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Abstract In this paper, the problem of the existence,
uniqueness and uniform stability of memristor-based frac-
tional-order neural networks (MFNNs) with two different
types of memductance functions is extensively investigated.
Moreover, we formulate the complex-valued memristor-
based fractional-order neural networks (CVMFNNs) with
two different types of memductance functions and analyze
the existence, uniqueness and uniform stability of such
networks. By using Banach contraction principle and ana-
lysis technique, some sufficient conditions are obtained to
ensure the existence, uniqueness and uniform stability of
the considered MFNNs and CVMFNNSs with two different
types of memductance functions. The analysis results
establish from the theory of fractional-order differential
equations with discontinuous right-hand sides. Finally, four
numerical examples are presented to show the effectiveness
of our theoretical results.
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Introduction

We know that fractional calculus is an old branch of
mathematics, which mainly deals with derivatives and
integrals of arbitrary non-integer order. It was firstly
introduced 300 years ago. Due to lack of application
background and its complexity, it did not attract much
attention for a long time. Recently, it had been applied to
model many real-world phenomena in various fields of
physics, engineering and economics, such as dielectric
polarization, electromagnetic waves, viscoelastic system,
heat conduction, biology, finance etc (Podlubny 1999;
Kilbas et al. 2006; Ahmeda and Elgazzar 2007; Hilfer
2000). The fractional-order model gives more accurate
results than the corresponding integer-order model. The
reasons depend on two main advantages of fractional-order
models in comparison with its integer-order counterparts,
one is the fractional order parameter that enriches the
system performance by increasing one degree of freedom
and other one is that fractional derivatives provide an
excellent instrument for the description of memory and
hereditary properties of various processes. That is, frac-
tional-order model has an infinite memory. Based on the
wide range of applications, fractional calculus had
increased the interest and attracted the attention of many
researchers. Some good results have been proposed in the
literature see Laskin (2000), Deng and Li (2005), Delavari
et al. (2012), Peng et al. (2008) and Wu et al. (2009) ref-
erences therein.

In the past few decades, stability analysis of neural
networks have received considerable attention and many
researches have found being applied in various fields such
as communication systems, image processing, signal pro-
cessing, pattern recognition, optimization problems and
other engineering areas see Seow et al. (2010), Guo and Li
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(2012), Bouzerdoum and Pattison (1993) and Kosko (1988)
references therein. In Wu et al. (2012), the authors have
been studied the robust asymptotic stability analysis for
uncertain BAM neural networks with both interval time-
varying delays and stochastic disturbances. Some new
synchronization condition were obtained for discontinuous
neural networks with time-varying mixed delays by using
state feedback and impulsive control in Yang et al. (2014).
In recent years, fractional calculus, based on its significant
features (more degrees of freedom and infinite memory)
has been used to modeling the artificial neural networks,
the fractional-order formulation of neural network models
is also justified by research results about biological neu-
rons. The study of fractional-order neural networks model
have more complexity due to the solution methods of
fractional calculus. Some of the researchers have analyzed
the fractional-order neural networks and proposed few
interesting results see Yu et al. (2012), Kaslik and Sivas-
undaram (2012), Chen et al. (2013), Boroomand and Me-
nhaj (2009), Zou et al. (2014) and references therein.

On the other hand, due to the potential applications of
neural networks are yields new aspects of theories required
for novel or more effective functions and mechanisms, that
is, the applications are involved in the complex-valued
signals (Hirose 2012; Nitta 2004; Tanaka and Aihara 2009).
This indicates that the dynamic analysis of complex-valued
neural networks is very important. The complex-valued
neural networks is an extension of real-valued neural net-
works with complex-valued state, output, connection
weight, and activation function. The use of complex-valued
inputs/outputs, weights and activation functions make it
possible to increase the functionality of the neural networks,
their performance and to reduce the training time. In real-
valued neural networks, their activation function is usually
chosen to be bounded and analytic. However, in the com-
plex domain, according to the Liovilles theorem (Mathews
and Howell 1997), every bounded entire function must be
constant. Thus, if the activation function is entire and
bounded in the complex domain, then it is constant. This is
not suitable. Therefore, choosing appropriate activation
function is the main challenge in complex-valued neural
networks. However, compared with real-valued recurrent
neural networks, research for complex-valued ones has
achieved slow and little progress as there are more com-
plicated properties. Nowadays, some of the authors have
focused their attention on the study of those complicated
properties of complex-valued neural networks and proposed
some interesting results see Hu and Wang (2012), Duan and
Song (2010), Rao and Murthy (2009), Zhou and Song
(2013), Huang et al. (2014), Chen and Song (2013), Xu
et al. (2013) and references therein.

Memristor is one of the newly modeled two terminal
nonlinear circuit device in the electronic circuit theory. It
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was theoretically first developed by Chua (1971), and the
memristor element has been designed and fabricated by a
team from the Hewlett-Packard Company (Tour and He
2008; Strukov et al. 2008). After the invention of practical
model of memristor element, the memristor become a very
interesting topic because of its potential applications in
nonvolatile memory storage, new type of computers will
have no booting time, brain like computers etc. This new
circuit shares many properties of resistors and shares the
same unit of measurement (i.e. ohm). The memristor ele-
ment have attracted much attention based on the following
two main properties. The first one is its memory charac-
teristic and the second one is its nanometer dimensions.
The memory characteristic was determined by its physical
structure and external input. When the voltage applied on
memristor is turned off, the memristor remembers its past
values until it is turned on for the next time. It is well
known that memristor element reveal features just like as
the neurons in the human brain have. Based on these fea-
tures, the memristor element has been used to build a new
model of neural networks. We know that the neural net-
works can be constructed by nonlinear circuit and have
been studied extensively. In this circuit, the self feedback
connection weights and connection weights are imple-
mented by resistors. Suppose that we use memristors
instead of resistors, then the neural networks model is said
to be memristor-based neural networks. The memristor-
based neural network is a state-dependent switching system
due to the fact that the parameter values of connection
weights are changed according to their state. Very recently,
the analysis of dynamic behaviors of memristor-based
neural networks have been studied by many researchers
and some excellent results have been proposed in the lit-
erature see Zhang et al. (2013), Yang et al. (2014), Wu and
Zeng (2012, 2013, 2014), Wu et al. (2011, 2013a, b), Cai
and Huang (2014), Guo et al. (2013), Qi et al. (2014), Wen
et al. (2013), Chen et al. (2014) and references therein. The
memristor-based neural networks is a differential equation
with discontinuous right-hand sides because that it is a
state-dependent switching system. It shows that the solu-
tions of this differential equation are not yet been calcu-
lated in classical sense. Filippov (1988) proposed a
solution method, that is to transform a differential equa-
tions with discontinuous right-hand sides into a differential
inclusion by using the theories of differential inclusion.
Most of the researchers investigated the memristor-based
neural networks and proposed some related results by using
the framework of Filippov solution see Zhang et al. (2013),
Yang et al. (2014), Wu and Zeng (2012, 2013, 2014), Wu
et al. (2011, 2013a, b), Cai and Huang (2014) Guo et al.
(2013), Qi et al. (2014), Wen et al. (2013), Chen et al.
(2014) and references therein. In Yang et al. (2014), the
authors extensively studied the problem of exponential
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synchronization of memristive Cohen—Grossberg neural
networks with mixed delays. Several sufficient conditions
have been derived for the globally exponentially stability
of memristive neural networks with time-varying impulses
in Qi et al. (2014). In Wu and Zeng (2014), the authors
investigated the passivity problem for memristor-based
neural networks with two different types of memductance
functions and some sufficient conditions for the passivity
of addressed memristor-based neural networks were
proposed.

Motivated by the above discussion, the analysis of
fractional-order neural networks and memristor-based
neural networks have become an ongoing research area.
Based on the applications and features of both fractional-
order neural networks and memristor-based neural net-
works, it is necessary to analysis the dynamic behaviors of
memristor-based  fractional-order  neural = networks
(MFNNSs). In Chen et al. (2014), the authors introduced the
memristor-based neural networks and proposed some suf-
ficient conditions to ensure the global Mittag—Leffler sta-
bility and synchronization are established by using
Lyapunov method. The problem of the existence, unique-
ness and uniform stability analysis of MFNNs with two
different types of memductance functions has not been
investigated in the existing literature. In this paper, we
consider both real-valued and complex-valued memristor-
based fractional-order neural networks (CVMFNNSs) with
time delay and two different types of memductance func-
tions. Some sufficient conditions that guarantee the exis-
tence, uniqueness and uniform stability for both addressed
networks are derived by using Banach contraction principle
and the framework of Fillipov solution.

The rest of this paper is organized as follows. In “Pre-
liminaries” section, the model of real-valued and
CVMFENNs with time delays and two different types of
memductance functions is described. Some of the neces-
sary definitions, lemmas and assumptions are also provided
in this section. Some sufficient conditions for the existence
and uniqueness of solution and uniform stability for the
both proposed networks are derived by using the Banach
contraction principle and the framework of Fillipov solu-
tion in “Main results” section. In “Numerical examples”
section, four numerical examples are given to demonstrate
the effectiveness of our theoretical results. Finally the
conclusion of this paper is given in “Conclusion” section.

Notation R" and C" denotes the n-dimensional Euclidean
space and n-dimensional complex space respectively.
Throughout this paper, the solutions of all the systems
considered in the following are intended in Filippov’s
sense. co{IT, IT} denotes closure of the convex hull of R”

generated by real numbers IT and T1. Similarly, co{®, ®}
denotes closure of the convex hull of C" generated by

complex numbers ® and ®. z(r) = x(¢) + iy(r) denote the
complex-valued function, where x(¢), y(t) € R". Denote
Mpq = max{sup [y|, sup [ritpg| }, npg = max{sup |y, sup
g Y, Bog = max{sup |B,,|,sup By} 7 =
[Tpglssup 17,1} B, = max{sup B, |, sup B, |}, 75, = max
{sup [9% |, sup 7% |}, BS, = max{sup|B.,|,sup|p. [} and

V;q = max{sup |7311)q|7sup W;"IH'

max{sup

Preliminaries

In this section, we give some basic definitions, lemmas and
assumptions which can be used later to derive our main
results of this paper.

Definition 1 The fractional integral of order o for a
function f is defined as

l t
I“‘ft:—/ t— 1) f(1)dx, 1
(1) (o) m( ) f(@) (1)
Where t> to and o > 0, I'(+) is the gamma function defined
as I'(o) = [ e dt.

Definition 2 The Caputo fractional derivative of order o
for a function f € C""([ty,0), R) (the set of all n+ 1

order continuous differentiable functions on [y, 00)) is
defined by
1 A
C
Dif(t) = dr, 2
0= ). @)

where 7>t and n is a positive integer such that
n—l<a<neZv.

Lemma 1 If the Caputo fractional derivative DI f(t)
(n—1<oa<n) is integrable, then:

2D ( Z

Especially, for 0<a<1,
I Dyf (1) = £ (1) — [ (to). (4)

(1’ tO

fo)"- (3)

one can obtain:

Consider the real-valued memristor-based fractional-
order neural networks (RVMFNNS5) described by the fol-
lowing differential equation:

~

Dory(1) = —eperp() + Z"j i (0g(0)F (4 (1)
o (5)
+ Z”pq @q(1))84 (g (t = (1)) + 1,
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where t >0, p = 1,...,n, n corresponds to the number of
units in a neural network, (1) = (w(1),...,w,(1))",
wp(t) denotes the state variable associated with the pth
neuron, e, >0 is a constant, [, denote external input

vector, ]A‘q(wq(t)) and g, (w4 (t —
activation functions of the g¢th unit at time ¢ and
t— 1, Mpy(wy(1)) and 7y, (w,(f)) are connection memris-
tive weights without and with time delays, which are
defined as

7(t))) are the nonlinear

. W, ~
Mpg(04(1)) = 7Cpq X Sgn L., Hpg(wy(1))
p
- 6
:A@ngn san :{ I, p#gq, (6)
G e - -1, p=gq,

in which W), and M, M, are represents the memductances of
memristors R,, and F),;. R,, represents the memristor
between the activation function ]A‘p(a)p(t)) and w,(f) and
F,, represents the memristor between the activation func-
tion g, (w,(t — (1)) and w, (7).

