
The fitness value of information

Matina C. Donaldson-Matasci,
Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85721

Carl T. Bergstrom, and
Department of Biology, University of Washington, Seattle, WA 98195-1800, USA

Michael Lachmann
Max Planck Inst. for Evol. Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany

Matina C. Donaldson-Matasci: matina@email.arizona.edu; Carl T. Bergstrom: cbergst@u.washington.edu; Michael 
Lachmann: lachmann@eva.mpg.de

Abstract

Communication and information are central concepts in evolutionary biology. In fact, it is hard to 

find an area of biology where these concepts are not used. However, quantifying the information 

transferred in biological interactions has been difficult. How much information is transferred when 

the first spring rainfall hits a dormant seed, or when a chick begs for food from its parent? One 

measure that is commonly used in such cases is fitness value: by how much, on average, an 

individual’s fitness would increase if it behaved optimally with the new information, compared to 

its average fitness without the information. Another measure, often used to describe neural 

responses to sensory stimuli, is the mutual information—a measure of reduction in uncertainty, as 

introduced by Shannon in communication theory. However, mutual information has generally not 

been considered to be an appropriate measure for describing developmental or behavioral 

responses at the organismal level, because it is blind to function; it does not distinguish between 

relevant and irrelevant information. In this paper we show that there is in fact a surprisingly tight 

connection between these two measures in the important context of evolution in an uncertain 

environment. In this case, a useful measure of fitness benefit is the increase in the long-term 

growth rate, or the fold increase in number of surviving lineages. We show that in many cases the 

fitness value of a developmental cue, when measured this way, is exactly equal to the reduction in 

uncertainty about the environment, as described by the mutual information.

1 Introduction

Information is a central organizing concept in our understanding of biological systems at 

every scale. Our DNA digitally encodes information about how to create an organism—

information that was refined over generations through the process of natural selection 

(Maynard Smith, 1999). Sensory systems are used to acquire information about the 

environment, and the brain processes and stores that information. A variety of learning 

mechanisms allow animals to flexibly act upon the information they receive. Signals like the 

peacock’s tail, the honeybee waggle dance, and human language are used to convey 

information about the signaler or the environment to other individuals (Maynard Smith and 

Harper, 2003).
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In the study of human communication and data transfer, information is typically measured 

using entropy and mutual information (Wiener, 1948; Shannon, 1948; Cover and Thomas, 

1991). Entropy is a statistical measure of the amount of uncertainty about some outcome, 

like whether it will rain tomorrow or not, which has to do with the number of different 

possible outcomes and the chance each one has to occur. Mutual information measures the 

reduction in uncertainty about that outcome after the observation of a cue, like the presence 

or absence of clouds in the sky. In some fields of biology, such as neurobiology, information 

is naturally and usefully measured with the same information-theoretic quantities (Borst and 

Theunissen, 1999). However, information theoretic measures have seen substantially less 

use in evolutionary biology, behavioral ecology, and related areas. Why is this? One 

problem is that measures of entropy do not directly address information quality; they do not 

distinguish between relevant and irrelevant information. When we think about fitness 

consequences we care very much about relevant and irrelevant information. For example, 

from an information-theoretic standpoint one has the same amount of information if one 

knows the timing of sunrise on Mars as one has if one knows the timing of sunrise on Earth. 

Yet individuals of few if any Earthbound species find the timing of sunrise on Mars relevant 

to their survival. Information measures based on entropy have therefore been deemed 

irrelevant to the evolutionary ecology of information. Instead evolutionary biologists and 

behavioral ecologists tend to focus on decision-theoretic measures such as the expected 

value of perfect information or the expected value of sample information (Savage, 1954; 

Good, 1967; Winkler, 1972; Gould, 1974; Ramsey, 1990), with value often measured in 

terms of fitness consequences (Stephens and Krebs, 1986; Stephens, 1989; Lachmann and 

Bergstrom, 2004).

