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Summary

The causes of childhood cancer have been systematically studied for several decades, but apart 

from high-dose radiation and prior chemotherapy there are few or no strong external risk factors. 

On the other hand, inherent risk factors including birth weight, parental age, and congenital 

anomalies are consistently associated with most types of pediatric cancer. Rare, highly-penetrant 

syndromes have long been known to cause a small proportion of cancers but recently the 

contribution of common genetic variation to etiology has come into focus through genome wide 

association studies. These have highlighted genes not previously implicated in childhood cancers 

and, surprisingly, have suggested that common variation explains a larger proportion of childhood 

cancers than adult. Rare variation and non-Mendelian inheritance, such as through maternal 

genetic effects or de novo germline mutations, may also contribute to childhood cancer risk but 

have not been widely examined to date.
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Introduction

The causes of childhood cancer have been systematically studied for several decades. The 

incidence of all cancers occurring in children under 20 years of age is about 175 cases per 

million in the United States (1), with the incidence of many individual types [typically 

grouped by the International Classification of Childhood Cancer (ICCC) schema(2)], in the 

low dozens (Figure 1). Rarity is thus a central fact which dictates the quality and quantity of 

evidence for causal associations between putative risk factors and childhood cancers. Most 

etiologic investigations of childhood cancer have thus of necessity used the case-control 

study design (3), in which the characteristics of patients with a disease are compared to 

those of a carefully selected group of disease-free controls. When they require participant 
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involvement, as in the many studies of childhood cancer which have collected exposure 

information through parental interview, case-control studies are susceptible to both recall 

and selection biases.

Given the milieu for childhood cancer epidemiology, evidence regarding causal associations 

has accumulated slowly. However, for the most common types of cancer, particularly acute 

lymphoblastic leukemia (ALL), the body of literature is now sufficiently large to allow data 

synthesis through meta-analyses and data pooling. This review will only briefly discuss such 

analyses of external, or environmental, risk factors, as they have mainly demonstrated weak 

or null associations. In contrast, intrinsic characteristics or conditions of childhood cancer 

patients have shown stronger, more consistent associations and in the last half-decade the 

application of genome wide single nucleotide variant (SNV) arrays to several childhood 

cancers has generated surprising insights into their biology. Hence, the majority of this 

review for the general pediatrician will cover these topics in a broad overview to reflect their 

increased importance in the current understanding of childhood cancer etiology.

Demographic risk factors

Childhood cancer incidence has long been noted to vary by age, sex, and race/ethnicity. 

Overall incidence is highest in infancy at about 240 cases per million per year. This rate 

drops to a nadir of 128 cases per million at 5-9 years of age before rising to 220 cases per 

million at 15-19 years of age (1). Grouped incidence however obscures interesting patterns 

among individual cancers (Figure 1). For instance, all the embryonal tumors 

(neuroblastoma, Wilm's tumor, retinoblastoma, etc.) share a downward sloping incidence 

which starts high at birth and dissipates after about 5 years of age. ALL is notable for the 

incidence peak which occurs between 2 to 5 years of age, while bone sarcoma incidence 

peaks sharply around the time of the pubertal growth spurt in early-tomid adolescence.

For most childhood cancers there is a slight male preponderance (Figure 2). The male-to-

female ratio ranges from 1.04 to 1.64 in neuroblastoma and germ cell tumors, respectively, 

in cases 0-19 years of age but varies considerably by age group and more specific diagnosis. 

Wilm's tumor is notable for being the one major childhood cancer which is more common in 

females.

Childhood cancer risk also differs by race/ethnicity (Figure 3). Relative to white children in 

the United States the incidence of most types of cancer is lower in black, Asian, and 

Hispanic children. In some cases, such as the near complete lack of Ewing sarcoma among 

black and Asian children, the disparity is rather dramatic. In a few notable instances cancer 

incidence is higher in other groups compared to white children. That acute leukemia 

incidence is about 10% higher in Hispanic children compared to white children is 

particularly notable. The extent to which racial/ethnic differences are attributable to genetic 

versus environmental differences has yet to be determined but will surely come into focus as 

the genetic architecture of childhood cancer continues to be elucidated.