Combining with the physical structure of a memristor
device, then one see that

d4pq

dq -
Wy, =—"L  and M,, = T
P4

dop,

(7)

where g,, and g,, are the charges corresponding to the
memristors R,, and F,,, 6,, and G,, are denotes magnetic
flux corresponding to memristor R, and F),, respectively.

The initial conditions associated with (5) are of the form

w,(t) = @, (1), t € [-7,0, p=1,...,n, (8)

where ¢,(t) € C([~7,0],R), and norm of an element in

C([=7,0, R") is lloll = 225-1 supsel—cg{e”"lo, (D)}
Consider the CVMFNNs described by the following
differential equation:

Dz)(t) = —€pzp(t

)+ znj Boulca 0oz 0)

+Z/pq zq

where t>0,p=1,..

)
))&q Zq(t - T(t))) + Hy,

., 1, n corresponds to the number of
. T

units in a neural network, z(r) = (zi(¢)...,z.(¢))", 2,(¢)
denotes the complex-valued state variable associated with
the pth neuron, ¢, > 0 is a constant, H, denote external
input vector, f,(z,(¢)) and g,(z,(t — 7(¢))) are the nonlinear
complex-valued activation functions of the g th unit at time
tand t -7, B,,(z(t) and 7,,(z,(t)) are complex-valued
connection memristive weights without and with time
delays, which are defined as
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-~ WY
ﬁpq(zq(t)) = A X Sgn pq’

C]’
~ Mpq 17 p # q?
1 ) =—— X =
))pq(zq( )) Cp sgn Y2/l Sgnpq { 71’ p=q,
(10)

in which W, and M, are represents the memductances of
memristors R,, and F,,. R,, represents the memristor
between the activation function f,(z,(?)) and z,(¢) and F,,
represents the memristor between the activation function
8(p (1 — 7(1))) and 2, (1),

Combining with the physical structure of a memristor
device, then one see that

dqpq

dqpq
dg, L~~pq g

dSpq

Wy, = and M, = (11)
where q,, and q,, are the charges corresponding to the
memristors R, and F,, ¢,, and ¢,, are denotes magnetic
flux corresponding to memristor R, and I, respectively.

The initial conditions associated with (9) are of the form
() =¥, () +ix,(1), t € [-7,0], p=1,...,n, (12)

where (1), x,(t) € C([~7,0],R), and norm of an element
in C([=7,0],R")is Y[l = 325 supier— o {e "W, (1)]} and
12l = >p=1 suprer—cgfe "I, ()1}

Many studies show that pinched hysteresis loops are the
fingerprint of memristive devices. Under different pinched
hysteresis loops, the evolutionary tendency or process of
memristive systems evolves into different forms. It is
generally known that the pinched hysteresis loop is due to
the nonlinearity of memductance function. As two typical
memductance functions, in this paper, we discuss the fol-
lowing four cases.

Case 1 The memductance function W,, and M,, are
pq Pq
given by
, -
W — ] o |Gpq| <lpg, 7 — Qpgr 1Gpgl <lpg;
PE U by |0pg| > 1 PEZY D, |Gl > 1
pa>  10pq Pqs Pq’ Pq Pa>

(13)

/ /
where a,g, by, @), b,, and [,, >0 are constants,

Pa’ “pq
p,g=12,...n

Case 2 The memductance function W,, and Mpq are
given by

&2
Wpq = Cpg + Sdl’qo-p(p Mpq = C gt 3d1/)q pg> (14)
where ¢y, dpg, €, g and d’ are constants, p,g = 1,2,...,n.

Case 3 The complex-valued memductance function W,
and M, are given by
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0 ’ 9 <l ) -~ [3 , z,(t)| > T,
qu _ 1917‘1 ‘qu' ;"1 ﬁpq(zq(t)) — qu | 61( )‘ q
rq> |5pq| > Pq> ﬁpqv |Zl/(t)| <Tl/
I 0y 1Spal <lpg, 5 (al®) = Togr 12(0)] > Ty,
Pq = ~ =9 5
79;;47 |Spql > Ipgs b Togr |2a(D<T,
R AR
R Opgr I5pal <bpg: ~R Bugr  lug(t)] > T,
R T YR Bpqlug(1)) = § " 5
pqr >pgl ~ fPa> Bogr  lug(D)[<T,
9/R <l AR
ﬁq { /I;qv | pq| P4 5 (1)) = Togr |ug()] > Ty,
LR S ra\ta R (D1 <T,
6[ |Q |<l N
1 rq’ rq re>
~1 ;e > T,,
& {ﬂ’ > Bl = o 01> 1o
Pq’ Pq> pg\"4 ﬂl |v (t)‘<T
9/1 |g |<l rq’ 4q 4q
1 rq’ Pq rq> N
My = {19/1 s (15) 1 e ve@I > Ty 0
Pq’ |5 | > lpg, qu(vq(t)) - ')}I |V (l)|<T (1 )
g’ q a
/ R R /R q/R pl I /1
where 01"1’ 19P‘1 ’ Opq’ rq’ Opq’ ﬂpq’ Opq’ ﬂpq’ Opq’ ﬁpq’ Opq’

19[’,’q and /,, > 0 are constants, p,g = 1,2,.

Case 4 The complex-valued memductance function W,
and M,,, are given by

Wog = Ppg +32p,(c )pq’ M,

R __ R\2
qu - P,,(, + 391%1( )pq’

Pg = ppq + 3qu(§)pq’

(16)
R __ /R 1 I (. 0\2
MP‘] - ppq + 3Q ( )Pq’ W qu + 3QP‘](S )PCI’

I _ 1o ~1\2
Mﬂq - ppq + Sgpq( )Pq’

where
1
and ¢,

/ R
Pra> Cra> Ppa> Cpg> Ppa> Cpg> Ppg> Cpa> Ppg> Cogs Ppg
are constants, p,g =1,2,...,n

According to the features of memristors given in cases
1-4, then the following four cases can be happen.

Case 1 In the case 1, then
My, |0g(t)| > T,,
r/ﬁpq(wq(t)) — { v[7‘1 | ‘]( )| q
Hipg, |y (1)] <Ty, (17)
g ()| > Ty,

n
~ Pq>
(o) = {

pg\Wq .
fipg, g (1) <Ty,
where the switching jumps 7, > 0, connection weights
g, Hipg, fipg, and 7i,, are constants, p,qg = 1,2,...,n.

Case 2' In the case 2, mp,(w,(t)) and 7p(w,(1)) are
continuous functions, then

A,y Simpg(4(1)) <Ay

and X, <Tipg (00 (1)) < Y,
(1 )
1,

where A, qua X,, and Y pq are constants, p,q = 1,2,
.
Case 3’ In the case 3, then

where the switching jumps T, > 0, connections weights
N .

<R [ Al ~1

ﬁpq’ ﬁpq’ Trgr Toa> ﬁpq’ ﬁpq? qu, Tog> Bog» Byg» Tpg a0 7y

are constants, p,g = 1,2,...,n.

Case 4 In the case 4, /ﬁpq(zq(t)) and 7,,(z,(1)) are
complex-valued continuous functions, then

_pq = ﬁpq(zq( )) S AP‘I and ®pq — qu(zq(t)) S
_R =N _
Ailfq = ﬁpq(u‘I(t)) =< qu and @ﬁq qu( (t)) = ®pq’

~I - . _
Al < B () <A, and @ <F (v,(1) <O

—Pq — rq’
(20)
where A A, . O @, AR A® of of Al A

ey TP Zpa TP Spa> Bpg> =par

®;q, and G)pq are constants, p,g = 1,2,...,n

Pq’ =pq’ —pq’

Remark I The memristor-based neural networks is one of
the special kind of differential equations with discontinu-
ous right-hand sides because that it is a state-dependent
switching system. Thus, the connection weights are chan-
ged depending on their state variable. It shows that the
solutions of this differential equation are not yet been
calculated in the straightforward manner. Therefore, Fil-
ippov (1988) proposed a solution method, that to transform
differential equations with discontinuous right-hand sides
into a differential inclusion by using the theories of dif-
ferential inclusion. Many of the authors studied the
memristor-based neural networks and proposed some good
results in the framework of Filippov solution see Zhang
etal. (2013), Yang et al. (2014), Wu and Zeng (2012, 2013,
2014), Wu et al. (2011, 2013a, b), Cai and Huang (2014),
Guo et al. (2013), Qi et al. (2014), Wen et al. (2013), Chen
et al. (2014) and references therein. If the connection
weights are not changed according to the state variable then
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the memristor-based neural networks become a class of
conventional neural networks system.

Definition 3 A set-valued map F with nonempty values
is said to be upper-semicontinuous at xo € £ C R" if, for
any open set P containing F (xg), there exists a neighbor-
hood Q of xq such that F(Q) C P, F(x) is said to have a
closed (convex, compact) image if for each x € £, F(x) is
closed (convex, compact).

Definition 4 For the system % = g(x), x € R", with

discontinuous right-hand sides, a set-valued map is defined
as

O(x) = ﬂ ﬂ co[g(B(x,

0> 0 pu(P)=0

0))\P],

where co[€] is the closure of the convex hull of set
E, B(x,0)={y:|ly—x| <6}, and pu(P) is a Lebesgue
measure of set P. A solution in Filippov’s sense of the
Cauchy problem for this system with initial condition x(0) =
Xo is an absolutely continuous function x(t), 7 € [0, T], which
satisfies x(0) = xo and the differential inclusion:

d—e(D()

fi €. te€l0,T].
= or ae. r€[0,T]

Definition 5 The solution of systems (5) and (9) is said to
be stable if for any ¢ > 0 there exists J(ty, ¢) > 0 such that
1210 20,[[x() =y (1) <o implies [z (t, 40, 2) —

where € = min(]1

n n
10=D 151 = D max{ Byl
p=1 p=1
n n
R | 7RR
16l = 3123l = angx{wpquq ,

il = Z|cgp|—2max B ik},
il = Zmpwzmax
I3l =

i1 —Z|él,,| —Zmax
151 = Z &, = Zmax |

Byl 2"

)
{l
{1 e,
Z 3] = Zmax{w;qmif}
{1}
{18121,

a

@ Springer

z(t, 10, ¥)||<e for any two solutions z;(¢,%,y) and
z(t, 19, ). It is uniformly stable if the above 0 is indepen-
dent of 1.

Assumption 1 ]f\q(-)7 g,(-) satisfy the Lipschitz condi-

tions, i.e., for any x,y € R, there exist positive constants
Ly, G, such that

1 () = < Lgllx = ¥II, [184(x) = 8, < Ggllx = yll.

