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ABSTRACT: Cellular decision making is accomplished by
complex networks, the structure of which has traditionally been
inferred from mean gene expression data. In addition to mean
data, quantitative measures of distributions across a population
can be obtained using techniques such as flow cytometry that
measure expression in single cells. The resulting distributions,
which reflect a population’s variability or noise, constitute a
potentially rich source of information for network reconstruc-
tion. A significant portion of molecular noise in a biological
process is propagated from the upstream regulators. This
propagated component provides additional information about
causal network connections. Here, we devise a procedure in
which we exploit equations for dynamic noise propagation in a
network under nonsteady state conditions to distinguish between alternate gene regulatory relationships. We test our approach in
silico using data obtained from stochastic simulations as well as in vivo using experimental data collected from synthetic circuits
constructed in yeast.
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Obtaining a predictive understanding of information prop-
agation and decision-making in cellular pathways is one of the
paramount goals of systems biology.1 A first step in generating
this understanding is to be able to map the structures of the
underlying gene-regulatory networks and the causal relation-
ships between their molecular components.
Learning of networks structures is typically accomplished

using bulk data describing the average response of a population.
Although informative, these data often fail to establish causal
relationships, resulting in nonunique solutions where multiple
different topologies can represent the same data pool equally
well (Figure 1A).2

It has recently been suggested that utilization of cell to cell
variability in a population might improve the discriminatory
power of network identification methods. Variability in protein
expression, or “molecular noise”, is a ubiquitous feature of
biological systems that results from the probabilistic produc-
tion, degradation, and collision of biological molecules (Figure
1B).3−5 Such variability can be accurately quantified by
measuring levels of specific proteins in single live cells using
genetically encoded fluorescent reporters and high throughput
assays such as flow cytometry.
We now have substantial understanding of the nature,

sources,6−8 propagation,5,9 and information content of gene
expression noise. Furthermore, noise at steady-state has been
shown to provide information on regulatory pathway member-

ship10 and used to elucidate regulatory mechanisms.11,12 These
studies used static snapshots of noise in a pathway to gain such
understanding, and revealed that despite the new information
that could be gleaned from these measurements, they are often
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Figure 1. Mean might be insufficient to distinguish between alternate
network topologies. (A) Example of mean expression of two genes, A
and B, and two alternate network topologies that fit these data equally
well. Population variability (inset) provides additional information. (B)
Sources of noise can be divided into two components: intrinsic noise
due to the stochastic nature of biochemical reactions, and propagated
noise from upstream regulators.
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insufficient to reveal relationships between components.13,14

Namely, while these data could reduce the number of
underlying possible topologies, they cannot pinpoint unique
causal connectivities. Therefore, dynamic evolution of varia-
bility in a pathway, as measured by change of the population’s
distribution as a function of time, might be necessary to
discriminate among alternate regulatory relationships.
This idea was recently explored in a study that used an

approach called the Finite State Projection15 to compute
stochastic distributions that can result from different models of
the hyperosmolarity pathway in yeast.16 These distributions
were then used to identify a model that was most predictive of
the experimentally measured noise dynamics of mRNA
expression. This method was capable of identifying a predictive
model of the transcriptional dynamics in this system. However,
this approach heavily relies on extensive parameter identi-
fication, a factor that might limit its scalability.
In this work, we present a new approach for the identification

of regulatory connections in a network using dynamic noise
data. Our approach is based on the premise that if a regulatory
link between two nodes in a network is present and active, then
variability in the upstream node should propagate downstream.
This propagation results in a time-dependent and link-specific
relationship between noise profiles of the two nodes.5,13,17 To
exploit this feature, we present a mathematical formalism
describing noise propagation under nonsteady state conditions.
By comparing model predictions and experimental measure-
ments of noise, we can provide evidence for or against a
putative regulatory interaction. Conveniently, our method
requires estimation of only two kinetic parameters, both of
which can uniquely be determined from single cell gene
expression data. We first illustrate how this methodology can
extract regulatory connectivity in a circuit using in silico data.
Then, we demonstrate the usefulness of our approach using in
vivo data collected from synthetic networks constructed in the
budding yeast S. cerevisiae.