The disconnect between information-theoretic and decision-theoretic measures is 

perplexing. Entropy and mutual information appear to measure information quantity while 

reflecting nothing about fitness consequences; the expected value of information measures 

fitness consequences but has nothing to do with the actual length or information quantity of 

a message. But early work in population genetics (Haldane, 1957; Kimura, 1961; 

Felsenstein, 1971, 1978) and recent analyses of evolution in fluctuating environments 

(Bergstrom and Lachmann, 2004; Kussell and Leibler, 2005) hint at a possible relation 

between information and fitness. What is this relation? Information theorists since Kelly 

(1956) have observed that in special circumstances, information value and information-

theoretic measures may be related. Here we argue that these special circumstances are 

exactly those about which biologists should be most concerned: they include the context of 

evolution by natural selection in an changing, unpredictable environment.

Most organisms experience some kind of stochasticity in the environment, but short-lived 

inhabitants of extreme habitats are particularly vulnerable to its vagaries. A case in point is 

desert annual plants: once they germinate, they have just one chance to reproduce, and in 

many years there simply is not enough rain. Their adaptive solution is to sometimes delay 

germination for a year or more, so that each plant’s seeds will germinate over a spread of 

several years, rather than all together—a strategy known as risk-spreading or bet-hedging 

(Cohen, 1966; Cooper and Kaplan, 1982; Seger and Brockmann, 1987). This strategy, 

though it allows a lineage to persist through drought years, is somewhat wasteful; all the 

seeds that do happen to germinate in a drought year die with no chance of reproducing. 
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What if, instead, seeds were sensitive to environmental cues that could help predict the 

chance of a drought in the coming year? The bet-hedging strategy could be improved, by 

adjusting the probability of germination in response to that cue, according to the conditional 

probability of a drought (Cohen, 1967; Haccou and Iwasa, 1995). How does this improved 

strategy translate into increased fitness, and how does that relate to the amount of 

information the cue conveys about the environment? We present a simple model of 

evolution in an uncertain environment, and calculate the increase in Darwinian fitness that is 

made possible by responding to a cue conveying information about the environmental state. 

We show that in certain cases this fitness value of information is exactly equal to the mutual 

information between the cue and the environment. More generally, we find that this mutual 

information, which seemingly fails to take anything about organismal fitness into account, 

nonetheless imposes an upper bound on the fitness value of information.

2 Two measures of information

Environmental cues can help organisms living in an uncertain environment predict the future 

state of the environment, and thereby can allow them to choose an appropriate phenotype for 

the conditions that they will face. We will consider a population of annual organisms living 

in a variable environment. The environmental state E and the environmental cue C are 

correlated random variables independently drawn every year; both are common to all 

individuals, so that all individuals encounter the same conditions in a given year. We might 

measure the information conveyed by the environmental cue C in two different ways.

The typical approach in statistical physics, communication engineering, neurobiology, and 

related fields is to use an information-theoretic measure such as the mutual information. The 

mutual information describes the extent to which a cue reduces the uncertainty about the 

environment, measured in terms of entropy. Following Cover and Thomas (1991), we define 

the entropy of the random variable E representing the environmental state as

where p(e) is the probability of observing the state e. The more different states of the 

environment that are possible, and the closer those states are to equally likely, the higher the 

uncertainty about which state will actually occur. After the organism observes a cue, the 

chances of each environmental state may change. We define the conditional entropy of the 

environment E, once the random variable C representing the cue has been observed, as

where p(c) is the probability of observing cue c, and p(e|c) is the conditional probability that 

the environment is in state e, given that cue c has been observed. This is a measure of the 

remaining uncertainty about the state of the environment, once a cue has been observed.
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Definition: The mutual information between a cue C and a random environmental 

state E measures how much the cue reduces the uncertainty about the state E: thus 

I(E; C) = H(E) − H(E|C).