(21
Assumption 2
ing conditions:

€p, Mg, Npg, Ly and G, satisfy the follow-

[l || + [In"[| <e,

where & = min(l — emax, €min), Cmax = r%gx{eq},

n n
emin = min{eg}, [[m*| = " |mr] =Y " max{|my,|L,},
Yq Vg
p=1 p=1
n n
Il =" Imyl = > max{lnyy|G, }.
q
p=1 p=1

Assumption 3 ¢, ,,,7,,, 4g and i, satisfy the following
conditions:

n n n n
DU+l + D Ig i+l ll <é,
q=1 q=1 q=1 q=1

- 6maxl,emin)v €max = %%X{Gp}7 €min = II;/})H{GP},
n n
il = Iyl = > max{ [z n, }
p=1 p=1 q
n n
* R | Rl
160 = D016, = > max{ |85, 1},
p=1 p=1 q
n n
TRV
150 = D218, = > max {18, 14 }.
p=1 =1 "
n n
T * | R RI
Il = 3l = Zjn@gx{w,,qmq .
il = Z iyl = Zmax{w 1,
el = Déz,,l =

p=1

&l = z|a4,,|—zmax{ 74}

{18}
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151

il = Z LA Zmax{ Tpalt
I3l = Z | = Zmax{ 7k}

w1 gl = Z|nz,,| - Zmax{ o'}
I3l = Z 73| = Zmax{ il }-

Assumption 4 Let z=u+iv, where i denotes the
imaginary unit, that is, i = v —1. f;(z) and g,(z(r — 7)) can
be expressed by separating into its real and imaginary part
as

fq(Z):JZR(%V)-qu[(u,V) and
8q(2(t—1)) =gl (u(t —1),v(t — 1)) +igl (u(t —7),v(t — 1)),

where fR(-,): R* — R and fI(-,-):R* — R and
g%(-,): R* — R and g!(-,-) : R* — R. For notational
simplicity, u(r — t) and v(f — 7) are denoted by u, and v,
respectively.

1. The partial derivatives of f,(-,-) with respect to u,v:
oy /ou, OfF /ov, Of} /ou and Of]/Ov exist and are

continuous. Similarly, the partial derivatives of

84(-,-) with respect to u,v: g /Ou, 0gk /dv, Og!, /ou
and 6gq /0v exist and are continuous.

2. The partial derivatives Of/0u, Of /v, Of!/0u and
6f(5 /Ov are bounded, that is, there exist positive

T guch that

”

constant numbers /IZ;R , ig’ , )vf]R
OfF fou| < 25, [OfF fov < 25, [of] /oul < Af, 1ofF/
ov| <.

3. Also, the partial derivatives OgX /Qu, 0g} /0v, Og /0u
and 6g /0v are bounded, that is, there exist positive
constant numbers ,uq , ,uq , ,u ,uq such that
|0gs /0ul < i, |0gh /ov| <uf, [0g],/0u| < g
ov| < ug .

1
» [0,/

Then, according to the mean value theorem for mul-
tivariable functions, we have that for any
u,u',v,v € R"

[ V) =, v)| < 2’ — ul + 25TV = v,
lfl(ul V/) _ I(u v)|</11R|u’
|gq( T ‘[)
|gq( T z)

—u| + /121|v’ -,

84 (ura vo)| < :“qR|“/ — U] + :uf;]h/r — e,
gq(”rvvr)‘ <N ‘” — | + /1 |Vr — vel.
(22)

Assumption 5 f,(-), g,(-) satisfy the Lipschitz conditions
in the complex domain, i.e., for any u,v € C, there exist
positive constants 4,4, i, such that

g (1) = faW)I| < 2g | — = &) < pgllu =il

(23)

V[ llgq(u)

Main results

In this section, some sufficient conditions for the existence,
uniqueness and uniform stability of considered both
RVMFNNs and CVMFENNSs are derived.

Real-valued memristor-based fractional-order neural
networks

We first consider RVMFNNs with time delays and two
different types of memductance functions. By using Fil-
ippov’s solution, differential inclusion and Banach con-
traction principle, some sufficient conditions are obtained
to ensure the existence, uniqueness and uniform stability of
considered RVMFNNS.

Theorem 1 Under the case 1, if Assumption 1-2 are
satisfied, then the system (5) is satisfying the initial con-
dition (8) is uniformly stable.

Proof By theories of differential inclusions and set-val-
ued maps, from (5), if follows that

D*w,(t) € — e,m, (1) + Z co{tpg, titpg 1 4 ()
! (24)

ZCO{an7an}gt] Wge) + 1,

or equivalently, for p,g = 1,2,...,n, there exists a mea-
surable functions 1,4 () € co{riyg, p,} and 7y, (1) €
co{fiyg, fipg} such that

+ i: m]"](t)?q(wq)
q=1

n
+ Z Mpg (1) g8 4(Wge) + I,
q=1

D*wy(1) = —epmp(1)
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for  p,g=1,2,...,n, |y (t)] < max{|rityy|, [1itpy|} < mpg
and [7ipg (1)| < max{|pq|, [7ipg|} < 1pq.

Consider o and o with o #w. ()=
(@ (1),..., 00 (2)) and w(t) = (wi(1),...,w,(t)) are any
two solutions of the system (5) with initial conditions
w,(s) = @,(s), where ¢, (s) € C([-7,0],R"), ¢,(0) =
0, w,(s) = ¢, (s), where ¢,(s) € C([-7,0],R"), ¢,(0) =

0,p € n. We have
D*(e,(t) — wp(t)) < — ep(, (1) — (1))
D mpglf (@) = f ()]

q=1

+ ZnP‘] [gq(a);r) - /gq(wq‘c)]~
q=1

Now multiply D™* on both sides, we can write

e op(1) ~ 00| < Fr5

e [ ol 6) — 09

From (26), we have
1) = 0p(0) < 5 [ =97 [~ 40 0) - 0y 6)
£ [F (o)~ 7 )]

+ Zn; Mg {gq(wfﬁ) - ’g\q(wqf)] } ds.

By taking absolute value and multiply ¢~ on both sides, we
get

+ Z |mpq||?q(w;) _J?q(wq” + Z |npq||§q(w;r) - §q(wqr)|] ds
q=1 q=1

1

t
< el (=) sy ()
<e, F(oc)/o (t—s)""e e M|, (s) — wp(s)|ds

+ 42:: Mg ﬁ/ot(f —5) e e [Lq|w/q<s) - wq(S)\} ds

n 1 t 1
S / (1 = 5) e e[ G o] (s) = wye(s)]|ds
qz:; 14 F(OC) o [ q1™q qt :|

1 ! a—1 _—(t—s) —s - 1 ! a—1 —(t—s) —s
gqﬁ@Awﬂ>%“%w%w—%@m+;ymmﬁaloﬂ>%“%w%w—%wm

- 1 ! o—1 —(t—s+1) ,—(s—1
D InglG 7 [ (=9 ) )
q=1

()

— 1 ' -1 _,—u - 1 ! o—1_—(t—s) ,—s
<epsup(e ’|w;(t)fa)p(t)|}—/0 wle du+ZImpqqu@/0(H) e e ) (s) — wy(s)|ds
q=1

- 1 ‘ o—1 —(t—s+1) —(s—7
= Y G [ (= I (9) )
gq=1

1

n t
—1 —(t—s+1) —(s—1
3 Gy [ (=7 e () ()
q=1 t

1

€0} 0) = ap(0)] < € suple o (1) =y (0} s [ e M+ S suple o) = 0,0) b [ et
t = !

. 1 /O o—1 —(t—y) —y| -/ < 1 e o—1 —(t—y) —y
+m Yy = [ =y =0 e el () = 9, (0)ldy + —/ (t—y—1) e e
P 2@ )= Dl 1 ),
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x |l (y) =
m, Z s?p{e”|w;(t)
q=1

+ n, Z sgp{e"\w;(t) -
q=1

o0l s [0 '

e"du+n Zsup{e "oy, (1)

B 1 /t—r “1 o
wy (1) e " = 0" e "dl

1 t
< —t / _ a—1 _—u
o)1y < e suple” 1) = 0,0 b [ e

-7 1 ! o—1 _—0
— @ (t)|}e m/fﬁf@ e~ ’do

< epsup{e”|o), (1) — @, ()]} +m, > sup{e”’|ay (1) — oy (D} + n, > suple”|oy (1) — ¢, (1)}

> supfe o 1)~ o (0]}
<epsup{e 1) = op(0]} + mill @) = o) + ) — 0] + 75l 1)~ 00 @
From (27), we can obiin @1 (n (=), Balonlt =TT, Ay = man

I/ (2) = ()| = Zsup{e ey, (1) = eop (1)}
(28)
< lemar + [m*|| + 2" [[]l () — (@)
+ [l e’ (r) — (@)1l
The above Eq. (28) can be rewritten as
660~ ()] £ 1o 00— 0 0
(29)

From (29), we can say that for Ve > 0, then there exist a
0= %8 >0 such that |o'(f) —w(1)] <e
when ||¢'(¢) — ¢(¢)|| <. Thus, the solution w(z) is uni-
formly stable.

Theorem 2 Under the case 2/, if Assumption 1-2 are
satisfied, then the system (5) is satisfying the initial con-
dition (8) is uniformly stable.

Proof By (5), if follows that

Dy (1) < — epwp(t) + Zﬂpq?q(wq)
g=1
+ Z qu/g\q(wqf) + 1, (30)
q=1

Transform (30) into the compact form as follows:

D*w(t) < — Eo(t) + Af (w(1)) + Yg(w(t — (1)) + 1,

(31)
where o(t) = (01(t),...,0,0)", I = (I,....1,)",
F@) = (@), Falon®) Elol—1()) =

{|qu| |qu|}7 /{

Y= (qu)

Consider o and o with o #w. o) =
() (1),...,0,(1)) and w(t) = (wi(1),...,w,(t)) are any
two solutions of the system (31) with initial conditions

(qu)nxm qu = max{| X, q‘ 1 Ypql}

nxn*

w,(s) = @,(s), where ¢, (s) € C([-7,0],R"), ¢,(0) =0,
wp(s) = q)p(s), where ¢,(s) € C([-7,0],R"), q)p(O) =0,
p € n. We have

D*(w,,(t) — (1)) < — ep(a), (1) — wy(1))

+Z NZCARTE wq}+z NCAESACHIE

Now multiply by D™ on both sides, we can write

0h(1) = pl1) D[ = ep(@) (1) = 0y (1))

+i/ipq[f( wq]"'z [

) (32)
From (32), we have
1) = 0p(0) < 5 [ =97 [~ (0 0) - 0y (6)
¥ ;qu[fq@;) 7, (@)
# 3 Hf (o)) - o]

By taking absolute value and multiply by e~ on both sides

of the above, we get
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o~

—t|, 1 —t ! o— / ol 7z /
o) = ap(0)] < e [ =9 [eten6) = ap(0l+ 32 Al = o)

+ Z| wall25(@) = y(0,0)]|ds
< 1 ! o—=1_—(t—s) ,—s| -/ d - A 1 ' o—1 _—(t—s) ,—s Ll d
_epm ; (t—s)""e e *lar,(s) — wp(s)|ds + Z| MW ; (t—s5)""e e | Lyl (s) — ay(s)||ds
g=1
~ 1 ' o—1_—(t—s+1) —(s—7
" an,,AW/0 (1= e e 09 Gof (5) — 00ge(s) s
SepL/t(t_s)x—le(ts)eslw;(s) —a)p(s)|ds+ zn:|/§pq|LqL/t(t_s)a—le(ts)es|w;(s) —wq(s)|ds
I'(«) Jo ] ['(e) Jo
n - 1 1 )
+ ZIquIqu) /0 (t— )" e e 0! (s) — wge(s)|ds
1
<e,sup{e |0 (t) — w (t)|}l/tu“le”du+zn:/§ IL 1/,(ts)“le(’s)es|w' (s) — wg(s)|ds
—=¢p . P P F(O() o = Pq qr(a) o q q
n ~ 1 T .
+ YG—/t—sae(’”T 1) @,.(s)|ds
;I v T 0( ) e (s) = gels)]
< % 1 ! -1 —(t—s+1) —(s—7
+ZIquIGqW/(t—s)“ L) (5) — wge(s)|ds
q=1 t
o)~ ap(0)] < epsupfe o)~ (0} iz [ e
e — e e — —_ u e u
A O
n 1 t
+ m;;sgp{e’ﬂw'q(t) - wq(t)|}—a/0 u e "du