■ RESULTS AND DISCUSSION

Using the Chemical Master Equation to Derive
Moment Equations. The formulation that we assume in
our model consists of a homogeneous system in which each cell
is treated as a well-mixed bag of N molecular species.18,19 The
state of the system is represented by a N-length integer vector
X(t) denoting the number of molecules of each species at time
t. The M possible reactions that can occur among these species
are represented by state transitions in a Markov chain.
Transitions occur in discrete steps at random time intervals
and depend only on the previous state of the system
(“memoryless” process). The probability that a reaction r will
happen in the next time interval, (t,t + τ) as τ → 0, is Rr(X(t))τ
+ o(τ). Occurrence of reaction r changes state X(t) according to
the stoichiometric vector ϑr, which defines how the reaction
changes number of each reactant species. The probability of the
system being in state x at time t can be represented by the joint
probability function P(x,t). The chemical master equation
(CME) gives us how this probability evolves over time:
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Based on previously published work by Engblom, we can
express propensities Rr(x) in the form of a first-order Taylor
series expended around the expected value x = m
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If we assume that the higher order terms in the Taylor series
expansion are negligible, the time dependent mean equation for
the ith species is given by20
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Finally, for any two species i and j, we can also obtain a first-
order approximation of the derivative of their covariance Cij:
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These equations provide a predictive model that links the
topology of a network to the dynamic evolution of its mean
behavior and to the time-dependent evolution of the second
moment of its distribution across a population of cells. The
strategy we propose below is to check the solution generated by
an equation based on the second moment and the mean for a
given expected network connectivity against data to test
whether this topology is likely. In this way, we augment the
information from the mean with that from variability to
discriminate between different possible connectivities in a
network. Importantly, our approach relies on measurements
during dynamic network operation, therefore exploiting
regimes where noise propagation is most likely to occur.

Dynamic Noise Propagation Equations. As a proof of
principle, we consider two simple transcriptional systems in
which protein A, constitutively expressed at rate: Ra

+ = αa, either
activates: Rb

+ = αba
n/(an + K), or inhibits: Rb

+ = αb/(a
n + K),

expression of gene B. Here, a and b represent the mean copy
number of proteins A and B, respectively. The proteins A and B
are degraded at first order, linear rates, Ra

− = γaa, and Rb
− = γbb.

We define noise of A or B as the squared coefficient of
variation, ηaa

2 = Caa
2 /a2 and ηbb

2 = Cbb
2 /b2, respectively, and derive

dynamic equations for these quantities as described above (eqs
3 and 4; See Supporting Information for specific derivations):
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Here, Hba* is the susceptibility of B to A as defined at steady
state: Hba* = (∂ ln b)/(∂ ln a) ≈ ∂ ln(Rb

−/Rb
+)/(∂ lna).7,21,22 For

the activation system, the susceptibility is Hba* = nK/(an + K),
and for the inhibitory link: Hba* = nan/(an + K).
We also derive an equation for the shared noise, ηab

2 = Cab
2 /ab,

which is a measure of covariation of A and B. It is given by
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The noise equations of A and B (eqs 5 and 6) can be
decomposed into intrinsic and propagated components. Noise
of A, ηaa

2 , has an intrinsic component only originating from
stochastic expression and degradation of the protein. Because
the expression of B is regulated by A, its noise (ηbb

2 ) has both
intrinsic and propagated components which sum up to the total
noise: ηbb

2 = ηbbint
2 + ηbbprp

2 .6,7 The dynamic evolutions of ηbbint
2 and

ηbbprp
2 can be extracted from eq 6. Evidently, the intrinsic noise of
B does not depend on the shared noise ηab

2 .6 Terms containing
ηab
2 reflect noise propagated from A to B. The resulting dynamic
intrinsic and propagated noise equations for B are

η
η= − + +

+ + −

t
R
b

R
b

R
b

d

d
2

bb
2

b
bb
2 b

2
b
2

int

int (8)

η
η η= − − *

+

t
R
b

H
d

d
2 ( )

bb
2

b
bb
2

ba ab
2prp

prp (9)

