated using the program
ALLEGRO (26). All data handling was done using the graphical
user interface ALOHOMORA (27).

Whole-exome sequencing

Samples of patient II:3 (Family 1) and of patient II:2 (Family 2)
were subjected to WES. We fragmented 1 ug of DNA by sonication
(Covaris, Woburn, MA, USA). The fragments were end-repaired
and adaptor-ligated including incorporation of sample index
barcodes. After size selection, the library was subjected to the en-
richment process. For this, we chose the SeqCap EZ Human
Exome Library v2.0 kit from NimbleGen (Roche NimbleGen, Madi-
son, WI, USA). The enriched library was subsequently sequenced
on an Illumina HiSeq 2000 sequencing instrument using a paired
end 2 x 100 bp protocol.

This resulted in 7.8 Gb of mapped sequences, a mean cover-
age of 77 and 30x coverage of 85% of target sequences. For the
data analysis, a local pipeline and interface were used (Varbank
v.2.3; https://varbank.ccg.uni-koeln.de). Primary data were fil-
tered according to signal purity by the Illumina Realtime Analysis
(RTA) software v1.8. Subsequently, the reads were mapped to the
human genome reference build hgl9 using the BWA (28) align-
ment algorithm. GATK v1.6 (29) was used to mark duplicated
reads, for local realignment around short insertion and deletions,
to recalibrate the base quality scores and to call SNPs and short
indels.

Scripts developed in-house at the Cologne Center for Genom-
ics were used to detect protein changes, affected donor and ac-
ceptor splice sites, and overlaps with known variants. Acceptor
and donor splice site mutations were analyzed with a Maximum
Entropy model (30) and filtered for effect changes. In particular,
we filtered for high-quality (coverage >15; quality >25) rare (MAF
<0.005) homozygous variants [dbSNP build 135, the database of
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the 1000 Genomes Project build 20110521, TGP (31)], and the
Exome Variant Server, NHLBI Exome Sequencing Project, Seattle,
build ESP6500 (32). We also filtered against an in-house database
containing all variants from 511 exomes from epilepsy patients to
exclude pipeline-related artifacts/false positives (MAF < 0.004).
Because the patients came from a consanguineous background,
we filtered for variants overlapping with runs of homozygosity
(ROH). To detect ROH, we extracted high-quality SNP genotypes
from the exome data and ran Allegro v1.2c (26) with a pseudo-
consanguine pedigree (first-degree cousins), a full penetrant re-
cessive model, and a disease allele frequency of 0.0001. To search
for the gene underlying the hearing deficitin patients II:3, II:5 and
II:6, chromosomal candidate regions identified in genome-wide
linkage analysis with 10 K SNP arrays were used for filtering.
The resulting list of candidate genes was then prioritized by tak-
ing into account positive rejected substitution scores obtained
with GERP++ (33). In addition to the above large-scale sequencing
databases consulted by the Varbank pipeline, we searched the
Exome Aggregation Consortium (ExAC) database (Cambridge,
MA, USA; http:/exac.broadinstitute.org, as of 12/2014), which ag-
gregates numerous databases including the current versions of
the ESP and the TGP, for the AHI1 variants discussed herein.

Segregation analysis for AHI1 variants and qPCR

Confirmation and segregation analysis for the AHI1 variants
¢.3196C>T (p.Argl066*) and c.3263_3264delGG (p.Trp1088Leufs*16)
in exon 25 was carried out by Sanger sequencing of 534-bp PCR
products generated with primers 5'-TGCTTCTCCTGCTGTGTTCC-
3’ (1F) and 5-CAGAATGGAGCAGCTTCTAATG-3’ (1R), on samples
of all family members with indicated genotypes (Figs 1A and
2A). In addition, alternative primers were used for confirmation
and segregation analysis of c.3196C>T (2F: 5'-CCATTTCTCAATCC
CACAGTC-3',2R: 5'-CCATTGGTAAACATATGCAAAGG-3’; PCR prod-
uct: 488 bp). To exclude allelic dropout in PCR amplification using
the above primers, we conducted qPCR with primers flanking the
binding sites of the PCR/sequencing primers (B1qF2 5'-GCTTCA
CAAGTAATTTACTT-3 with B1gR2 5'-GCAGCTGAAACCAAAGCAG
TAC-3' yielding a 199 bp product around the primer binding sites
of 1F and 2F, and B2qF2 5'-GTATAACTGATAGTCCAAG-3’ with
B2gR2 5'-TAAGAAAGCTGGTAGCTAG-3' yielding a 227 bp product
around the primer binding sites 1R and 2R, respectively). qPCR pri-
mers were used at a final concentration of 0.7 pm/pl in a 14.25 ul
reaction mix containing 6.25pl 2x PowerSybrGreen Master
Mix (Life Technologies, Carlsbad, CA, USA) on the StepOnePlus™
System (Life Technologies).