T

1 t
<e,sup{e "o (1) — w,(t —/ u* e Udu
<epsuple (1)~ a0} 1 |

(

* . - ! —1 1 ! oao—1 —0
+npq2:;51tlp{e Ui (1) — ¢, (1) e %/Ho e 'do

* - - -7 1 o oo—1 —
+HP;SI:p{e ol (1) — g (1) e r(a)/o 0*'e~do

. n B l t vl —u
+mp;Sl?p{e '|w;(t)—a)q(t)|}r—a)/0 w e du

< e, supfey (1) — o, (O]} + myy Y sup{e” o] (1) — o, (1)[}
t —1 !

oy Slfp{f’\wﬁ,(t) — o} Yy Sljp{ef’lw;(t) —oy(1)[}e
q=1

< epsup{e”|), (1) — wp (O]} + my |0 (1) — ()] + mll¢' (1) — O] + 1, (1) — (D] (33)
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From (33) we can obtain

o (e ||—Zsup{ “Jop(t) = 0, (1) |

(34)
< lemax + [m*[| + [[n*[][|e (1) = (D)
+n*llllo' (1) — e()]]-
The above Eq. (34) can be rewritten as
oy [l o
/(1) = 0011 < o ey 10 — 90
(35)

From (35), we can say that for Ve > 0, then there exist a
§ = Hlemt e ) > 0 such that [|o'(r) — o(1)]| <e
when ||¢'(¢) — ¢(t)|| <. Thus, the solution w(f) is uni-
formly stable.

Theorem 3 If Assumptions 1 and 2 hold, there exist a
unique equilibrium point in system (5), which is uniformly
stable.

Proof Let e,w, =1,
R" — R", defined by

Ty, < Zmquq <u ) + anng( ) +1,  (36)

where p=1,2,...,n, T(u) = (T; (1), Tr (), ..., T,(u))".
Now, we will show that T is a contraction mapping on
R" endowed with the Euclidean space norm. In fact, for

different

and constructing a mapping 7T :

T
any two U= (g, U, 1) 0=

(Dl, Do,... Dn)T

I7(u) = T(o)| —ZIT

points

we have

7 (1) _7 (%
[fq(eq) 7))
+3om i) -2 ()]
L, G
<Z(Z—’””q * 2 |>
+
<3 (S,

(Ilm [+ M=)
ST lu=vll.

Based on Assumption 1,

17 () = T ()] <= o, (38)

which implies that 7 is a contraction mapping on R".
Hence, there exists a unique fixed point u* such that
T(u*) =u* ie

i —Zmqu < )+anng< >+1p7 (39)

That is

n
—ep, + E mquq
q=1

(w)) + anng(w;) +1,=0,
g=1
(40)

for p =1,2,...,n, which implies that »* is an equilibrium
point of system (5). Moreover, it follows from Theorem 1
and Theorem 2 that * is uniformly stable.

Remark 2 1If oo = 1, then system (5) can be written as

~

ap(t) = —epmy () + Z Mg (4 (1))f 4 (4(1))

g=1

(41)
= (1)) + I,

where t >0, p=1,...,n. Then, the sufficient conditions
for the existence, uniqueness and uniform stability of
RVMENNSs in Theorems 1-3 reduced to the integer order
real-valued memristor-based neural networks (41).

Remark 3 Some sufficient conditions for the existence,
uniqueness and uniform stability of RVMFNNs are derived
in Theorems 1 and 2 based on Filippov’s solution, differ-
ential inclusion theory and Banach contraction principle.
Next we are going obtain some sufficient conditions for the
existence, uniqueness and uniform stability of CVMFNNs
in the following Theorems based on Filippov’s solution,
differential inclusion theory and Banach contraction
principle.

Complex-valued memristor-based fractional-order
neural networks:

In this section, we describe CVMFNNs with time delays
and two different types of memductance functions. First,
we separate the CVMFNNs into its equivalent two
RVMEFENNSs then by using Filippov’s solution, differential
inclusion and Banach contraction principle, some sufficient
conditions are obtained to show the existence, uniqueness
and uniform stability of considered CVMFNNSs.

Theorem 4 Under the case 3', if Assumptions 3—4 are
satisfied, then the system (9) is satisfying the initial con-
dition (12) is uniformly stable.
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Proof Complex-valued memristor-based fractional-order
neural networks system (9) can be expressed by separating
real and imaginary parts, we get

D uy(t) = —epity (1) + Z B (g (0)F* (u,v)

— SR o)) (v +Zy,,q
g=1

#2)
x g (u(t —7),v(r — 7)) ZVW
Ml ) v(e =)+ 5
DP(t) = —epup(t) + Z B (00" )
¥ Z B (g (), v) + Zn;ﬁ,’w(vm»
U= —1)
+Z,pq v (1)g! (u(t — ), v(t — 7)) + H'.
#3)

By theories of differential inclusions and set-valued maps,
from (42) and (43), it follows that

€ —epuy (1) + ZCO{[?;, V,’fq}fR(MW)
q=1
=3 collp Bl )+ D ol i}

n

x g u(t =), vt = 1)) = Y co{ by Th, '

D’ up(1)

x (u(t — ), v(t — 7)) + HE,
(44)

n

6I’VI’ + C0{ﬁ;q7B;q}fR(u7V)

g=1
R~ n R 3
3ol B ) + 3 ot 7}
q=1 q=1

x g ult = ), v(t = 1) + Y co{ 78, 7% e’
q=1

x (u(t — 1), v(t — 1)) + H'.

D*v, (1)

(45)

or equivalently, for p,g = 1,2, ..., n there exists a measur-

. =R R ap o Al NS
able functions f8, () € co{ﬁpq,ﬁfq}, B,y(t) € co{ﬁpq,ﬁ;q},
(1) € colin, 7Y, and 7, (1) € cof,, 7h,} such that

@ Springer

(O (u,v) —

Duy(t) = —epup (1) + i

q=1

Z@qﬂuv

(u(t—1),v(t—1)) + H'.

+Zypq
(47)
prg=1,2,..on, By (0)] < max{|B |,

BRI} < B 1By (0] < max{\ﬁ,,ql Iﬁ,’,ql}<ﬁ,’,q, [7pg (O] <

maX{ ?[fql’ |’ypq|} S ypq and |qu( )l S max{|y17q‘7 |'}71]7q‘} S

Clearly, for

ol
/ﬂfl'
Consider 7 = u' + iV and z = u+ iv with v’ # u and

V£ v. Z(t) = (2)(1),...,2,(t) and z(1) = (z1(2), . . ., z4(1))

are any two solutions of the system (9) with initial condi-
tions z,(s) =, (s) +ix(s), where ¥, (s), x,,(s) € C([-7,0],
R"), ¥, (0) =0, 7,(0) = 0, 25(s) = ¥, (s )+lxp( s), where

¥, (8), %,(s) € C([=7,0], R"), ¥,(0)=0, %,(0)=0, p € n.

We have

D*(u, (1) — up (1)) < — €, (u, (1) — u, (1))

3 B R ) = g v) | = D B i)
q=1 g=1

n
_f;(“qvvq)} + Zyﬁq {g?(ufﬁ,v:ﬂ) -
q=1
n
> [gﬁ,(uﬁ,f, Voe)
g=1
n

DA (0) = vpl0)) < = 6 (v (1) = vpl0)) + DBl |

q=1

- 8{,("‘qﬂvqr)}»
SRy + DB, [fq'(u;,vp ACs]
+Z /pq[ qr’
+ Zypq[ qf’

— &l e, v

gq(uq‘” Vqr)}
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Now multiply by D™* on both sides, we can write From (48), we have
(1) — up(1) <D [ — (1) — up(1)) Wl (1) — up(1) <D [ — (1) — up(1))
- Z B LR ) = SR (g, v,)] DA ACRART AN B S M ACRN
q=1 q=1
Z B 17100, v1) = fl g, v,)| — fh gy v) | D7 [ ) — &t i)
q=1

n
+ Z Yoq |8 [ qrv qr) gf(”qﬂ qu):| - Z V;laq |:g5/(u;r7 v;r) - g;(”qﬂ vq‘f)]:|
=1

B ACTATARI )| R =9 [ o) — ()

@8) 3 R — 12,

(0) = 1) < D[ = (0, (0) vy (1) Zﬁ o) s

" LA AT AR TR
+Zﬁgq[f5<u;,v;> — g, vy)]

/ R
* Zﬁpq{ ‘1’ ‘1 ;(uqvvq)] +qz;/pq[gq( av ‘”) gq(uﬂlﬂvqr)}

) R Z { fﬂ’ qr gﬁ,(uqnvqr)ﬂds.
+Z/Pf/ qr’ qr) gq(”qravqr) =

, By taking absolute value and multiply by e~ on both sides
T Z /pq[ oo Vae) gq("‘qrv"qr)ﬂ- of the above, we get

(49)

3 1 _ t o n
e t|”;)(t) —up(1)| < me I/O (t—s)" 1[€p|”;>(s) —up(s)[ + Z |/3/Ifq“ff(”;’v;) _ftf(”m"q”
+ Z|ﬁpq“f1 q7 ;) ;(”qavq |+Z|yﬁq||gq< qr’ ;r) gs("‘qf’vqf”
+ Z 8 0y Vi) = it v | s

1 ' o—=1_—(t—s) ,—s1,,/ - 1 ' o=
Sepm/o(t—s) le=(=9), \up(s)—up(s)|ds—|—;\ﬂ§q W/o (t—s) !

x e~ | 288]u(5) = g (5)] + ATV, () = v (5)]] ds
n 1 t »
2 Pl ), =) [ (5) = 5
+ g IV (5) = vy(s }ds+2|/§q|—/ (t — 5)" et (=)

[ ) w9+ 103 5) = v ds + D bk s [ =9
q=1

e Rt (5) = e ()] + R V() = vee(s)] ds
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€ 1 t — )" e e (5) —u s
<oy AT 5(5) = (5
+Z|ﬁpq s [ = e e () — o)

1 ! o= —(t—s) —s§
+ §lj|ﬁ§q|z§’r(a)/o (t—5)""e Ve |yl (5) — vg(s)|ds
=

n 1 t el s s
= S s [ e e 0) s
q=1 0
n 1 t
[ 17
+ 2l o

(t— s)“ile_<’_s)e_‘y|v'q(s) — vy(s)|ds
0
+ Z |y§q|uq e / (t— )" e mst0)ms=0) |u:ﬁ(s) — uye(s)|ds