Environmental risk factors

High dose ionizing radiation and prior chemotherapy are accepted causes of childhood 

cancers, each raising risk several fold (4-7). No other environmental risk factors, by which 
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we mean any exposure which originates outside the body, have emerged as definitively 

causal for childhood cancer.

Measurement of environmental exposures poses a challenge in elucidating their effects on 

childhood cancer risk. Prospective studies would require hundreds of thousands, if not 

millions, of children to identify enough cases to generate statistically meaningful results. 

Thus most childhood cancer studies must rely on the case-control design, which is 

particularly problematic for evaluating certain types of exposures. Demographic and 

intrinsic factors are unambiguous, relatively easy to obtain via questionnaire, and, in such 

cases as parental age, race/ethnicity, and birth defects, generally not subject to recall error. 

In contrast, environmental factors such as parental diet, maternal medication, caffeine, and 

alcohol use, and pesticide and air pollution exposure, among others, are very difficult to 

measure accurately in a retrospective design. Although use of registries, birth and medical 

records and other data sources reduces some sources of bias, accurate exposure assessment 

remains a major barrier to determining the causal impact of environmental factors on 

childhood cancer risk.

For many childhood cancers findings are inconsistent or studies too few to conduct meta-

analysis; moreover synthesis is hampered by the need to separately examine exposures 

during the preconceptional, pregnancy, and postnatal periods and the progressively finer 

classifications of tumors. ALL, being the most common childhood cancer, has however been 

the subject of several meta-analyses of putative environmental risk factors (Table 1)(8-15).

Exposure to infections has been one of the most commonly examined environmental 

exposures in relation to ALL risk, and there are two main hypotheses regarding the nature of 

this relationship. Kinlen proposes that previously isolated, and therefore immunologically 

naïve, populations are susceptible when exposed to specific infectious agents due to 

population mixing (16). A recent meta-analysis estimated an increased risk of ALL in rural 

settings of population mixing (17). Greaves’ hypothesized that an immature and 

unchallenged immune system, resulting from delayed exposure to common infections, 

produces an unregulated immune response and leads to ALL in the presence of susceptible 

cells (18, 19). While direct measurement of exposure to infections and the resulting immune 

response is generally not feasible, several proxies have been employed, including birth 

order(20-22), daycare attendance(23, 24), breastfeeding(25), infectious illness histories(26), 

and vaccinations(27). Meta-analyses have shown protective effects for both breastfeeding 

(28) and daycare attendance (13), although because these are indirect exposure measures, it 

is unclear whether infection exposure or some other factor is driving these associations.

Several recent meta-analyses have identified increased risk for both residential (29, 30) and 

maternal occupational (14) exposure to pesticides. Studies of residential pesticide exposure 

have generally relied on self-report, which is subject to recall bias that may inflate risk 

estimates. Some recent studies have used residential proximity to pesticide applications 

(31-33), a method which is less prone to bias but still prone to measurement error which 

may attenuate risk estimates (34). Occupational studies typically rely on either self-report or 

record data. While an association between pesticide exposure and ALL is supported by the 

available meta-analytic data, it is difficult to estimate the true magnitude of effect, if there is 
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indeed a causal relationship, given the varying exposure assessment methods and the 

inherent biases and measurement errors therein.

Associations for other exposures examined using meta-analyses, including maternal 

alcohol(11), coffee(35), and vitamin use(9), and both paternal (12) and maternal (10) 

smoking have yielded mostly null (10, 11) or slightly elevated (12, 35) results. Maternal 

prenatal vitamin use was associated with a decreased risk of ALL in offspring, although the 

meta-analysis was based on only three studies (9). . While a causal role for these risk factors 

is possible, observational epidemiology is not conclusive in these circumstances. High-

quality studies with a focus on accurate exposure assessment are necessary to evaluate 

environmental risk factors for childhood cancer.

