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ABSTRACT: As a field, synthetic biology strives to engineer
increasingly complex artificial systems in living cells. Active
feedback in closed loop systems offers a dynamic and adaptive
way to ensure constant relative activity independent of
intrinsic and extrinsic noise. In this work, we use synthetic
protein scaffolds as a modular and tunable mechanism for
concentration tracking through negative feedback. Input to the
circuit initiates scaffold production, leading to colocalization of
a two-component system and resulting in the production of an
inhibitory antiscaffold protein. Using a combination of modeling and experimental work, we show that the biomolecular
concentration tracker circuit achieves dynamic protein concentration tracking in Escherichia coli and that steady state outputs can
be tuned.
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Implementation of reliable feedback and control in
engineered circuits is a continuing challenge in synthetic

biology. Though positive and negative feedback systems are an
essential feature of natural biological networks, synthetic
circuits more commonly rely on library-based screening to
find optimal expression levels. Not only are the resulting
systems sensitive to relative concentrations between compo-
nents, but each time the circuit is expanded, the network of
regulatory sequences must be reoptimized to account for
increased load on cell machinery.1 More importantly, this type
of open loop approach only optimizes for a single set of
environmental parameters, and inherently does not accom-
modate stochastic cell-to-cell variation, changes due to cell
growth cycles, or changes in cell loading from other circuit
modules.2

Closed loop systems provide regulation of individual
components that is robust with respect to environmental
disturbances. Negative feedback is a common feature of natural
pathways and has been shown to decrease transcriptional
response time,3 to provide stability and reduce fluctuations,4

and to be necessary for oscillatory behavior.5

Active feedback in biological systems has been previously
considered at various levels. Recent studies have designed and
studied an RNA-based rate regulating circuit with two opposing
negative feedback loops,6 a system utilizing an RNA binding
protein to repress translation of its own mRNA,7 and analysis of
noise in transcriptional negative feedback.8 There have also
been demonstrations of an in silico closed loop system, in which
a computer measured fluorescence output and automatically

modulated the activity of a photosensitive transcription factor.9

In that study, the negative feedback occurred in the software
control system outside of the cell.
In this work, we present an in vivo protein concentration

tracker circuit. To our best knowledge, this is the first
demonstration of dynamic molecular tracking entirely within
the cell environment. This circuit contains a single negative
feedback loop implemented with scaffold proteins and operates
on the time scale of one cell cycle. We show that negative
feedback implemented through sequestion results in “tracking”
behavior: the proportional modulation of one protein
concentration (the antiscaf fold) relative to that of the reference
protein (the scaf fold) over a range of reference induction levels.

■ RESULTS AND DISCUSSION
Scaffold-Based Circuit Design and Implementation.

Previously, Whitaker et al.10 designed a scaffold-dependent two-
component system in which the phosphotransfer was mediated
by a synthetic scaffold protein consisting of small protein−
protein binding domains. They demonstrated that weak natural
cross-talk between a noncognate histidine kinase and response
regulator pair could be artificially amplified via colocalization
onto the scaffold. By fusing the kinase to the Crk SH3 domain
and the response regulator to half of a leucine zipper, both
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would be recruited in the presence of a scaffold protein
consisting of the SH3 ligand and the other half of the leucine
zipper. Forcing the kinase and response regulator into close
proximity greatly enhances the level of phosphotransfer and
thus the level of downstream expression. The kinase−regulator
pair of Taz and CusR was chosen because of measured low
levels of cross-talk upon long incubations of purified proteins.11

Building upon this scaffold-dependent two-component
system, we designed a negative feedback circuit by introducing
an antiscaffold molecule that competitively inhibits scaffold
function. The scaf fold molecule consists of a leucine zipper
domain (LZX) linked to the SH3 ligand via flexible glycine−
serine repeats (Figure 1). The two-component system is
composed of the chimeric kinase Taz linked to four SH3
domains and the response regulator CusR linked to a single
leucine zipper (LZx) domain (Figure 1A). The presence of the
scaffold recruits the HK Taz and RR CusR into close proximity
by forming a ternary complex, resulting in the phosphorylation
of CusR. The phosphorylated CusR becomes an active
transcription factor, binding to its natural promoter (PCusR)
and activating expression of the antiscaf fold protein (Figure
1B). The antiscaffold consists of the complementary LZx and
SH3 ligand domains, which allow it to competitively bind to
and consequently sequester the scaffold protein (Kd = 6 nM for
the leucine zipper and Kd = 100 nM for the SH3 domain12,13).
This prevents further phosphorylation of the response
regulator, and halts further production of the antiscaffold. In
the absence of any scaffold protein, no activated response
regulator activity is observed (Supplementary Figure S2,
Supporting Information).
We implemented the circuit in a ΔCusS ΔCusR Escherichia