+ Z iy’ 7 /0 (1= 5)" e BT (5) = vie(s)|ds
gq=1
- 1 ! - —(l—=5+7T —(5—T
Sl g [ = I () s
q=1 0

n 1 t _ o i
+ Zlv,’,qlug’m/o (1 — )" e DO, (5) — vye(s)|ds
o

_ 1 Lol . )
<epsuple oy 1) — 1)} s [ e LA

t
1 (—g) —
y /O(t—s)“ 965w (5) — ug(s \ds—i—Z\ﬁpq

V

t
X /(t—s) —(t-s) ,S|v () — vy(s \ds—i—zwpquq )
t
w=l = (1=5) g5 I el —(t=s) -5
)|d Ao A
/(t |u( ()| €+Z|ﬁpq F(oz)/o(t s)" e e
X 7 (5) = vy(s \dv+z|~/m )/u_sy (5450
1 o—1 — S+T 5—T
X |1ﬁ’qr() W ( |ds+Z|y§q\u T )/(t—s) 1= (t=s+1) ,~(s—7)
l —1 —(t— —(s—
X i () = ttge(s)lds + S ! —— / T R
q ; 7' () Jo
- l o= — S+T 5—T
< |X;T(s)f}qu(s)|ds+Z|y§q\u ()/ (1 — 5o (5069
1 o— — s+1) —(s—71
X VE(8) = vels |ds+z|,[gq|ﬂ ()/(,,S) 1y (i=5+7) y~(5-2)
x w/;T<s>—wqf<s>|ds+2|y,',qm / (1 — )" e+~

|Mq.[(S) un( |dS + Z |qu A (t _ s)(l lef(f S+T)87(S7T)

1
[(2)
1 ! 1 (- (s—
x Ixi,f(S)—qu(S)lderZlv,iq\Mf,’m/ (1 =) e 0TI (s) = vge(s)lds
q=1 K
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/ —t|,,! 1 ' o—1 —u * * S —t|,,/
ey (0) = (0] < € suple™ i (0) = w0} s / w e+ (G, + G| D supfe g (1)
t =1 !
] ! * * - -t/
Ol ) G+ Gl S supte o0 = ()
1 ' o—1 —u * * - 1 0 o—1 _—(t—v) —v
X —F(a)/o u e du+[’71p+n3p]qzl—r(a)/r(t—v—r) e (=Y
/ * * - ! o a—1 —(t—v) —
X |qu(v)—wq(v)|dv+[nlp+n3p]zm/o (t—v—1)""e e
q=1
! * * - 1 0 o—1_—(1—v) —v
X fug (v) = ug(v)|dv + [n2p+n4p};m/r(t—v_r) L=(t=v),

* * . 1 "t o— —(f—vVv —V
U0 = 10+ s, + ]S s [ = v e e
gq=1
x [V, (v) = vg(v)[dv
1 t
<e,sup{e”’|u (1) — u,(t —/ wle ™ du
<epsuple 1)~ 1,01} 1 |

* * - —t, 1 ' o—1 _—u
16+ Gl S suple 0wl [

. / 1 ! o— —u
16+ ) S suple 0 (0l g [ e

/ 0"'e"'do

+ [y + 1) D supde™ "G (0) — w0l e ™ s /0 7-1,-040

+ [, + 1) D supfe ™ W (1) — W, (1) }e
g=1 1

* * = — — 1 ! -1 —
+ (13, + M) Y supfe ' 1,() — x, ()]} 0" "do
g=1 ! F(O‘) t—1

* * . — —1 1 = o—1 —
iy i) Yl 0 ey [0

< psup{e i (1) — up (O]} + (€], + ) S sup{e it (1) — g 1))
t — !
g+ 2] suple () — va(} + by + ] S suple (1) — v ()]}
q=1 ! q=1 !
g+ 5] S suple (1) — w0}
g=1 !

+ [, + 1) D sup{e™lz, (1) = 2, (D)}

n
+ [, + 113) Z sup{e”[v)(1) = vy(D)]}e ™"
-

< 6 sup{eu, (1) —up ([} + 55, + Gyl (1) — u(o)]

+ 65, + GV () = v()|| + [, + m3, )1 (1) = ()|
+ [y, + w3, )l (1) = ue) || + [, + ma, ) (0) — 2 (o)l
+ [m3, + m, )V (@) = v(D)]l.
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From (50) we can obtain

V(D) = vp(1) = D% [ = e (1) = (1)
Ju (1) = u( ||—Zsup{e Juf (1) = p (1) } +ZﬁquR o vy) = SR gy v )]+ D B

PavaNTqg’ Tq
< leme+ U1+ 150+ I+ 120 0 = o) , Dk
L1600+ 10+ gl + Il e) = vio) altarvl ;WQ (e Var) = 8t V)
+ [l + sl @) = w0l .
+ sl + ) - 20 + Dl s Vi) = s vl
(1) " Lo
The above Eq. (51) can be rewritten as vp(8) = vplr) = F(oc)/o (=) [_ (7(5) = vp(s))

[ R !
|l () —u(?)|| < . 1 _ +Zﬁﬁq[f g, V) = £ (g, vq)] + Z Uy, V)
(1= Cemax + IET T+ NS+ 131+ [l31))

< ATNGI+ NG+ sl + 1Y (0) = v(@)] — [ (g vg)] + Zv,’,q[gif(u;ﬂ Vge) = &g (Uge, V)]
il + sl H (2 ) ( )l . !
sl + gl () = 2011 - + Zyﬁq[gg(u;wv;f) — gg(uqf,vqr)]}ds.
()

Similarly, we consider the Eq. (49), one can easily obtain

By taking absolute value and multiply by e~ on both sides,
as follows

we have

l ! - / - / /
e v, (1) = wp(0)| < ) e"/o (r=s)" '{fplvp(S) = ()l +;Iﬁf,q|V§(uq,vq) —1g (g, vy)]
+ Z |ﬁpq|lf1 q’ q) fl(uqﬂ vl] | + Z |’))pq||gq qt’ qr) gf;(”qﬂ Vqr)|

+ Z |y§q||g([](ulgr’v;‘r) - g{;(”qﬂ Vge)| tds
=

1 ! o= —(t—s —s1./ . 1
:epm/oufs) -9, va(S)*vp(S)ldH;I[)’,',q\m

X /r(z — )" e e 2R |ul (5) — ug(s)| + 25TV, () = vq(s)]] ds

- Z| A / (1= )" e e [ (5) — a5

+ )L |v (s) — vg(s)|]ds + Z \/pq / t— )" e mstR) gm0

o [ (9) — e (5)] v ) — vie ()] s + Z T A
X[ R10 (5) = e ()] 21V () = vie ()]s

— o | =9 ) o)

S g e e )
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t
+ Z| il T /(z—s)“*le*@*s)eﬂv;c) — vy(s)[ds
t
+ Z| pR IR / (t—s)“_lef(’f“)efﬂu;(s) — uy(s)|ds
t n
o—1 _—(t—s) —s 1
+ Z| By ” /(f*S) Le e (5) — vy (s)]ds + ZWM#SR@
t
></0(Z—s)“ile_(’_ﬁ'r)e_(s”)|u'qI(A) Ug:(s)|ds + Z
+ Zw ¥ =
paltq r 9 T(a)
- 1 ' o—1 ,—u - 7 1 ' o=1_—(t—s) ,—s
= eps?p{e v, () —vp(t)\}mfo we™du + Zlﬁ;q“skm/o (t—s) e g, (5) — ug(s)|ds
+ Z |ﬁpq

+Z|

t
2l / (= 57 e e 6 I (5) = vie(s)|ds

t
[ e=sr e e ) vl

(s L= eIl (5) — uge(s)|ds + Z |75
q=1

t
“'R—/ (r— s)“flef(’ﬂ>efs|u’q(s) — uy(s)|ds

T

(l — )" e eIy (5) = Yy (s)lds

t
'«RI —1 —(f— _
— (tfs)” e e (5) — vy (s)|ds + Zmpq

ot

(t - s)“flef(’fs)efﬂvfl( — v, (s)|ds + Z

«11

/Pq

t
1
1 RR __~ el —(r=s+1) ,—(s—1)|,,/ _ / RI

! d 2:

+ q§:l Vgl g () / (t—s)"'e e I ul (s) = uge(s)|ds + > Iy e o
! n 1
o—1 —(t + ,

></0 (t—y) s+7) \7(,1() Lge(5)]ds + E :|qu\# el

g=1

t
o— —\I—5+T —(5—7 1
X/(Z_S) Lo 05001 (5) — vye(s)|ds + Z Tholu (a

~ / (t_s)oz—le—(t—erf)e—(s—r)‘IMF( ) qr ‘dS—O— Z
0

t
« / (t_S)afle—(t—sﬂ)e*(s—r)|u;r() Uy (5)|ds + Z

/Pq

7 L / (= ) 5 06y () = .. (s)|ds
+ Zw;quqr / (1 — )" e DI (5) = vie(s)|ds
- - 1 ' o—1 ,—u * *
€ p(0) = p(0)] <& supfe” ¥ 0) =5,y / e du+ (8, + &)
. — 1 ! o—1 _—u * *
> supfe )~ w0} s [ e v (5,4 )
g=1
n 1 t
X sup{e "V (1) — v, (t —/ W e dy
; [p{ |q() ‘1( )‘}F(OC) 0
n 1 0 )
* * =1 —(t—=v) —Vv !
+ 1+ 7)Y / (1= v — 0" e Y (3) =, (V)]
g=1 -t
& 1 ‘/77I a—1 —(t—v) —v| /
+ [n], + 7 — (t—v—0)""e e (v) — uy(v)|dv
[ 1p 31)];1"(“) o q q
n 1 0 .
+[n;,,+nzp1zlm/ (1= v — 0 e e () = 7, ()l
= -1

n 1 t—1 . L
+ [m3, + 7y, Z—/ (t—v—1)te Ve v, (v) = ve(v)|dv
g=1 F(O() 0
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1 t
— =1,/ _ o—1_—u
=€ SLtlp{e v, (t) — vp()[} I%0) /0 e "du

(

* * - —t|,/ 1 ! o—1 ,—u
+[fl,,+é3p1;sgp{e 40) = 1)1} 55 / Wl

1

+ (8, + &) ; sup{e”|V, (1) — vq(0)]} e /0 P

1
[(2)

-7

n t
+ [nTerﬂﬁ,,]ZSl;p{e”lw;(t) Y, (O e = [ 0*'e0do
pn

1

n -1
+ [n“fp + nﬁp] Zl sgp{e”|u;(t) —uy(t)|}e " —/ > le0d0
p=

[(a) Jo

R S _ I T L
+ 1, + ) sl 0~ 10l 1 | ietan
q= -1

I'(x)

* * - — —1 1 = a—1 —
[ 7)Yl ) v JRG
=

= g suple (1) = v (I} + [, + &) Z sup{e”"Ju, (1) — ug ()]}

+ (&, + ] D supfe v () — vy}
g=1 '
+ [m, + 75, Z Sltlp{efthﬂ;(f) —y,(O)[}e

n
+ [m, + 73] Z sup{e™Juy (1) — ug (1)}
=

+ [, + 7, Zl sup{e”’|y(1) = 1, ()}
prm

s, + ) D supe 0 — w0l
g=1

< sup{e” (1) = v} + [65, + &G, ]I () — u()]

+ (&, + GV (@) = vl + [, + w3, I (1) — b ()]
+ [, + m )W (1) — w) || + [, + 73,112 () — 20l
+ (15, + 7,V (0) = vl

From (53) we can obtain
V(1) = v(n)l| =Y supfe "V, (1) = vp(1)[}
=1 !