The derived dynamic noise equations converge at steady-
state to known expressions (Paulsson7). Furthermore, we
validate these equations in the dynamic regime using data
obtained from stochastic simulations (SSA)18 of the regulatory
circuits using different parameter sets (Figure 2, and Supporting
Information Figure S1 and Table 1).
Strategy for Using Dynamic Noise Equations to

Predict Causal Relationships in a Circuit. Noise trans-
mission depends on the regulatory relationship between two
genes. Therefore, the propagated noise equation (eq 9) offers
an opportunity to test for the existence of a causal connection
between two components of a circuit. Specifically, if expression
of A and B are measured simultaneously in single cells as a
function of time, we can determine how their means (a and b),
downstream propagated noise (ηbbprp

2 ) and shared noise (ηab
2 )

evolve over time. By using these measured values in the noise
equation for either the activation or inhibitory model (eq 9), we
can calculate for every time point the rate at which propagated
noise should be changing (dηbbprp

2 /dt) and subsequently
compute the entire time-course trajectory of the propagated
noise ηbbprp

2 (t). If for a given tested model, this predicted
trajectory coincides with the experimentally measured
trajectory, it is an indication that this model is likely to
represent the causal relationship present in the network.
Evidently, we can repeat this procedure to test for activating or
inhibitory interactions, as well as for all permutations of the
circuit (e.g., A activates B or B activates A).
Estimation of Necessary Parameters. To implement the

strategy outlined above, we must first estimate parameters that
are necessary to compute Hba* and Rb

+ in eq 9 and that cannot be
directly measured from dynamic expression data. There are
three such parameters, all defining the production rate of the
downstream protein: the Michaelis−Menten parameter K, the
hill coefficient n and the maximum rate of synthesis αb. All
other values in eq 9, the means and noise of the proteins, are
directly measurable.
At steady-state, mean expression of B is linearly related to the

steady-state susceptibility Hba* : ωb = n − Hba* where ω is a
constant (for activation ω = nγb/αb and for inhibition ω =
nKγb/αb; see Supporting Information for detailed derivations).

Since both the mean and susceptibility can be accurately
obtained from distributions, this relationship allows us to
uniquely identify n from two steady-state measurements: one at
the steady-state before circuit induction and another at the new
steady-state after induction. Furthermore, inspection of eq 9
reveals that at steady-state, propagated noise is given by ηbbprp

2 =
Hba*ηab

2 , where for activation Hba* = nK/(an + K) and for
inhibition Hba* = −nan/(an + K). With n calculated as above, and
ηbbprp
2 , ηab

2 , and a experimentally measured, we can also uniquely

determine K using K = anηbbprp
2 /(nηab

2 − ηbbprp
2 ) for activation or K

= −an(nηab2 + ηbbprp
2 )/ηbbprp

2 for an inhibitory connection.

Using the obtained values of n and K, the trajectory of ηbbprp
2

for a given assumed topology can be determined from the noise
equations (eq 9). Calculated and measured values of ηbbprp

2 can
then be compared for all time points, for example by looking at
the linear correlation between these two quantities. It is worth

Figure 2. Noise computed using dynamic equations matches SSA and
converges near steady state to established stationary equations. (A)
Example of protein expression of a two-node system in which A (αa =
567 and 2491, γa = 1.9) inhibits B (αb = 4.796E10, γb = 2.25, Kb = 870,
nb = 3); population mean (dark solid lines), trajectories of individual
cells (n = 1000) obtained from SSA (thin, light lines). (B) Total noise
in A and B: measured (dotted lines) and noise computed using
dynamic equations (solid lines) and steady-state approximation
(dashed lines). Solutions converge as the system approaches steady
state. (C) Noise in B decomposed into intrinsic and propagated
components.
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noting that due to the structure of the equations, measured and
estimated ηbbprp

2 will differ by a constant scaling factor
corresponding to the synthesis rate of the upstream node
(either αa or αb) whose exact value does not need to be
determined since it has no bearing on the quality of the
correlation between these two quantities (Figure 3B lower
panel).