coli knockout strain.10 In the absence of CusS, the native
bifunctional histidine kinase/phosphatase partner for CusR,
activated CusR proteins remain phosphorylated. Accordingly,
we reintroduced a CusS(G448A) mutant behind an inducible
promoter to tune response regulator deactivation. The G448A
mutation disrupts the ATP binding site, eliminating kinase

autophosphorylation without affecting phosphatase activity.14,15

This created a tunable phosphate sink in our circuit and ensures
tight coupling between present scaffold and activated response
regulator concentrations. The negative feedback circuit with the
antiscaffold is referred to as the closed loop circuit. As a control,
we also built an open loop circuit, in which instead of PCusR-
driven expression of the antiscaffold only the antiscaffold
reporter is expressed.
We constructed the circuit as a three plasmid system, in

which the kinase is constitutively expressed and the scaffold,
response regulator, and phosphatase were cloned behind the
inducible promoters Ptet, PBAD, and Psal, respectively. Dynamic
tracking behavior was visualized by adding medium strength
ssrA degradation tags (C-terminal, RPAANDENYAAAV) to
the scaffold−red fluorescent protein (RFP) and antiscaffold−
yellow fluorescent protein (YFP) fusion proteins.16 The
fluorescent reporters mCherry RFP and Venus YFP were
chosen on account of their similar maturation times (∼5 and 15
min, respectively).17,18

Modeling Dynamics and Steady State Circuit Behav-
ior. The circuit was modeled using differential equations with
all chemical reactions between species explicitly defined. The
model omits transcriptional activity and accounts only for
protein level behavior. With the exception of the antiscaffold
production term, all other terms are derived from mass action
kinetics. A basic model of the circuit was previously
published.19 Here, we have expanded the model by adding
the phosphatase species and all accompanying reactions. The
25 species arise from combinations of scaffold (Sc), response
regulator (RR), histidine kinase (HK), antiscaffold (AS), and
phosphatase (Ph) binding complexes. In total, the model
consists of 80 reactions, 25 differential equations, and 26
parameters (See Supporting Information for a complete list of
chemical reactions). Many parameters (Table 1) were selected
from experimental values found in the literature,20−22 and
others were estimated within a physiologically reasonable range.

Figure 1. Overview of circuit design. (A) The circuit takes an input that sets the reference value. The input proportionally modulates activity of a
two-component signaling system that then produces an output. The output triggers a negative feedback response. The negative feedback is the
mechanism that generates real-time tracking behavior. (B) The specific implementation of the circuit is shown. The circuit regulates the production
of the amount of target protein (antiscaffold−YFP) with respect to the amount of reference protein (scaffold−RFP). Expression of the target is
dependent on the amount of free scaffold. The target contains domains that sequester free scaffold creating a negative feedback loop. Scaffold,
response regulator, and phosphatase concentrations are induced via Ptet, PBAD, and Psal, respectively.
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Model reactions can be classified into five categories:
production and degradation, phosphorylation, scaffold complex
formation, activation, and irreversible sequestration. Phos-
phorylated species are denoted with a subscript p (e.g., RRp),
and complexes are denoted with a colon separating the
participating species (e.g., Sc:AS). Though the possibility of
modeling the scaffold as an enzyme-like species was considered,
we could not assume that either the kinase or the response
regulator would always be in excess, a requirement of the
substrate in a Michaelis−Menten reaction. Therefore, Michae-
lis−Menten kinetics were deliberately avoided.
The production rate, β, of the scaffold, histidine kinase,

response regulator, and phosphatase are determined by user
input of the total steady state value (in nanomolar) multiplied

by the degradation/dilution rate, γ. This ensures constant
concentration of these species in solution. The degradation rate
γ is applied universally for all species and is estimated based on
a cell division time of 30 min.21

The phosphorylation reactions describe the autophosphor-
ylation of HK and dephosphorylation of RRp. Key reactions
that describe this process are
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The phosphatase forms a complex with the RRp prior to
dephosphorylation. We model both phosphorylation and
dephosphorylation with a two-step reaction model, an approach
consistent with previous models.23 Rate constants for kinase
phosphorylation and dephosphorylation of the response
regulator were chosen based on cognate and noncognate
phosphorylation rates measured for natural two-component
systems and occur on the order of seconds.21 The following
equations show phosphorylation in the absence and presence of
scaffold:

+ +H IoooooHK RR HK RR
k

k

p p
noncog
r

noncog
f

(3)

H IoooSc:HK :RR Sc:HK:RR
k

k

p p
cogp
r

cogp
f

(4)