Intrinsic risk factors

Several intrinsic characteristics of children or their parents have been consistently associated 

with childhood cancers. Risk of ALL(36), central nervous system tumors(37), 

neuroblastoma(38), and Wilm's tumor(39), among others, rises as a linear function of birth 

weight, to varying degrees, and recent analyses that have used alternate measures of birth 

size (e.g. size for gestational age, percent of optimal birth weight) have found similar results 

(40). Risk of acute myeloid leukemia is elevated with both low and high birth weight(41), 

while risk of hepatoblastoma is inversely related to birth weight and strikingly elevated 

among the smallest infants (42). The reasons behind the association of higher birth weight 

with childhood cancers have not been explored in detail, but may include prenatal growth 

hormone exposure (43), the underlying genetics of birth weight (44), and the greater number 

of cells at risk for carcinogenic transformation. The strong inverse association of 

hepatoblastoma with birth weight has been thought to be related to neonatal treatment, but 

no culprit exposure has been identified to date(45).

Advanced parental age has also been associated with most childhood cancers. A large 

pooled analysis of population-based record-linkage studies found significant positive linear 

trends in leukemia, lymphoma, brain tumor, neuroblastoma, Wilm's tumor, bone tumors, and 

soft tissue sarcomas with 6-15% increased risk per five years of maternal age(46). Paternal 

age was not associated with these cancers after adjustment for maternal age, however since 

the two are highly correlated it is not clear that maternal age was solely responsible. As with 

birth weight, the reasons behind these findings are unclear, but may include genetic or 

epigenetic mutations associated with advanced parental age (47).

Structural birth defects have consistently been found to increase the risk of childhood 

cancers, as a group, about threefold (48-50) although due to the rarity of both individual 

birth defects and individual childhood cancers more specific associations have not been 

reported to date. Undoubtedly some of this association is explained by underlying genetic 

causes, but as most birth defects appear sporadic(51) genetics are not likely the sole 

explanation for cooccurrence.

Genetic risk factors

Inherited syndromes, caused by high-penetrance germline DNA mutations(52, 53), 

chromosomal aneuploidy(54), or epigenetic disorders(55), are known to cause a minority of 
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childhood cancers. Although the proportion attributable to syndromes has rarely been 

precisely quantified for common childhood cancers the estimate is typically 5-10%. For 

especially rare cancers, such as pediatric adrenocortical carcinoma, the proportion can be 

much higher (56). Specific syndromes predisposing to particular childhood cancers are 

covered elsewhere in this issue.

Genome wide association studies (GWAS) compare the frequency of hundreds of thousands 

of common SNV's in those with a disease to those without(57). Due to the large number of 

comparisons made in GWAS a SNV-disease association must reach a high degree of 

statistical significance (generally p < 5 × 10−8) to be convincing. This requires large sample 

sizes not readily achievable for rare diseases. Yet, despite the a priori presumption that the 

GWAS design could not be successfully applied to childhood cancers investigations of 

ALL(58-64), neuroblastoma(65-74), Wilm's tumor(75), osteosarcoma(76), and Ewing's 

sarcoma (77), each have identified multiple variants associated with each disease (Table 2). 

The unexpected success of GWAS to studies of these rare cancers appears to be due to the 

larger magnitude of SNV-disease association among young onset cancers compared to those 

with adult onset, which was recently formally quantified (Figure 4) (78). An implication of 

this finding, besides reaffirming the applicability of GWAS to other childhood cancers not 

yet studied thusly, is that common genetic variation explains a greater proportion of the 

population attributable risk for childhood than adult cancers.

The GWAS and replication studies of ALL and neuroblastoma include diverse populations 

and subtype-specific analyses, giving a more mature picture of the genetic architecture of 

each disease than is available for those with a single GWAS to date. Two recent GWAS of 

ALL conducted with African-American and Hispanic cases and controls replicated many of 

the SNV's first identified in studies of subjects with European ancestry; SNV's in ARID5B, 

IKZF1, and PIP4K2A were associated with ALL in both ethnicities, and CEBPE as well in 

Hispanics (60). OR's per allele were similar in each group, in line with the generally high 

trans-ethnic replicability of GWAS results (79), however frequencies varied in directions 

that suggest several SNVs may explain a substantial proportion of lower incidence of ALL 

in African-Americans and the higher one in Hispanics compared to Europeans. ARID5B 

rs10821936 was present in 33% of Europeans, 24% of African-Americans, and 47% of 

Hispanics; the equivalent numbers for IKZF1 rs11978267 were 28%, 19%, and 26%. CEBP 

rs4982731 was present in 28% of Europeans and 39% of Hispanics, as well as 38% of 

African-Americans in which this SNV did not replicate. Similarly, SNVs in BARD1 

replicated in a GWAS of neuroblastoma among African-Americans, while no others did, 

possibly due to small sample size (71).