Test Using In Silico Data. We first tested our method in
silico using data obtained from stochastic simulations of
activation and inhibition motifs. We randomly sampled the
parameters of these motifs (see Supporting Information Table
1) and generated time-dependent distributions. We used these
distributions to extract propagated and shared noise values as a
function of time, to which we then applied the procedure
detailed above. For the correct regulatory relationship and
directionality, we were mostly able (∼75%) to accurately

predict how propagated noise fluctuates over time in the
downstream gene. Noise trajectories predicted for the incorrect
regulatory relationship (for example, activation instead of
inhibition) or reversed topology (B upstream of A instead of A
upstream of B) failed to match the in silico data (Figure 3, and
Supporting Information Figure S2). As expected, the networks
for which we were unable to deduce the correct regulatory
relationships corresponded to regimes where noise either was
insignificant or did not propagate between the two nodes
(Supporting Information Figures S3 and S4).

In Vivo Test Using Synthetic Circuits. We next subjected
our method to an in vivo test. For this purpose, we designed
and built synthetic networks implementing transcriptional
activation and inhibition motifs in the yeast S. cerevisiae. To
build the activation circuit, we placed the transcription factor
MSN2 tagged with YFP under the galactose responsive
promoter, pGAL1 in a Δmsn2/4 strain, allowing the fusion
protein to provide the sole Msn2 activity in the cell. In the same
strain, we integrated an RFP protein under the control of the
Msn2-responsive HSP12 promoter. In the inhibitory circuit, the
pGAL1 promoter was used to drive expression of the TetR
protein tagged with RFP. To monitor the activity of TetR we
integrated GFP under the control of a TetR-repressible Adh1
promoter (Adh1tet). As a control, we implemented a third
network in which reporter proteins, GFP and RFP driven by
pGAL1 promoter were integrated at separate loci. This final
stain has no direct interactions between the two reporters, but
they are coregulated by the transcription factor Gal4 (Figure
4A) .
All three strains were grown in noninducing raffinose

containing media and then induced by addition of galactose.
We subsequently measured single cell abundance of the
fluorescent proteins in ∼5000 cells every 20 min for 12 h by
flow cytometry. These data were processed and the mean and
standard deviation of the per-cell fluorescence signal and the
correlation between the RFP and GFP signals computed for
each time point. Using these data along with the analytical
propagated noise equation (eq 9), we then tested for regulatory
relationships.
First, we tested whether the information contained in the

mean alone could uniquely identify the underlying networks.
To do so, we used ODE models of different regulatory
mechanisms (causal, i.e., activation or inhibition, or noncausal,
i.e., having no relationship between A and B) to mimic the
behavior of the data. We found that the data could be fit equally
well by all models (Supporting Information Figure S5),
indicating that mean information alone cannot discriminate
between the possible alternate topologies.
We next moved to testing whether the measured

distributions could be exploited to provide discrimination
using our noise propagation methodology. Using eq 9, we
indeed determined that the propagated noise trajectory
predicted using the topology that correctly reflects the true
relationship (Msn2 activates Hsp12) matches the experimental
results (correlation of 0.98 between predicted and measured
propagated noise along the trajectory of the system). At the
same time, noise trajectories predicted by assuming the
incorrect, reverse topology (Hsp12 activates Msn2) cannot
recapitulate the data (correlation of −0.15). Furthermore,
predictions made assuming the wrong regulatory mechanism
(inhibition instead of activation) do not match experimental
results regardless of circuit permutation (Figure 4C, D top).

Figure 3. Reconstruction of an in silico network in which gene A
activates gene B. (A) Mean expression of proteins A (αa = 80 and 320,
γa = 1.3) and B (αb = 1207, γb = 1.8, Kb = 428, nb = 1) as a function of
time. (B) Test of an activation link between A and B. Comparison of
measured noise of either A or B and dynamic noise predictions for
different permutation of an activation model. Quality of prediction is
quantified as a correlation between measured and estimated noise for
the particular topology (lower panels). (C) Test of an inhibitory link
between A and B. In both cases, correlation between estimated and
measured noise is poor. The zero correlation indicates that the
numerical integrator failed to solve the noise equation.
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Our methodology was equally efficient at pinpointing the
right regulatory relationship for the inhibitory synthetic circuit.
There again, we could discriminate between the correct
topology (correlation of 0.87), TetR-RFP inhibits GFP, and
other possible network permutations. Notably, the predicted
trajectory for the reversed inhibitory relationship, GFP inhibits
TetR-RFP, shows clear mismatch with the data (correlation 2.8
× 10−16) (Figure 4C, D center). Similarly, predictions using the
activation model fail to match experimental results regardless of
network permutation.
For the control network in which GFP and RFP were