Reaction rates for scaffold complex formation were based on
the kinetics of the protein−protein interaction domains SH3
domain/ligand and LZX/LZx. SH3 domain/ligand binding has
an estimated association affinity Kd of 0.1 μM, while leucine
zippers have a Kd of approximately 0.01 μM.12,13,24,25 Here we
have examples of histidine kinase and response regulator
binding to scaffold via SH3 and LZX binding, respectively:
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A phosphorylated response regulator becomes an active
transcription factor. We considered all possible complexes with
RRp as possible activators (shown as RRactive). Since the
response regulator, CusR, dimerizes upon phosphorylation, the
total rate of AS production, kfAS, is modeled as a second-order
Hill function:
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where RRactive = RRp + Sc:RRp + Sc:HK:RRp + Sc:HKp:RRp +
Sc:RRp:AS.
The negative feedback component comes about through the

irreversible sequestration of the scaffold once it has bound to
the antiscaffold. We made the assumption that the individual
SH3 and LZX domains on the antiscaffold bind independently,

Table 1. Table of Model Parametersa

parameter value units description

HKtot 100 nM histidine kinase
RRtot 0−3000 nM response regulator
Sctot 0−5000 nM scaffold
Phtot 0−5000 nM phosphatase
βAS 10 nM s−1 transcription + translation
β0 0.01 leaky promoter activity (1%

of total induction)
γ 3.84 × 10−4 s−1 deg/dilution21,27

γssrA 1.5γ s−1 degradation for ssrA-tagged
proteins

n 2 Hill coefficient for
antiscaffold activation

KD 1 nM KD for AS activation
kdephos 0.003 s−1 phosphatase mediated

dephosphorylation21

r 2.8 × 10−4 s−1 Decay constant for diffusion
of inducer27

Forward and Reverse Reaction Rates
kHKp

kf 0.003 s−1 HK autophosphorylation21

kr 0.0001 s−1 ref 20
kcogp kf 102.1 s−1 cognate HK-RR

phosphorylation21

kr 0.00294 s−1 ref 21
knoncog kf 0.0031 s−1 M−1 noncognate HK-RR

phosphorylation21

kr 0.0002 s−1 M−1 ref 21
kSH3 kf 1 × 105 s−1 M−1 SH3 domain/ligand binding22

kr kf:SH3
(0.1 × 10−6)

s−1 KD = 0.1 μM13

kLZX kf 1 × 105 s−1 M−1 leucine zipper binding
kr kf:LZX

(0.01 × 10−6)
s−1 KD = 0.01 μM13

kSc:HK kf 4kf:SH3 s−1 M−1 scaffold binding to HK with 4
SH3 domainskr kr:SH3 s−1

kSc:RR kf kf:LZX s−1 M−1 scaffold binding to RR with 1
LZX domainkr kr:LZX s−1

kph:RR kf 1 × 105 s−1 M−1 phosphatase binding to RRp

kr 1 × 103 s−1

Closed Loop Antiscaffold Interactions
kSc:AS kf kf:LZX + kf:SH3 s−1 M−1 scaffold binding to

antiscaffoldkr 0.001kr:LZX s−1

kAS‑SH3 kf kf:SH3 s−1 antiscaffold binding to Sc:RR
complexkr 0.001kr:SH3 s−1

kAS‑LZX kf kf:LZX s−1 M−1 antiscaffold binding to Sc:HK
complexkr 0.001kr:LZX s−1

aParameters estimated from the literature are cited. Note: In the open
loop circuit there is no antiscaffold, so the closed loop antiscaffold
interaction rates are all zero.
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at the same rates as HK and RR binding. However, once either
the SH3 or LZX component of the AS has bound to the Sc, this
results in a local concentration of the free domain that is
substantially higher than the KD. Therefore, we assume that the
other domain quickly displaces any competing species and
sequesters the entire Sc. The effective irreversibility comes
about through steric hindrance of competing HK and RR
species, both of which only have one compatible binding
domain to the Sc:

+ ⎯ →⎯⎯⎯Sc AS Sc:AS
kSc:AS

f
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The validity of the model was tested by comparing the open
and closed loop circuits. In the open loop circuit, the negative
feedback binding reactions are set to zero (Table 1).
Experimentally, this was done by replacing the antiscaffold
with a fluorescent reporter alone. Figure 2A shows simulated
steady state values for antiscaffold (or fluorescent reporter)
output over a range of scaffold concentrations (0−1000 nM),
with either 0 or 100 nM of response regulator. In the cases with
no response regulator, the circuit does not function and
production of output is solely due to simulated leaky
antiscaffold production (β0). When response regulator
molecules are present, the open loop circuit output decreases
significantly with increasing scaffold. Though it is not intuitive,
this can be explained as the scaffold single occupancy effect,13,26

where an overabundance of free scaffold leads to binding of
only kinase or response regulator but not both. When we
examine the prevalence of these intermediate species (Sc:HK,
Sc:RR) in simulation, we can see that when the total

concentration of singly bound scaffold increases, decrease in
output is indeed observed (Figure S1A, Supporting Informa-
tion). The same effect also occurs in the closed loop circuit, but
much higher concentrations of scaffold are needed, since the
antiscaffold sequestration lowers the effective number of free
scaffold molecules in solution (Figure S1B, Supporting
Information).
Experimental data for the circuit closely recapitulated the