< [emar + 1+ NEI + 3| + 73111 () = v

+ (IS NS+ il + s ]l (1) = u(@)ll

+ (Il + sl () — v (@)

s EA R EANFAORFIOI (54)

The above Eq. (54) can be rewritten as

@ Springer

; 1
LA e (I Py TN TE gy ey oy e 1
< LG+ 18+ il + ]l (1) — (o)
+ Uyl + s (1) = w ()|
sl + 176 = o) 13

(55)

From the Eqgs. (52) and (55), we can write in the following
form,
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[ (1) — u(n)|| < MLI{MzIIV’(I) —v@ll
F MY (1) — ()| + Ml (1) — 201}, (56)
/ 1 /
V() = v < E{Nzllu (1) —u(®)|| (57)
TN (1) = O+ Nall (6) = 2011},
where
Ml (1= (€max + [T+ NG+ 71+ 1311]))
= (IS0 1E 0+ 3]+ Nl
= (Il Iz}, Ma = (sl =+ [l 11)
N (1= [emax H NN+ 11+ lIm5 ]+ l17311]).
= (&l +NEl+ il + w30, N = (il + 1173 1)
N4=(H7r§||+|\ﬂiill)‘

The Egs. (56) and (57) can be rewritten in the following
form

1w (#) — u(®)]| < % IV(6) = vl +

+MII}'()—X(I)II,

M) =0l < 320 ol + 33 W0 - w0

0 - 20,

Substituting (59) into (56), we have

0 (r) — u(e)]| < —{ AR @) =+ 3210~ y o)
FR ) - x(t)ll} + W0 0]

+—|| (OEFLO]
M2N2
= @) —u)]
M2N3 /
(MINI )Wj
M2N4 ,
+ (S T IO = 20,
MN%_|_ 3
I (1) = ()| < (W) /() = w(o)]
MN,
M2N4+M4
+ (%) 17 (6) = 20
— MNy

Similarly, substituting (58) into (57), we have

, Nz{Mz ,
) =) < —K —= t)—v(t
IV (@) =l < 57 o VO = vl
MS / _ % ./ .
F VO w0+ 10 - 201
N /! N !
LA CRA0] Rl AAGR O]
NoM
= O =v@]
NoMs; /
v ool
N2M4 N4 , i
+ (R i IO =,
AT
IV (1) = v(1)]| < <1MNM> W' (1) =y ()]
_NIM]
.-Q//zMA _|_.-Q/’/4
+ (%) 17/ (1) = 2(0)].
—NlMl
If we take,
/ €1 _ &
Iy () =y ()] < W— 25,
i o _ &
17 (1) = 2(1)l| < NE T
1- ﬁflf
where §; = (%) and &, = (”ﬁ \,\Zj\,;).
Then Eq. (56) becomes,
e (1) = u(1)]| < e (60)
Similarly if we take,
n _ e &
/(1) = ¥()] < (> 2.
2\
170) = 20| € — ot = 2

—_— =

2 “1"’1+'\1 2(34
17’\/2/"12
NiMy

M2/\‘;‘13Jr 3 f:’ZM4+ﬂ
N N M N
where 03 = W and d4 = 1‘ i |-

1% [M; N1 My

Then Eq. (57) becomes,

IV(#) = v(®)ll <. (61)
From Egs. (60) and (61), we can say that for Ve=
max{e;, &} >0, then  there exist a =

8/ 1’1]8.)({557 56} > O, 55 = max{él, 53}, 56
such that ||Z(¢) — z(7)|| <& when ||3* () — ¢
the solution z(#) is uniformly stable.

= max{d,, 04}
*(¢)|| < 6. Thus,
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Theorem 5 Under the case 4, if Assumption 3—4 are
satisfied, then the system (9) is satisfying the initial con-
dition (12) is uniformly stable.

Proof Complex-valued memristor-based fractional-order
neural networks system (9) can be expressed by separating
real and imaginary parts, we get

+Zﬁpq u‘i )

- Z Bog (va(O)f" (u, v) + Z ACAG)
q=1 g=1
x g (u(t =), v(r = 7))

—vaq vg(1)g' (u(t = 1),v(t — 7)) + HY,

D u, (1) = —epup(t

(62)
DAy (1) =~ + D Bl a0,
g=1
—I—Zﬁpquq (u,v +Z/pqvq
x g*(u(t —1),v(t — 1))
+Zypqvq (u(t —1),v(t — 1)) + H'
(63)
D*u, (1) < — €yup +ZAJ u,v Z qfuv
+Z®Mg (t—1),v(t—1))
- Z@)Mg v(t—1)) + HR
(64)

Dy (1) < — up(t

+ Z ©,,8" (1
+ Z O/ (u

Z qu(u, v) + 2”: Af:qfl(u, V)
q=1

vt —1))

tf‘C

u(t —1),v(t — 1))+ H'.

Clearly, for p,g=1,2,...,n
Apy = max 1A | 1A ]

pq

Al = max[IAf,qL ‘A;q|:|7

pq

<R ~1 N
0, = max[|®R l, |® |}, and®,, = max[|@1’,q|, |®pq|].

@ Springer

Consider 7 =« + iV and z=u+iv with ' #u and

V£ (1) = (1), ., 2,(0) and 2(1) = (21 (1), ., 20(1))

are any two solutions of the system (9) with initial condi-

»(s) € C([=,0],

tions z,(s) = w;(s) + iy, (s), where l//;,(s), 1

RM), 1//;,(0) =0, 1,(0) =0, z,(s) = ¥, (s) + ix,(s), where
¥, (s), %p(s) € C([=7,0],R"), ¥,(0)=0, ,(0)=0, p € n.
We have

D*(u, (1) — up (1)) < — € (u (1) — (1))

JrZAﬁq[ff(”;’v;) _ff(“qavq)]
- ZAMV]

R
+Z®pq gq q‘L’? q‘[) gq (uqravqr)]

q—
- Z(:)I’q[g{/(u;r?v;r) - gi](uqravqr)]y
g=1
— & (v, (1) = v (1))
LN
S I ACRARTACEN)
g=1
& ~R
2 Al )
+Z®pq gt] q‘c’ qr) gg(uq‘qur)]
q—

+ Z O, [ (1 Vi) — & (e vie)]-
q=1

fql(”qvvq)]

_f;(“qﬂvq)]

Now multiply by D~* on both sides, we can write

(0) = (1) <D | = e (1) =y (1)) + D Ap [ ()

g=1
”qvvq Zqu[fI V) (uq,vq)]
+ Z ®P‘1 [gq (u;ﬁ V;r) — & (uqra Vqr)]
g=1
1 ~1
- Zl ®P(I [gfl(u;r’v;r) - g;(uqr;vqr)]] 9 (66)
=

+ZAMVR )
R g v )+ S ALl V) — £ (g, v)]
_gg(uqravqr)]

n
~T R
+ Z © 18 (tge:Vye)
=

N
WD ICHCICAARATSIf (67)
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From the Eq. (66), we have 1 ! o / Q r
4 (66) SW/ (=571~ luy ) — wp(s)) + D Ay 72 ;)
n - q=
o (1) =1, (1) SD*“[— et (1) — 10, (1) + S AN (R (a0 i)
q=1 ”qavq Zqu[f Uy q (”qﬂ’q)]
M ,V A 1 / o / /
1 q Z pq[f + Z ®pq[g§(uqr7 Vq'r) - g{;(”qﬂ Vqr)]
g=1
1 AR 1 R n
—Jq (utg,v4)] + Z ®pq[gq (”qf’ qu) - Z G);q[gf](u;I7 Vi) — gfl(uqf, vqr)}] ds.
= =1
B gfi (g2, vge)] Z ®1"1 g‘? ‘ﬂ’ ‘/T) By taking absolute value and multiply by e~ on both sides,
we get

— g4 ey

- [
el (0) = 1y (0] < s e / (1= )" |6yl (s) |+Z| AR ACRN
+Z| I v) — <uq,vq|+z|@,,q|| 8 (e Vi) = 8 (e, vie)|
2

+ Z|®pq\|gq< Vi) — &hltge, vie)| | ds

=
L a1~ (1—s) 5| 1 AR L ' -1
Sepm ; (t—s)""e e \“p(s)—“p(5)|d5+;\ MW | (t—s)

% o—(1=5)g=s [1§R|u’q(s) —ug(s)| + )»§1|v;(s) - vq(s)|] ds
A ! ' o—1_—(t—s) —s | IR
+ ZIqulr(a)/() (t—s5) e e [Aq i, (5) — ug(s)]
+ )L v (s) — v (S)|]ds+ i |(:)R |L/t(t_s)a1e(rs+r)e(sr)
’ =) Jo

[ ) w9+ 1713 (5) = 9|5+ D165, s [ =9
q=1

e ) = tge5) 1 Wi () = i) s
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L) [ =90 - oo
+ Z| 25" (1(1) /t(t - s)i_lef(’ﬂ')e”\u;(s) — uy(s)|ds
:
[ = e e —wolas
+ ;|Al’,qz{fr(la)/ot(z — 50N (5) — g (5)|ds
+i]gJ”gw/b—gHaw%ﬂ%m—%@ms
|
+ ; 0, ujj’?% /0 - )" e e Tyl (s) — uge(s)|ds
# SO [ ) ol
SO g el )
+ qznl |(:);q ,uffﬁ/ot(t — s)“ilef(“““)[(“%)|V;I(s) — Vge(s)|ds
<uple 0 0]} gy a0 DAL
X /Ot(t - s)%le_(’_s)e_s\u;(s) — ug(s)|ds + Z |A~§q|/'LRIﬁ
: -
< [= e e ) = v (ol + Z A 7R (a)/o (t— 5"
e e ) = wg(s)lds + Z \A,’,quf;m / ’<r ) e e
‘V;(S) — vy(s)|ds + zi: ‘(:); /”é;R%/OT(t — ) e st (D)
i) = o+ SO iy [0y

o 1 ’ o=l —(t—s+1) ,—(s—71
\uih(s) — tge(s)|ds + Zl |®pq‘ﬂglm/o (r—s) lem(t=st1) p=(s=1)
q=

X

X

X

X

V' A ~ &R RI 1 ! a—1_—(t—s+1) —(s—1)
) = 1)+ 22 i [t oyt

X

1 T o o
‘Vqr(s) Vqr |dS+ E |®pq‘ﬂ (a)/ (Z_S)fl 16 (¢ s+r)€ (s—1)
1 ' o=l —(t—s+1) ,—(s—1
W (5) — Wgels \ds+§ |®pq ' T )/(,_s) y=(t=5+1) ,~(s—7)
E 1 ! o—1 —(t—s+1) ,—(s—1)
‘u (S) uq‘[ |ds+ |®Pq 1"( )/ (t—s)“ e (¢ e (

<1 1 ! el —(rmsir) —(s—
‘X/qr(s) _XqT(s)lds+Z|®pq‘/"t;1m/ (t—ys) o= (1=5+1) p=(s=7)
g=1 T

[Vie(8) = vge(s)|ds

X

X

X

X
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) = 1y (0] < epsuple i) — w0} 5 [ et G, 4 ) Zsup{e {20
(O} / e+ (5, + 6] S suple IV, (0 — vy o)}
q () /o p p = q q
1 ! = 1 0 o—1_—(t—v) ,—v
X W/o u“’le’”du—k[n’fp—i-n;p]zm/ (t—v—1)""e e
g=1 -
() — TR o Y S LR
X | () tﬁq(v)|dv+[n1p+n3p];r(a)/0 (1= v =1t
/ * * - 1 0 o—1 7(t v) =V
X |uq(v) —uq(v)|dv+[n2[,+n4p]qzlm/ (t—v—r1) e
X 1) = 20w + [y +5) S e /”ra_v_fyfle—o—we—v
Xq Xq ’12p ;74p - F(O() 0
XV (¥) = vy () [dv
< psupfe 1) — 1y (1)} % / e
+ [8, + G, Zsup{e uy (¢ oc)/ w e tdy
+ [, + ) Zsup{e W Ve / 1y
iy s ) ey [ 0t
-1 (68)

+ [y, +n3)) Zsup{e ’|u (t) — ()|}e‘11_(o()/0 10“_1e‘8d0

+ [y, + 11y Z sup{e”"lz,(1) = 2, (e

L " getgigg
T e
o1 T ol -
Dy ) sl 0 vl s [0
gq=1

<epsuple"fu, (1) —u, ()|} + [{], + G, zﬂ: sup{e " |u (1) — uq(1)[}
t — !