coregulated, predicted propagated noise does not match the
experimental data regardless of the assumed regulatory
mechanism or network permutation, correctly indicating that
these genes have no causal interactions (Figure 4C, D bottom).
However, in such cases, we cannot in general rule out the
existence of a regulatory relationship between the two genes
since the relationship might not manifest itself in the data due
to poor noise propagation or inactivity of the regulatory link
under the tested conditions. Despite the ability of our method
to provide hints about the lack of causal relationship between
the circuit components, in this case, further tests are needed
using different input schemes to uniquely determine the correct
topology.
Conclusion. Technologies that provide expression measure-

ments in single cells are ubiquitous, but the measured
population variability data are seldom meaningfully exploited.
This variability, its magnitude and frequency of fluctuations, can
be information-rich, and when analyzed rigorously can be
particularly useful for informing the structure of gene regulatory
networks.13,14,24

Some early studies tested for regulatory relationships by
attempting to directly score the linear correlation between the
noise trajectories of a pair of genes. Such correlations can
potentially pinpoint active connections particularly when taking
time dynamics into consideration.13 However, the relationship
between noise in different components of a circuit is governed
by potentially complex relationships as depicted by eqs 6 and,
therefore, might be poorly quantified by linear pairwise noise
correlation (Figure 5). This is because the fidelity with which
noise propagates depends on factors such as the susceptibility
of a gene to the upstream fluctuations, the amount of the
upstream noise, and rates at which the protein is able to
respond to upstream change. All of these factors change over

Figure 4. Reconstruction of three distinct in vivo synthetic networks using noise information. (A) Schematics of the three networks in which A
activates B (top), A inhibits B (center), and A and B are coregulated by the same transcription factor (bottom). (B) Mean expression profiles of
proteins in each of the three networks measured over a course of 12 h. (C) Noise trajectories predicted using dynamic equations for topologies in
which B is assumed to either activate or inhibit A. (D) Noise trajectories predicted using dynamic equations for topologies in which A is assumed to
either activate or inhibit B. In the circuit in which A and B are coregulated, we were not able to predict noise correctly for either circuit permutation,
suggesting that A and B have no direct regulatory relationship (bottom).

Figure 5. Linear correlation between the noise profiles of two nodes in
a network is not a reliable predictor of their connectivity. Noise of A
and B in a simple model: (db/dt) = (αba/a + K) − γbb shows a
nonlinear relationship. Inset: mean expression of A (αa = 65 and 192,
γa = 1) and B (αb = 2732, γb = 2, Kb = 696) as a function of time.
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time, most rapidly in the dynamic range where proteins
concentrations change the most, conditions under which most
experiments are usually conducted.
By contrast, our approach takes into account the noise

dynamics, allowing us to integrate how fluctuations in gene
expression are amplified, dissipate and propagate for a
postulated network topology. Our computational investigations
and experimental data both support the notion that propagated
noise, if sampled at intervals that capture the dynamics of the
system (Supporting Information Figure S9), can be sufficient to
discriminate between alternate topologies when causal relation-
ships exist between different network components. Our
approach is similar to that used by Cox et al. in that both
approaches rely on comparing measured noise to that predicted
based on an assumed model of the underlying system. This
comparison is then used to provide evidence for or against a
tested system topology. Nonetheless, two main differences exist
between the two approaches. While our study only uses the
magnitude of the noise, the Cox et al. study scores both
magnitude and frequency content of the noise. On the other
hand, by exploiting the structure of the noise equations,
breaking the identification process into pairwise comparisons,
and leveraging different quantities that can be directly
measured, we are able to proceed without estimation of a
model’s kinetic parameters. This advantage is not afforded by
the Cox et al. approach. We envision that a method marrying
the two that proceeds by matching both the measured
magnitude and frequency of the noise to models of pairwise
components combinations will capitalize on the strengths of
both approaches.
In this work, we only presented results pertaining to genes