model predictions (Figure 2B). First, without induction of RR
for both open and closed loop circuits, there is no output YFP.
Second, the open loop circuit shows the single scaffold
occupancy effect at lower concentrations of scaffold. In the
case of no scaffold induction, the open loop circuit has about
three times more background than the closed loop circuit. This
is due to leakiness in scaffold production in the absence of
anhydrotetracycline (aTc). In the closed loop circuit, leaky
production of scaffold is subdued by the negative feedback,
while in the nonregulated open loop, we see significant
production of YFP. All data was normalized to the
autofluorescence of a control E. coli strain (Figure S2,
Supporting Information).
We compared protein expression to fluorescence output to

verify the use of fluorescence traces as a proxy for protein
concentration. Western blot quantification was done with an
analogous circuit containing a bicistronic scaffold (3×FLAG)/
RFP and antiscaffold−GFP (3×FLAG) (Figure S3, Supporting
Information). mCherry is expressed from its own RBS instead
of tethering directly to the scaffold (12 kDa) to provide a
substantial size difference from the antiscaffold (44 kDa).
Quantification of band intensities show good agreement
between antiscaffold expression and measured fluorescence
output (Figure S4, Supporting Information). These results
served to validate both the model and the use of synthetic
scaffolds as a tunable mechanism for negative feedback.

Characterization of Step Response. We characterized
circuit response time by testing the closed loop response to

Figure 2. Open loop versus closed loop. (A) Model predictions of scaffold circuit with and without negative feedback. Solid lines show antiscaffold
output over a range of scaffold concentrations (0−1000 nM) for open and closed loop circuits with constant response regulator (100 nM). Dotted
lines show lack of output in the absence of response regulator. Open loop circuit shows scaffold single occupancy effect at lower levels of scaffold.
(B) Steady state experimental data of open and closed loop circuits with and without response regulator matches model predictions. Both sets of
experimental data were normalized by the autofluorescence of a control E. coli strain (Figure S2, Supporting Information).
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step inputs. Using a programmable microfluidic plate
(CellAsic) under a microscope, step induction of the scaffold
protein was achieved by flowing in 0, 37.5, or 75 nM of aTc
(Figure 3A) after 30 min of growth in normal media. Cellular
production of response regulator and phosphatase was
preinduced by incubating cells with arabinose and salicylate.
Microscopy analysis methods are described in Figure S5,
Supporting Information. Growth curves for all the conditions
are in Figure S7, Supporting Information. In all conditions,
expression of scaffold−RFP (Figure 3B) began about 30 min
after induction and occurred almost simultaneously with that of
antiscaffold−YFP (Figure 3C). Although we had selected
mCherry and Venus-YFP on account of their similar
maturation times, Venus still matures faster than mCherry (5
and 15 min, respectively). We believe that although there is a
delay in mCherry maturation, the scaffold is immediately
functional, leading to the near overlap of RFP and YFP
expression. In order to better visualize the fold change,
fluorescence output is normalized by the maximum value of
the lowest step input.
Response times (Tr) for fluorescent detection of scaffold

(RFP) and antiscaffold (YFP) were quantified. In control
theory, response time is the amount of time needed for an
output signal to increase from 10% to 90% of its final steady
state. As cells reach stationary phase, circuit expression
gradually turns off, and no steady state in fluorescence output
is maintained. The 0 nM aTc case shows basal expression of the

fluorescent proteins. We observed that scaffold induction,
regulated by a Ptet promoter, has a 4-fold expression increase
between 37.5 nM (Figure 3C) and 75 nM (Figure 3D)
induction, but only a 2-fold increase in response time (from 50
to 100 min). Antiscaffold output, regulated by the scaffold
concentration, shows a 2.5-fold increase in maximum
expression and a 3-fold increase in response time (from 40 to
120 min).
This step input characterization revealed that scaffold and

antiscaffold fluorescence could be observed almost simulta-
neously about one cell cycle (30 min) after aTc induction of
scaffold transcription. Following induction of the circuit, the
response time to maximum expression increases in a linear-like
fashion with increasing scaffold induction.

Circuit Closely Follows Three Step Induction. Follow-
ing step input characterization, we investigated circuit response
to multiple step-up inputs. Figure 4 shows the results of a three
step scaffold induction experiment with 1 h steps correspond-
ing to 50 nM increases of aTc inducer. Growth curves are
shown in Figure S8, Supporting Information. The single
negative feedback loop in the circuit represses overproduction
of antiscaffold, but there is no mechanism for feedback in the
case of an excess of scaffold or antiscaffold. As such, the model
predicts that increases in inducer will lead to immediate
increases of scaffold followed closely by the antiscaffold but
once induction is turned off, degradation of proteins depends
on the endogenous ClpXP degradation machinery (Figure 4A).