15 G Sosuple 0 ) + by 13D ot
A0 b0l iy + 15 st ) o)
1y ) S suple ) 20}
+ 5, + 113) Z; sup{e™ |V, (1) = vy (1)l }e ™"

< ol )~ 10} + 5+ 500~

+ (G, + GV = vl + [, + 3l () = b (@)l
+ [, + 3l (0) = wt) ||+ [n3, + il (2) = 2]
+ [, + i, IV(6) = (@)l
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From (68) we can obtain

o' (£) = u( ||—Zsup{e o, (1) = up (1)}

< [emar + ”CIH G+ il + o3 1] 1 (1) — u()]
+ [IGI -+ G+ sl + I3l (1) = vl

+ [l + sl (6) = ()]

+ [l + 31 () = 21l

The above Eq. (69) can be rewritten as

, 1

s (R o 5 T R PR
X AL+ 10+ sl + g1 0 = vl

+ [+ Il 1) = o)l + [l
1) = 20l

(70)

Similarly, we consider the Eq. (67), one can easily obtain
as follows

V(0 =) D7 = 6, (1)
“q7 vg)] Z qu [fl vg)

R
+Z®Pq gq qr’ qr) gq (uq‘tavqr)]

g=1

LI
f))+zlqu[ff(M;,vﬁ,)
e

(”qa vg)]

~R
+ Z;@Pq [gé(u;‘f’v/q‘[) - gg(uqravqr)]} ,
-

1

)~ < ﬁj/b—w“ﬂ—w¢@—w®>
+ZAI’fI[fR M V) u?’v‘l +Zqu[f, l)

f;(uqu +Z®png qr’ qr) gg(”qﬂvqf)]

g=1

~R
3060 lgl ) — &l ey s

q=1

By absolute value and multiply by e~

have

—t],/ 1 —t ! o— / alrd R/, I ./ R
e va(t)—vp(t)lﬁﬁa)e /O(t—S) 1{GpIV,,(S)—vp(S)IJrZIA,n,Ilfq(uq,v(,)—f(,(uq,vq)l

+ Z'qullfl /) (MCZ?Vq ‘+Z|®pq||gq( q1'7 ’q':) gi;(”qﬁvqf”

g=1

~R
+ Z 10,1185 (s Vi) — 8 (tge, vae) [ }ds
q=1

1 ' a—1
e _ —(t—s5) =5,/ _
€ F(oc)/o (t—s5)""e eV, (s) = vp(s

LI
s+ 14,
q=1

t
x /0 (r=5)" e e 2GRl (5) — ug(s)] + 24V (s) = vg(s)[]ds

t
# DBl e e B9 )

AL
+ AN VL(8) = v(s ds+2|®pq

[ (5) — g (5)] 4 Ve (5) — o)

/ t— S)O!—lef(tfﬁ‘c)ef(sfr)

t
(t _ S)Otfl e—(l—err)e—(s—r)
() /0

|]ds+§n:|®R
q=1

X [IR[u (5) = g (5)] + 1 Vo (5) = vie ()]s
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on both sides, we
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1/ .
= _— — o 7([75‘) =S|y, —
€ F(oc)/o (t—s5)""e e[, (s) —vp(s)lds

2. T 1 ! o—1 —(t—s) —s|,./
+ z;mpqufj’?r(a)/o(zs) e e (s) — uy(s)|ds
=

LN 1 ! ael —(1—s) —s
+ ZI|AMMR1/O(IS) L6 v (5) — vy(s)|ds

"\ <R 1 ! ael —(1—s) —s
- 2|qu|;th@/0 (t—9)"'e e 1l (5) — uy(s)|ds
1

AR ' o—1_—(t—s) ,—s
= SN s [ =9 e e ) v (olds

q=1 0
. ~7 1 ! o—1 —(t—s —(s—
3O g 9 T (9 (s

L ~1 1 ! o—1 —(t— (el
SO g [ =7 e e ) = (o

" <R 1 ! _

+ Z O, ] /0 (t—s)" 1e*(’*”T)ff(“’T)|u;1(s) — Utge(s)|ds
AR 1 ' =1 _—(t—s+1) —(s—71

D R AU RO

1 t
= ¢, sup{e V. (¢) — v,(t —/ wledu
psup{e b0 vl s [

. 4 ! ! =1 _—(t—s) ,—s
+ Z|qu|)uRR /O(t—s)“ le=(=9)¢ |ud (5) — uy(s)|ds

= 7 T(a)
L 1 !
A )LRI / t— a—1 —(Z—S) —s|./ _ d
+ ;' val%q () 0( 5)" e eV (s) = vy(s)lds
n t
T+ (AR /(;- Ve 09651l (5) — g (s)[ds
2 %% T(o) Jo q q
£YAR WL/[(I — ) e (5) — vy (5)|ds
2 P () fy q q
- 5! 1 ‘ o=l —(t—s+7) ,—(s—7
D IGp s [ o e e (5) — bl
g=1 F(OC) 0
- 57 1 ! o—=1 —(t—s+71) —(5—7T
+ Z|(~)pq M;?R@/ (1 — 5)"te s+ )‘“;r(s) — Uiy (s)|ds
q=1 T
- ~l 1 ‘ - —\ =517 —\5—7
DG s [ s I )~ g (o)
g=1 F(O() 0

. S 1 ! —1 —(t—s —(s—
+ 2|®pq ”RIT/T (t— )" e e Iyl (5) — vye(s)|ds

. SR ! ‘ =1 —(t—s+1) ,—(s—1
+ 3160 s [ =9t e b ) )i
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- <R 1 ! -1 —(t—s —(s—

+ z:l|®pq|,u¢’IRW/ (I—S)a e (r +1>€ ( I>|u;T(s)—un(s)|ds
q= T
1 ~R 1 T 0—1 —(7— (e

+ 22100 =Tt e () = 1)
q=

" <R 1 ! o .
21Ol 7 [ = e eI () < (o)l

1 t
e (1) = vp(D)] < & sup{e™ v, (1) = vy ()]} @ /0 wleTdu + (&), + &,

- —t)../ 1 ! oa—1 —u * *
< S suple )~ [ 6+ )

n 1 t
=t/ -1 _,—u
X Eﬁ s?p{e ’|vq(t)—vq(t)|}r(a)/o e "du
g=1
n 1 0

+ [TETP + 77.';1,] ZIW/ (l -y — T)“*le—(t—v)e—vhp;(v) N lpq(v)\dv

* * - 1 o =1 _—(t—=v) —v
+ [n1p+n3p]zm/o (t— v — e el (v) — ()|

q=1

* * - 1 0 =1 _—(t—v) —v
+ [m5, + 73] 2%/10 —v—1) e e |}(;(v) — 2, (v)|dv
e

* * - 1 o -1 _—(t—v) —v
+ [n2p+n4p]zm/0 (1= v — " e e, (1) — vy(v)ldy

q=1

1 t
_ =1,/ _ o—1_—u
=€ s?p{e v, () = vp(1)[} %0 /0 u* e "du

* * & —t|. ./ 1 ! a—1 —u
165+ 6 Do suple ) 0 [

* * - —t|,,/ 1 ' a—1 ,—u
+[52,,+é4p];sgp{e 0 = v 5 /0 e dy

1

+ [+ ] 3 supke” Wal0) — VOl | oteta

* * . — _r 1 =t a1 —
+ [TElp + n3p] Z Sl;lp{e t|ulq(t) — Mq(t)|}e —F(a) /0 9 le edg
q=

N .y S O
I 7 DSl 0~ 10l g [ e
= -1

. . n 3 , . 1 -7 - _
+ [y, + 7] Elsgp{e v (1) = vg(1)|}e r(a)/o 0* e ’do
=
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=6 Sl?P{e_’IVL(t) v} + &1, + &, Zsup{e ug (1) — ug (1)}
+ (&, + &1 > sup{e v (1) = v ()]}
g=1 !
+ [15, + 73,] D sup{e |yl (1) =y, ()] }e
g=1 1!
+ [m5, + 73,] D sup{e|ul (1) — uy(1)[}e
=1 !
. (71)
+ [m3, + 75,] > sup{e |1, (1) — z,(O[}e
g=1 !
+ (15, + ) > Sltlp{ef’lv;(t) —vg(t)[}e™
<6 Slfp{e*’\v;(t) =)} + (&, + & (1) — u(@)]]
+ (&, + &IV (1) = vl + [, + 73,11 (2) — ()]
+ 1, + m ' (1) — u@)|| + (75, + 73, )17/ (1) — 2 (o)
+ [m3, + 7V (6) = v(D)]l.
From (71) we can obtain ||v’(t) v < A%{Nznul(l) — )]
I = vl = Zs‘fp{e () = v o)1} FNSIW ) = W)l + Nl () = 2011},
< lemax + 1S+ NEN + NI )l + N7 1] 11V (1) = v (75)
+ &N+ &N+ Nl + 3] [l (r) = u(o)] where
+ =il + =5l (1) = (@)l
+ [l + 1) = 2]l M= (1= (emar + (I 1+ G+ i1+ 131]))
(72) 2:(||‘:2H+||€4||+||’12||+||’74||)
. M = ([l =+ n31) . Ma = (I3 ]+ I ll)
The above Eq. (72) can be rewritten as Ny = ( [enw+ 15 + ||f4|| s+ ||n4|\])
1 *
‘(1) —v(1)|| < 2=(||5 I+ 1EI+ NI [+ w30, Nz = ()| + 3],
[V(2) =v(®)]| < (1= [emar + IGN +NEN+ sl +lmll])  pr, = sl +”7;H) I 3 1 3

< A&+ 1SN+ il + ]l (1) = u(@)]
slEA RREANIAC ) ( )l
+{llm3 Nl 1l (2) = 21}
(73)

From the Eqgs. (70) and (73), we can write in the following
form,

[ () = u(n)]| < MLI{MzIIV’(t) —v(O)ll + Msly'(r)

YOl + Mall7 (1) = 201},
(74)

The Egs. (74) and (75) can be rewritten in the following
form

I 0) — () < T V) = vl + g 0~y o
+ 120 = 201, (76)
M6 =0l < 32 0 — ol + 3 W0 v
+ 5 10 = )] (77)
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Substituting (77) into (74), we have

) ()] < R I 0 =+ 3 W )
S0 -0}
H 2O -y O+ 510 -
MoN> -
=2 )~ o)
MoN3
Jr(f\/llf\/l )'
+ (v M)nx' )~
Mz-/\/s_;'_&
I (£) — u(r)]| < (%) W/ ()= (1)l
MiNy

MoNy | My
MIN, M,
1 — MM

M]Nl

)IIX’(t)—x(t)II~

Similarly, substituting (76) into (75), we have

V(5) =v(n)] < {ﬁ? V(6) v

+7*||!//'(t) -

. (Nz/\/ls
N M,
NoM,y

* <N1M1

NoMs Nw
IV () —v(0)] < (NM

1 NoM,
NiM,

+

_|_

Ny

Ny
Ni

>|I¢

N2M4+/\/4
+ NiM, ”
l_NzM')

NiM,

If we take,

W' () = (@)l <

&1

M N
&1

1) = 2(1)l <

MoN3
2 Ml\l+
17/\’12“2

)

lf,wl,m,

Mo
) ’\Al\|+M
Moy

)

W

>|\+M“|u<>

LR ]

)nx'(r)—x(m,
)~y (o)

() =20

&1

:2—517

&1

:2—52,

32N2+M3 ‘Qz/t%r
where 0, = % and 0, = | “51 ).