that are regulated by a single input. However, genes are often
regulated by more than one upstream component. In the case
where multi-input regulation is competitive, only one
regulatory link is active at a time, our method can be directly
applied to test which of these regulatory links is active under
changing conditions (condition dependent rewiring). For cases
where multiple inputs simultaneously regulate expression, the
necessary equations can be derived. This method is easily
scalable when the two inputs are additive because, in this case,
noise is also additive and we can sum up the contributions of
both inputs in eq 9 to predict the dynamic trajectory of the
propagated noise.
As a proof of concept, we demonstrated reconstruction of

networks with two nodes. Isolating and considering only two
genes at a time allows us to test for regulatory relationships
without a priori knowledge or assumptions about the network’s
topology. Because our method relies on solving differential
equations, it has low computational cost and we expect it to
scale for larger, multinode networks. We envision that it can be
extended by carrying out combinatorial, pairwise connectivity
tests for many genes simultaneously. Furthermore, because our
approach provides a rigorous, mathematically supported
method to exploit noise information, it can be incorporated
into existing mean-based network inference methods to
facilitate reconstruction of complex, multigene regulatory
structures.
In summary, as the development of increasingly sophisticated

single cell measurement techniques25,14 accelerates, there is
increasing need for approaches that utilize population
distribution information. Our approach provides a solid first
step in that direction.

■ METHODS

Plasmids and Strain Construction. Galactose responsive
constructs were constructed by amplification of the Gal1
promoter (defined as −1 to −625 nucleotides relative to the
Gal1 ORF) from the yeast genome by PCR followed by
restriction enzyme cloning into a single integration Trp1 or
His3 marked vector upstream of Venus (YFP), yeGFP (GFP),
or mKate2 (RFP). Msn2 was amplified from the genome and
cloned in front of a Gal1 promoter with a Venus C-terminal tag
in a Trp1 marked vector. TetR was amplified and cloned in
front of a Gal1 promoter with a mCherry C-terminal tag in a
His3 marked vector. The Hsp12 promoter consisting of 700bp
directly upstream of the HSP12 start codon was amplified from
the genome and inserted upstream of mKate2 (RFP) in a Ura3
marked vector. The Adh1(tet) promoter was cloned as
described previously using amplification of the 700 bp upstream
of the ATG and cloning in front of GFP in a His3 marked
vector.23

W303A yeast were transformed serially with combinations of
the above constructs using standard LioAc protocols. Trans-
formants were selected on appropriate drop-out media and
single colonies were picked for downstream use.

Growth and Fluorescence Measurements by Flow
Cytometry. Yeast strains were grown to saturation overnight
at 30 °C in 3 mL of synthetic complete media with 2% rafinose
(SCraf) as a carbon source. Cells were diluted 1:100 into deep
96 well plates (Corning) and grown for 6−8 h at 30 °C on
orbital shakers (Elim) to an OD of ∼0.1. All data were collected
using a high-throuput automated flow cytometry system.26 To
induce expression of constructs, galactose (Sigma, 20% stock)
was added to the media to a final concentration of 1%. Samples
were taken from the primary culture every 20 min and an equal
volume of fresh media added.
Cytometry measurements were made on a Becton Dickinson

LSRII flow cytometer, along with an autosampler device (HTS)
to collect data over a sampling time of 4−10 s, typically
corresponding to 2000−10000 cells. GFP and YFP were
excited at 488 nm, and fluorescence was collected through
HQ530/30 bandpass filters (Chroma), mCherry and mKate2,
were excited at 561 nm and fluorescence collected through
610/20 bandpass filter (Chroma) .

Flow Cytometry Data Analysis. Data analysis was done
using custom MATLAB software. In order to minimize error
due to uneven sample flow through the cytometer, we removed
the first second and last 0.25 s of data. To control for cell
aggregates, as well as cell size and shape, we excluded the
bottom and top 5% of the forward (FSC) and side (SSC)
scatter.27
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