Figure 3. Step induction of closed loop circuit. (A) aTc induction of Sc-RFP began 30 min after start of experiment and continued for the rest of the
experiment. (B) scaffold−RFP/OD measurements for no induction (left), 37.5 nM induction (middle), and 75 nM induction (right). Response time
(Tr) is quantified by finding the time needed for fluorescence to increase from 10% (gray dotted line) to 90% of the maximum value (blue dotted
line). A 2-fold increase in aTc results in a 4-fold increase in scaffold expression and a 2-fold increase in response time. The insets show growth curves
for each condition. (C) AS-YFP/OD measurements show 2.5-fold increase between the two inputs and a 3-fold increase in response time.
Fluorescent measurements are normalized such that the maximum of the middle column (37.5 nM aTc) is 1 au to better visualize fold change.
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Additionally, the upward slope of each curve should overlap
until induction ceases.
Step-up induction was performed on cells preincubated in

arabinose and salicylate, activating expression of response
regulator and phosphatase, respectively. As shown in Figure 4B,
experimental results for a three step induction are consistent
with model predictions and show overlapping curves during the
ascent, with each individual curve dropping off slowly as
induction ceases. The chemical induction of the scaffold
produces a much smoother output curve compared with the
response regulator-modulated antiscaffold. Due to high levels of
leaky expression, the open loop circuit did not respond to
multistep inductions (Figure S8, Supporting Information).
Inducer Diffusion Rates Contribute to Cumulative

Effect of Sequential Pulses. We observed in our model that
variations in inducer diffusion rate would greatly affect the
outcome of sequential pulses (Figure 5A). The removal of aTc
from the cytoplasm and surrounding media is not instanta-
neous, and induction does not go to zero. Growth curves are

shown in Figure S9, Supporting Information. Given two
sequential 30 min pulses spaced 1 h apart, the diffusion
constant determined whether two independent, identical
outputs occurred or an additive effect would take place.
Essentially, if the first pulse of inducer is not given sufficient
time to diffusion out of environment, aTc molecules from the
first pulse are still present when the second pulse occurs. We
modeled inducer diffusion following a pulse with an exponential
decay term, βSc = βind(−rt).27 Figure 5A shows two pulse
simulation results when the default decay constant (r = 2.8 ×
10−4 s−1, middle column) is increased or decreased by 10-fold.
When we tested two pulse induction in vivo (Figure 5B), we

ran simultaneous experiments with zero, one, and two 30 min
pulses of aTc (50 nM). The single pulse fluorescence maximum
(Figure 5B, middle column) was normalized to 1 au. It is clear
from the two pulse fluorescence output data that the diffusion
rate of aTc after a pulse in vivo was actually much slower than
expected in silico. In fact, so much of the scaffold from the first
pulse remained that there was almost a 2-fold increase in

Figure 4. Multistep induction of tracker circuit. (A) Simulation results for a three step induction show overlapping response times with each curve
decreasing based on degradation rate after induction ceases. Upper panel shows aTc induction pattern with 1 h steps increasing in 50 nM increments
starting 30 min after start of experiment. (B) Experimental time traces for Sc-RFP show overlapping fluorescence output, with each curve decreasing
at a time proportional to the number of steps. Corresponding antiscaffold−YFP data show similar overlaps and proportional decreases. Fluorescent
measurements are normalized such that the maximum value of the one step curve is 1 au to better visualize fold change. Growth curves are shown in
Figure S8, Supporting Information.
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maximal expression during the second pulse. This was an effect
that had not been apparent previously during the multistep
inductions, where we showed sequential increases in inducer
concentration. These data show that modulation of pulse
frequency, but not concentration, can result in the same
additive effect as increasing inducer concentration.
We then sought to improve our model by tuning the inducer

decay constant (Figure 5C), generating outputs that demon-
strated the nearly 2-fold increase observed in vivo. Although the
optimized decay rate (r = 2 × 10−4 s−1) better captured gene
expression during log phase, we consistently observed a rapid
decrease in fluorescence as cells approached stationary phase.
We believe this is due to upregulation of ClpX and other ssrA
machinery in stationary phase.28 This resulted in improved
model performance when simulating dynamic circuit behavior.
Model-Informed Exploration of Parameter Space.

Circuit limitations were explored in silico. Specifically, we
investigated the effects of tuning response regulator and
phosphatase concentrations on the ability of the antiscaffold
output to track the scaffold reference. Response regulator and
phosphatase concentrations are easily accessible parameters via
inducible promoters in our experimental system. In Figure 6A,

a scan of input−output response curves is shown over a range
of response regulator and phosphatase concentrations (See
Figure S10, Supporting Information, for explicit values). For
each curve in the grid, the scaffold concentration in which the
single occupancy drop-off occurs was found, and the slope of
the curve up to that concentration was found with a linear fit.
The maximum scaffold occupancy limit is the concentration of
scaffold molecules at which each scaffold molecule only has
either a response regulator or histidine kinase. The slope of the
curve up to that point represents the antiscaffold to scaffold
ratio that can be achieved by the circuit. In the case where the
single occupancy limit does not appear, the last concentration is
used. Data shown in Figure 6B indicates that increasing
response regulator values result in a greater AS/Sc ratio (up to
1.5-fold increase), while increasing phosphatase serves to bring
down that ratio. The effect of increasing phosphatase is
apparent when the maximum scaffold occupancy limit is
examined (Figure 6C). Furthermore, the simulations show that
some minimal amount of phosphatase is necessary for a
sufficiently high response regulator turnover rate so as to
approach a 1:1 ratio. As phosphatase concentration increases,
active response regulators are quickly dephosphorylated,