TN

@ Springer

17,\/1,/\“[

Then Eq. (74) becomes,

' (1) — u(t)|| < er. (78)
Similarly if we take,
&
/(1) = WO < — e = 5
2(:,&:+;:) 263
1 NoyMy
N M,
&2
17(1) = 1O < — e = 5
(B ™
1 /\2\/17
MM,
\2M3+h /\2/\44+
where &3 = (%) and d4 = <%> Then
I_AflM, ! N1 My
Eq. (75) becomes,
V(1) = v(0)]| < e (79)
From Egs. (78) and (79), we can say that for Ve =
max{e, &} >0, then  there exist a =

8/ max{&s, 56} > 0, 05 = max{5|,53}, ¢ = max{éz, 54}
such that ||Z(¢) — z(7)|| <& when ||*(t) — ¥ (¢)|| <9. Thus,
the solution z(#) is uniformly stable.

Theorem 6 If Assumptions 3-5 hold, there exist a unique
equilibrium point in system (9), which is uniformly stable.

Proof Let €,z, =u, and constructing a mapping T :

C" — (", defined by

Tyup < an;ﬂquq <Z’> + Z /p,,gq< ) +H,  (80)

(Ty(u), Ta(u), ..., T, (u))".

Now, we will show that T is a contraction mapping on
C" endowed with the complex space norm. In fact, for any

where p=1,2,...,n, T(u) =

two different u= (u,u,... Cn)T7 V=

(Vl, Vo,... V,,)T

1T (u) =T ()| —Z\T

points
we have

] L(%ﬁ@ﬂ
+2m@@»w@m

< Z (Z ﬁpq)q - /pq'u*q) |Mq - Vq|>

<y b (Zluq )
el Dy .
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Based on Assumption 5,
1T (w) — T)[| <[lu— |,

which implies that 7 is a contraction mapping on C".

(82)

Hence, there exists a unique fixed point u* such that
T(u*) = u*, ie.

U, = Z ﬁquq )+ Z ))png P (83)
That is

—€62, + Z Brala(zy) + Z pa8q(Zg) +Hyp =0, (84)

for p = 1,2,...,n, which implies that z* is an equilibrium
point of system (9). Moreover, it follows from Theorem 4
and Theorem 5 that z* is uniformly stable.

Remark 4 If o = 1, then system (9) can be written as

5(0) =~z (1) -3 Boalza0)fo (za(0)
) ! (85)
S T8yt — (1)) + Hy,
g=1

where t >0, p =1,...,n. Then, the sufficient conditions
for the existence, uniqueness and uniform stability of
CVMEFENNSs in Theorems 4-6 reduced to the integer order
complex-valued memristor-based neural networks (85).

Remark 5 Many of the authors investigated the dynamic
properties of memristor-based neural networks with time
delays such as global stability, synchronization, anti-
synchronization, passivity and dissipativity see Zhang
et al. (2013), Yang et al. (2014), Wu and Zeng (2013,

2014), Chen et al. (2014), Wu and Zeng (2012), Wu
et al. (2011, 2013a, b), Cai and Huang (2014), Guo et al.
(1(1)) {0.75, |y (6)] > 1, (1)) {—0.4,
m w = m [0) =
e 065, |oi()<1, 27 -05,
N —0.25, |oi(2)| > 1, {0.6,
t)) = 1)) =
(1 (1)) { 035, Jor(]<1, 2@ =15,
—0.15, o (2)| > 1, { 0.1,
t)) = 1)) =
(e (1) { 025, Jan(l<1, D)= g5,
—0.12, |oi(f)| > 1, { —0.7
t = t)) =
(e (1)) { 2025, Jo(n)]<1, 2= g

networks with two different types of memductance
functions and some sufficient conditions were proposed
for satisfying the passivity conditions of addressed
memristor-based neural networks. In Chen et al. (2014),
the authors introduced the memristor-based neural net-
works and proposed some sufficient conditions that
guarantee the global Mittag-Leffler stability and syn-
chronization by using Lyapunov method. The existence,
uniqueness and uniform stability analysis of memristor-
based fractional-order neural networks with two different
types of memductance functions has not been investi-
gated in the literature. In this paper, the authors consider
both real-valued and CVMFNNs with time delay and two
different types of memductance functions. This obtained
results improve and extent to the results proposed in
previous works.

Numerical examples
In this section, we give some numerical examples to show
the effectiveness of our proposed theoretical results.

Example 1 Consider memristor-based fractional-order
neural networks with time delays

D’ wy(t) = —epmp(t) + Zmpq wg(t fq (wq(1))
+ Z”Pq (1)) 8 (0q(t = 1(1))) + I,
(86)
where e =2,e, =111 =—-1.7,1, =12,7=0.6, the

fractional order « is chosen as oo = 0.9 and the activation

functions  described by j?q(wq(t)) = g,(w,(1) =

tanh (e, (1)),

|oa2(1)] > 1,
(1) <1,
o> 1,
oa(r)] <1,
|oa2(1)] > 1,
(1) <1,
o2 (1)] > 1,
| (1) < 1.

|2

(2013), Qi et al. (2014), Wen et al. (2013) and references
therein. In Wu and Zeng (2014), the authors investigated
the passivity problem for memristor-based neural

Clearly, L, = G, = 1. The Assumption 2is verified by using
the above parameters. However, system (86) has a unique
uniformly stable solution according to Theorems 1 and 3.
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Also, according to Theorem 3, system (86) has a unique
equilibrium point w* = (@}, ;)" and which is said to be
uniformly stable. Figure 1 shows that the solution of system
(86) is converges uniformly to the equilibrium point w*.

Example 2 Consider memristor-based fractional-order
neural networks with time delays

D*wy(1) = —epwp(t) + Zmpq gt fq (q(1))

(87)
Janpq q(1))8 (g (1 = 1(1))) + I,
where e =2, e =1,y =—-1.7, L =1.2,7=0.6, the

fractional order o is chosen as o = 0.9 and the activation

unique equilibrium point w* = (w7, wE)T and which is said to
be uniformly stable. Figure 2 shows that the solution of sys-
tem (87) is converges uniformly to the equilibrium point w*.

Example 3 Consider a class of complex-valued memristor-
based fractional-order neural networks with time delays

Dz, (t) = —€pzp(1) + Z ﬂpq 24(1))fq(z4(1))
(88)
+ Z /pq 24(1))fq(z4(t — 2(1))) + Hp,

where ¢, =8, ¢ =6,H = -3+1i, H, =2+ 4i,7= 0.6,
the fractional order « is chosen as « = 0.9 and the activa-

functions described byfq(a)q(t)) = 8,(wy(1)) = tanh(w,(1)), tion functiorllse({j:::ribed by fi(z,(t)) = };jﬁ“ZEﬁi +i l+elw(n ;
84(2(1) = T + i

Pl (1)) = {? ||L;11((tt))||ill,7 Fralin®) = {; ||L;22((tt))||211:

Bt = {3 0T B = { T 07

%1(1’1(1‘)) = {:: ||1:1((tt))| Z 11,, Aiz(Vz(t)) - {Og7 ||‘;22((tt))|| z 11,7

B (1)) = { —i |vv11((r[))| Z 1177 Baa(va(t)) = {f ||sz2((?)||2 11’,

i) ={ 5 i 2 T ={} el

hino) =15 ||vvll(<?>| S XEOES ||vv22(<tr)>|| o

st ={ |vvll(<?>| 2y oo = {7 ||vvzz<(?)|| o

iy (@1(1) = ~0.6sin(o4 (1), Obviously, 4% = 4= 0.1, 4= i = 0,* = s/ =

miz(w2(t)) = 0.8 cos(ma (1)),

may (i (t)) = 0.8 sin(w; (1)),
ma(wa(t)) = —0.6 cos(wa (1)),

(w1 (¢)) = 0.9sin(w (1)),

n12(w (1)) = 0.6 cos(wy (1)),

na1(w1(t)) = 0.6sin(w (1)), na(w2(r)) = 0.9 cos(wa(t)).

Obviously, L, = G, = 1. By using the above parameters the
Assumption 2 is verified easily. Therefore, system (87) has a
unique uniformly stable solution according to Theorems 2
and 3. Also, according to Theorem 3, system (87) has a

@ Springer

0, i = uf" = 0.1. By using the above parameters the
Assumption 3 is verified easily. Therefore, system (88) has
a unique uniformly stable solution according to Theo-
rems 4 and 6. Also, according to Theorem 6, system (88)
has

(vt,v4)" and which is said to be uniformly stable. Figure 3
shows that the solution of system (88) is converges uni-
formly to the equilibrium point u*, v*.

. ey . . T
a unique equilibrium point u* = (u},u})", v =

Example 4 Consider a class of complex-valued memris-
tor-based fractional-order neural networks with time delays
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Fig. 1 Time responses and state trajectories of RVMFNNSs (86) with o = 0.9
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Fig. 3 Time responses and state trajectories of real and imaginary parts of CVMFNNs (88) with a = 0.9
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Fig. 4 Time responses and state trajectories of real and imaginary parts of CVMFNNs (89) with « = 0.9

D (1) = —erp 1) + 3 Bpala )y 20 (1)
., (89)
D o @Ozt = (1)) + Hy,

where ¢, =8, ¢ =6,H, = -3+1i, H, =2+4i,7= 0.6,
the fractional order o« is chosen as « = 0.9 and the activa-

. . . o) |
tion functions described by f,(z,(1)) = 1| +j,uz(:) + lm,

el |
8q(z4(1)) = hi—»j(i) + ’Wa

=2, Brw() =3, Bym()) =3,

By (ni(1) = —2,

) =2, 5w ) =2,

Tnn(1) = —4,

Clearly, we know that /I;fR = ill,’ =0.1, /III,R = );f’ =0,
i = pll =0, @t = X' = 0.1. By using the above
parameters the Assumption 3 is verified easily. Moreover,

system (89) has a unique uniformly stable solution

@ Springer

according to Theorems 5 and 6. Also, according to Theo-
rem 6, system (89) has a unique equilibrium point u* =

(i, u3)", v = (vi,v3)" and which is said to be uniformly
stable. Figure 4 shows that the solution of system (89) is

converges uniformly to the equilibrium point u*, v*.

Conclusion

In this paper, the authors have been extensively investi-
gated the problem of existence of uniform stability of a
class of MFNNs with time delay and two different types of
memductance functions as well as CVMFNNs with time
delay and two different types of memductance functions.
By using Banach contraction principle, differential inclu-
sion and framework of Filippov solution, some new suffi-
cient conditions that ensure that the existence and uniform
stability of the addressed MFNNs and CVMFNNs with
time delay and two different types of memductance func-
tions have been derived. Numerical examples are also
demonstrate the effectiveness of our theoretical results.
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