In silico assessment of the p.Ser761Leu mutation

Evolutionary conservation of the p.Ser671 residue was deter-
mined by alignment of the respective peptide stretches from
five species using Clustal Omega (34). The structure of AHI1 and
the effect of p.Ser671Leu were predicted using an algorithm we
recently developed, the WD40 structure predictor, WDSP (35).
MD simulations were performed using Gromacs version 5.0 at
310K (36). RSFF1 force field was used (37). Each protein was
solvated with ~7000 TIP4P/Ew61 water molecules. The ionic
Arg, Lys, Asp and Glu side chains were neutralized with counter-
ion (Cl” or Na*). The velocity rescaling thermostat with T =0.5 ps
was used to maintain the NPT ensemble. Electrostatics was trea-
ted using the particle-mesh Ewald (PME) method with areal-
space cutoff of 0.9 nm. Van der Waals interactions were cut off
at 0.9 nm with the long-range dispersion correction for energy
and pressure. All bond lengths involving hydrogen atoms were
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constrained by the LINCS, allowing a time step of 2 fs. Fifty and
90 ns MD simulation was run for the wild-type and for the
p.Ser761Leu mutant, respectively.

Western blotting

Protein extracts were obtained by lysing subconfluent primary
fibroblast cultures (individual II:4, family 1) with crude lysis buf-
fer (1% SDS, 10 mm EDTA). Samples corresponding to 15 pg pro-
tein were run together with a SeeBluePlus2 molecular weight
ladder on a 4-12% NuPAGE gradient gel in MOPS-SDS Buffer at
130V for 2.5 h. The gel was blotted onto a nitrocellulose mem-
brane (Fa Amersham, Hybond-ECL) at 30 V for 2.5 h and subse-
quently blocked with 6% milk powder for 3 h. Incubation with
primary antibodies PA5-30901 and PA5-31846 was 12 h at 4°C in
a 1:1000 dilution. The secondary goat anti-rabbit IgG-HRP anti-
body was used in a 1:10 000 dilution for 1 h at room temperature,
followed by 3 x5 min washes in TBS-T buffer. Detection and
exposure were carried out by ECL-sensitive chemiluminescent
substrate and film.

Morpholino knockdown in zebrafish

All zebrafish studies were conducted with the Oregon AB wild-
type strain crossed against the Tiibingen strain to obtain embryos
for injection. Animals were raised in a 10 h dark and 14 h light
cycle and maintained as described (38). Animals were staged ac-
cording to the standard series (39) or by hours or days postfertili-
zation (hpf or dpf, respectively). All experiments were conducted
in accordance with Institutional Animal Care and Use guidelines.
Whole-mount images of live embryos were obtained on a Leica
dissecting microscope with a Zeiss Axiocam HRC. Antisense
Morpholinos (Gene Tools) directed against the splice acceptor
of the 13th exon [SPL8 (11)] or the splice donor of the 23rd exon
(e23i23, 5'-AGCAAATTAACGCTTACCGTCTGAT 3’) were microin-
jected into one-cell stage embryos at concentrations between 2
and 5 pg/pl. Five embryos per experimental condition (injected
versus uninjected control) from each time point were pooled
for total RNA extraction with TRIzol (Invitrogen). cDNA was
synthesized by reverse transcription using the Superscript III
kit (Invitrogen) and used in PCR reactions with primers flanking
the SPL8 (11) or e23i23 (forward: 5'-tcaagccggacagccaatcaga-3’;
reverse: 5'-gaggcttcagcatcegtgtccag-3’) target sites. Individual
bands were separated by electrophoresis on 1.5% agarose gels,
isolated and purified (Qiagen) for sequencing (GeneWiz).

Supplementary Material

Supplementary Material is available at HMG online.
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