Figure 5. Two pulse induction of circuit. (A) Model results for a range of inducer decay constants from 2.8 × 10−3 to 10−5 s−1. Fast diffusion (left)
shows two independent pulses, intermediate diffusion (middle) results show some overlapping protein from first and second pulses, and slow
diffusion (right) shows large amounts of overlapping protein from the first to the second pulse. (B) Experimental data for zero, one, and two pulses
of 50 nM aTc. Data are normalized by maximum of single pulse induction (middle column). (C) Simulations with improved inducer diffusion rates
(r = 2 × 10−4 s−1).
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decreasing the efficacy of the scaffolds, lowering the maximum
occupancy concentration, and making the drop-off more steep.
Based on experimental outputs of our circuit, however, we
believe the actual achievable dynamic range of the circuit is
limited to the lower left corner of the parameter space. The
qualitatively estimated induction range is shown with the black
and gray rectangles in Figure 6B,C.
By modulating response regulator and phosphatase concen-

trations, a range of maximal expression levels for scaffold and
antiscaffold can be achieved. Figure 7A,B shows steady state
circuit response to varying levels of response regulator
induction in both the model and experimental circuit.
Increasing RR concentrations increases the gain of the system
by increasing the number of available active transcription
factors for the AS promoter. In simulation data (Figure 7A), we
see that the scaffold occupancy effect is mitigated by higher
levels of response regulator. This is consistent with our

previous explanation, since more regulator means almost all
free scaffold molecules will exist as Sc:RR. Experimental data
for tuning response regulator concentration via 10-fold
increases of arabinose (Figure 7B) do not extend the scaffold
levels far enough to show the occupancy effect, but the
increasing output gain is evident.
The presence of phosphatase in the circuit modulates the

amount of time that phosphorylated response regulator is
active. Hence, tuning phosphatase concentrations changes RR
↔ RRp cycling time. Early versions of the circuit did not
include the phosphatase species,19 and we were unable to
observe dynamic behavior due to buildup of RRp. Using the
model, we explored the effects of adding a phosphatase prior to
testing in vivo. Figure 7C,D shows steady state responses across
a range of phosphatase concentrations. Simulation results show
that increasing phosphatase decreases overall circuit output
(Figure 7C) by decreasing the average time RRp is active.

Figure 6. Model-based exploration of parameter space. (A) Simulations of scaffold to antiscaffold inputs and outputs over a range of phosphatase
(100−5100 nM, 500 nM increments) and response regulator (10−1510 nM, 150 nM increments) concentrations. Enlargement shows the scaffold
single occupancy limit concentration and curve fitting for each curve. Red dotted lines show curve fits; the slope represents the antiscaffold to
scaffold ratio. (B) Heat map showing antiscaffold to scaffold ratio for each curve shown in part A. Increasing response regulator results in greater AS/
Sc ratios. Gray box represents estimated experimental phosphatase induction range. Black box estimates experimental response regulator induction
range. (C) Heat map of maximum scaffold occupancy limit. Higher concentrations of phosphatase result in decreased maximum scaffold occupancy
limit.
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Experimental results (Figure 7D) support model predictions
and show this suppression of output with increased induction
via salicylate.
In Figure 7E,F, these experimental steady state data are

analyzed using the same techniques shown in Figure 6. Figure
7E shows antiscaffold to scaffold ratio and scaffold occupancy
limit as calculated based on RFP/YFP fluorescence data with
10-fold increases in response regulator induction with no
phosphatase present. Similar to the analysis used in the model,
if the single occupancy drop is not observed, the highest
scaffold concentration is taken. Figure 7F shows the same
metrics with 10-fold increases in phosphatase induction with
constant response regulator (0.001% arabinose induction).
Experimental data is presented as a function of fold change
from background fluorescence, so it cannot be compared
directly with model data (presented in nanomolar). However,
the overall trends are in agreement. Because response regulator
increases, we see a significant increase in antiscaffold to scaffold
ratio and little change in the occupancy limit. With increasing
phosphatase, we see a slight decrease in AS/Sc ratio and
scaffold occupancy limit. We believe these data show us that
our experimental range occupies only a small fraction of that
shown by our model (Figure 6B,C) and that these limitations
are due to the limited dynamic range of the inducible

promoters (PBAD-RR, Psal-Phos, Figure S11, Supporting
Information).