Several SNVs in both diseases show far stronger OR's with specific subtypes, demonstrating 

that lumping disparate cases can dilute associations. In ALL, ARID5B SNVs have been more 

strongly associated with hyperdiploid disease(59, 80, 81) and GATA3 SNV's with leukemias 

displaying a Philadelphia-chromosome-like expression pattern (63); the latter is an 

especially dramatic instance, with subtype-specific ORs per allele of about 3.5 versus 1.3 in 

total ALL. BARD1 and LMO1 SNVs are associated with aggressive disease in 

neuroblastoma (66, 67, 73), and SNVs in or near DUSP12, DDX4, IL31RA, and HSD17B12 

with low-risk disease (73). It seems reasonable to speculate that similarly specific 
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associations with subtypes of other childhood cancers will emerge as the GWAS literature 

expands.

Although the progress in identifying common variants associated with several childhood 

cancers in the past several years has been remarkable, a large portion of heritability remains 

unexplained. For instance, estimates indicate that about 25% of genetic variation in ALL 

risk was due to common variants identified by GWAS available in 2012 (82). The remainder 

of genetic risk may be attributable to several other plausible mechanisms which will more 

often be evaluated as next-generation sequencing and the inclusion of parental samples are 

adopted by the field. Rare variation is generally defined as that with a population allele 

frequency of <0.01. A recent exome-sequencing study of infant leukemia, among the first of 

its kind, identified compound heterozygosity for rare pathogenic variants in the MLL3 gene 

as risk factors (83). Sequencing of parents and children and comparing exomes or genomes 

can identify de novo mutations which will not be apparent by other technologies(47). Lastly, 

since many childhood cancers are presumed to initiate in utero(84), maternal genetic effects 

may be relevant(85), but have only been examined in a candidate gene rather than genome 

wide context to date (86, 87).

Conclusion

The rarity of childhood cancer slows the search for their causes, but the accumulation of 

case-control studies and advancement of genomic technology have improved our knowledge 

in recent years. Few environmental risk factors for childhood cancer have been identified 

that exceed the capacity of observational epidemiology to distinguish causal associations 

from those due to bias. Inherent risk factors such as birth weight, parental age, and birth 

defects- as well as common genetic variation- are on the other hand consistently associated 

with childhood cancers.
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Key Points

- Apart from high-dose radiation and prior chemotherapy there are few or no strong 

external risk factors with relative risks >2.

- Inherent risk factors including birth weight, parental age, and congenital anomalies 

are consistently associated with most types of pediatric cancer.

- Common genetic variation has been associated with several childhood cancers in 

genome wide association studies, often with subtype-specificity, and explains a 

larger proportion of childhood than adult cancers.

Spector et al. Page 12

Pediatr Clin North Am. Author manuscript; available in PMC 2015 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Incidence rate per million for International Classification of Childhood Cancer (ICCC) 

categories by 5-year age groups
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Fig. 2. 
Incidence rates per million for International Classification of Childhood Cancer (ICCC) 

categories by sex.
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Fig. 3. 
Incidence rates per million for International Classification of Childhood Cancer (ICCC) 

categories by race/ethnicity. AI/AN, American Indian/Alaska Native; As/Pacl, Asian/Pacific 

Islander.
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Fig. 4. 
Boxplot of SNV odds ratios from GWAS of cancer by age group. Dark horizontal lines 

represent the median and the box represents the 25th and 75th percentiles. (From Raynor 

LA, Pankratz N, Spector LG, et al. An analysis of measures of effect size by age of onset in 

cancer genomewide association studies. Genes Chromosomes Cancer 2013;52(9): 857; with 

permission.)
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