Scaffold-Based Circuits for Rapid Feedback. We have
designed a novel negative feedback tracker circuit using
modular synthetic scaffold proteins and a two-component
system with scaffold-dependent phosphorylation. The use of
scaffold proteins for negative feedback could potentially be a
robust way of linking modules and ensuring constant
performance despite intrinsic and extrinsic noise. Scaffold
proteins have been shown to be powerful hubs for organization
of regulatory feedback in natural networks, usually by
colocalization of phosphorylation machinery.26 Previous studies
have rewired the naturally occurring Ste5 scaffold in the yeast
MAPK cascade to redirect signals, to modify delays in signaling
time, and to introduce ultrasensitivity.29,30 The modular
scaffold proteins used in this study were previously used to
control phosphotransfer to noncognate response regulators,
building a synthetic signaling pathway.13,31,32 Here we have
taken those same scaffolding modules and built an entirely
synthetic feedback circuit. The system allows for tunable
control of output gain and cycling time. Most importantly, the
proportional antiscaffold tracking of the scaffold is maintained
over a range of component concentrations.

Figure 7. Steady state experimental tuning of response regulator and phosphatase. (A) Simulation data of input−output curves with increasing
response regulator concentrations (0−1000 nM). Increasing response regulator increases the scaffold occupancy limit as well as overall AS/Sc ratio.
(B) Experimental data of steady state scaffold to antiscaffold curves with 10-fold increases in response regulator induction (0−0.01% arabinose).
There was no additional induction of phosphatase (0 nM salicylate). (C) Simulation data of input−output curves with increasing phosphatase
concentrations (0−5000 nM) with constant response regulator concentration of 100 nM. Increasing phosphatase decreases the scaffold occupancy
limit and overall AS/Sc ratio. (D) Experimental data of steady state circuit behavior with 10-fold increases in salicylate. Response regulator
concentration is constant (0−100 μM salicylate). (E) Ratios of YFP/RFP from part B as a proxy for As/Sc ratios with increasing response regulator.
Scaffold occupancy limit was not observed in response regulator experiments. (F) Ratios of YFP/RFP and scaffold occupancy limit values from part
D with increasing phosphatase. All experimental data was normalized by baseline autofluorescence values.
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After we designed the circuit framework, we constructed and
then experimentally validated an ODE-based mathematical
model. Through selection of parameters and reaction rates
based on the literature, we obtained a model able to reasonably
predict circuit behavior. Comparisons between simulation and
experimental data confirmed the presence of scaffold-mediated
negative feedback, and we used the model to scan the
parameter space in a way that would have been time and
resource intensive to explore in vivo. We found that steady state
circuit gain can be tuned by changing response regulator
concentrations and cycling time is controlled by varying
phosphatase levels, observations that were supported by
experimental data. Following initial step induction system
characterization of step input response time, expression of both
the reference (Sc-RFP) and output (AS-YFP) protein was
shown to be fast and responsive to multistep inputs. Finally, we
found that pulse-modulated induction could result in additive
circuit response, leading to improvement of the model through
more accurate inducer diffusion parameter values.
A scaffold-based biomolecular tracking circuit has potential

applications in active regulation of component expression in
synthetic circuits. The relatively small size (approximately 60
AA) of the scaffold and antiscaffold proteins facilitates
attachment to larger proteins, represented in this work by
mCherry-RFP and Venus-YFP. Rather than open loop tuning
of regulatory sequences and large-scale screening, scaffold-
based negative feedback could be utilized. By attaching the
scaffold to a native protein, it may also be possible to tie
synthetic circuit inputs to naturally occurring cycles in vivo. It is
well-known that many natural cell processes such as
developmental segmentation, circadian clocks, and stem cell
multipotency involve oscillatory gene expression.33,34

Furthermore, response to signal transduction may be
modulated not by amplitude, but by frequency.35 We have
shown that the scaffold-modulated protein tracker follows
changes in both amplitude and frequency and exhibits good
agreement with a mass-action model. Future iterations of this
design may improve tracking fidelity by including reverse
feedback loop to compensate for overexpression.

■ METHODS
Cell Strain and Media. The circuit was implemented in the

E. coli cell strain WW62, a variant of BW27783 (CGSC 12119)
with knockouts of EnvZ, OmpR, CusS, CusR, CpxA, and CpxR.
All cell culture was done in optically clear MOPS EZ Rich
defined medium (Teknova, M2105), with 0.4% glycerol instead
of 0.2% glucose. The use of glycerol as a carbon source was
done to prevent interference with the arabinose induction of
the PBAD promoter.
Tested arabinose induction levels were 0, 0.0001%, 0.001%,

0.01%, and 0.1% (20% stock solution). Anhydrotetracycline
(aTc) was diluted in media at concentrations of 0, 5, 15, 30, 60,
90, 120, and 150 nM. Sodium salicylate was resuspended at a
stock concentration of 100 mM and diluted 1:1000 in media for
experiments.
Plasmids. Plasmids used in this study were derived from

those used in Whitaker et al.10 The plasmid encoding the SH3-
ligand−LZX−mCherry scaffold (pVH001) has a high copy
backbone (ColE1) with ampicillin resistance. The CusR−LZx
response regulator and SH3-domain−LZx−VenusYFP antiscaf-
fold plasmids (pVH003 for closed loop, pVH009 for open
loop) are on a medium copy backbone (pBBR1) with
kanamycin resistance. The 4SH3-domain−Taz histidine kinase

and CusS-G448A phosphatase are on a low copy plasmid
(p15A) with chloramphenicol resistance. Detailed plasmid
maps are shown in Figure S11, Supporting Information, and a
complete list of plasmids and strains can also be found in the
Supporting Information.

Plate Reader Experiments. Plate reader data were
collected on a Biotek H1MF machine using the kinetic read
feature. Cell were grown in two consecutive overnight cultures
in MOPS EZ rich media. On the day of the experiment,
overnight cultures were diluted 1:40 and grown to OD ≈ 0.1
prior to the start of the experiment. Cells were incubated in the
plate reader at 37 °C and shaken at 800 rpm between reads.
Measurements were taken every 5 min. Cells were grown in
clear bottomed 96-well microplates (PerkinElmer, ViewPlate,
6005182) and sealed with breathable clear membranes (Sigma-
Aldrich, Breath-Easy, Z380059). mCherry was read at
excitation/emission of 580/610 nm at a gain setting of 140,
Venus was read at 500/540 nm at a gain setting of 100, GFP
was read at 488/525 nm at a gain setting of 75.
Analysis of the data was done by taking fluorescence readings

at late log phase for each independent well. Experimental
conditions were done in triplicate and repeats were averaged.
Fluorescence per OD was normalized by the fluorescence of a
control strain (lacking mCherry/YFP/GFP) such that the cell
autofluorescence equals 1 au (Figure S2, Supporting
Information). Error bars shown are standard error of the mean.

Western Blots. Cultures were grown for 5 h in a deep-well
microplate at 37 °C with a range of aTc from 0−120 nM.
Arabinose was kept constant at 0.001%. No salicylate was used.
After 5 h, OD600, RFP, and GFP were measured in a plate-
reader. Western blot samples were collected and spun down.
Because aTc concentration can affect growth rates, the volume
spun down was calculated based on OD to ensure consistent
cell mass. Pellets were resuspended in lysis buffer and boiled for
10 min. Samples were run on 4−20% tris-glycine gels (Novex,
150 V for 1 h), and a semidry transfer apparatus was used (Bio-
Rad, 15 V for 20 min) to transfer onto a PVDF membrane.
Monoclonal anti-FLAG M2-peroxidase (HRP) antibody was
diluted 1:88,000 in 5% milk. Blot imaging was done using the
Chemi Hi Resolution setting on a BioRad ChemiDoc MP
imager. Quantification of band intensity was done using Image
Lab 5.0 (BioRad).

Microscopy. Step induction data were taken using the
CellAsic ONIX microfluidic perfusion system for bacteria
(B04A). The microscope is an Olympus IX81-ZDC enclosed in
a custom heater box. Images were taken using a 100× oil
immersion phase objective. Fluorescence filters are 580/630
nm for mCherry (Chroma 41027) and 510/560 nm for YFP
(Chroma 31040 JP2). Microscope media was augmented with
oxidative scavengers Trolox (200 nM) and sodium ascorbate (2
mM).
Overnight cultures were then diluted 1:500 in media

containing arabinose (0.01%) or salicylate (100 μM) or both
4 h prior to loading in the CellAsic plate. This is to ensure
steady state concentrations of response regulator and
phosphatase prior to aTc induction of the scaffold. Cells were
diluted 1:10 again before loading. Microscopy movies were
taken inside a temperature controlled environment set at 37 °C,
and images were taken at 10 min intervals. Exposure time was
10 ms for brightfield and 500 ms for mCherry and YFP
fluorescent channels.
Analysis of microscope movies was done using custom

algorithms in ImageJ and MATLAB. For each frame, the phase
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image is converted to a binary mask of the cell colony. The
mask is then used to find total mCherry and YFP fluorescence
in the frame. After subtraction of background fluorescence, the
total fluorescence is normalized by the total cell area
(fluorescence intensity per pixel). For step induction experi-
ments, fluorescence is normalized such that the maximum
fluorescence of the lowest concentration induction is equal to 1
au. Figure S5, Supporting Information, shows the microscopy
analysis workflow. Error bars shown in microscopy time trace
data are the standard error of the mean between analysis of
different positions (n = 7−10) on the same experimental plate.
Model Implementation. The model was implemented

using the Simbiology toolbox in MATLAB and the ode15
solver (See Supporting Information files for MATLAB code).
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