If the cue is completely unrelated to the state of the environment, then the uncertainty about 

the environment remains the same after the cue has been observed, and the mutual 

information is zero. However, if there is some relationship between them, then the cue 

reduces the uncertainty about the environment, so the mutual information is positive. At 

best, a perfectly informative cue would exactly reveal the state of the environment; the 

remaining uncertainty would be zero and the mutual information between the cue and the 

environment would be exactly the amount of uncertainty about the environment.

The entropy measure is most familiar to ecologists as the Shannon index of species 

diversity, which takes into account the number of different species and the frequency of each 

(Shannon, 1948). The more different species are present, and the closer they are to equally 

frequent, the higher the species diversity. Consider a field ecologist observing random 

individuals in a particular habitat, and writing down the species of each individual as it is 

observed. The more different species are present in the habitat, the more different sequences 

of species are possible. However, sequences in which a rare species is observed many times 

and a common species is observed just a few times are quite unlikely. The number of 

sequences that are likely to actually occur thus depends also on the frequency of each 

species. For example, if there are just two species that are equally frequent, the most likely 

sequences of ten observations will have five individuals of one species and five of the other; 

there are 10!/(5!5!) = 252 such sequences. In contrast, if there are just two species, but one is 

nine times more frequent than the other, the most likely sequences of ten observations will 

have just one individual of the rare species; there are only 10/(9!1!) = 10 such sequences. If 

we consider very long sequences of observations, the number of likely sequences is close to 

2HN, where H is the diversity index and N is the number of individuals observed. With each 

new observation, the number of possible sequences is multiplied by the number of species, 

but the number of likely sequences increases by a factor of 2H. Thus the diversity index H 

can be interpreted as the fold increase in likely outcomes with each additional observation—

a measure of the uncertainty about the next species to be observed.

When we are observing individuals that live in different habitats, we can either ignore the 

habitat and measure the diversity of all individuals pooled together, or we can measure the 

diversity within each habitat. If we measure within-habitat diversity, and then average across 

habitats according to the number of individuals observed in each habitat, we will usually 

find a lower diversity than we would by pooling across habitats. The only case where the 

average within-habitat diversity will be as high as the overall diversity is when habitat plays 

no role—the frequency of each species is the same in the different habitats. The difference 

between the overall diversity and the average within-habitat diversity is the mutual 

information between habitat and species: how much uncertainty about which species will be 

encountered next is removed, if we know the habitat in which the encounter takes place?

Another approach, common in decision theory, economics, behavioral ecology, and related 

fields, is to look at the expected value of information: how information improves the 
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expected payoff to a decision-maker (Gould, 1974). We write the maximal fitness obtainable 

without a signal as F(E) = maxxΣe p(e)f (x, e), where x is a strategy, and f (x, e) is the fitness 

of that strategy when the environmental state e occurs. Similarly, we write the optimal 

fitness attainable with a signal F(E|C) = Σc p(c) maxxc Σe p(e|c)f (xc, e) where xc is a strategy 

used in response to the cue c.

Definition: The decision-theoretic value of information that a cue C provides about 

the state of the world E is defined as the difference between the maximum expected 

payoff or fitness that a decision-maker can obtain by conditioning on C, and the 

maximum expected payoff that could be obtained without conditioning on C. This 

is written as ΔF(E; C) = F(E|C) − F(E).

2.1 An illustrative example

To illustrate the difference between the two measures of information described above, we 

start with a simplified model. The environment has two possible states, such as wet and dry 

years, and each organism has two possible phenotypes into which it can develop. Fitness 

depends on the match of phenotype to environment, as follows:

Given that the probability of environmental state e1 is p, and of state e2 is (1 − p), what 

should these individuals do in the absence of information about the condition of the 

environment? The organism maximizes its single-generation expected fitness by developing 

into phenotype ϕ1 if p > 1/3, and into phenotype ϕ2 otherwise. This is optimal because 5 · p

+1 · (1−p) > 1 · p+3 · (1−p) when p > 1/3. The payoff earned with this strategy would be 

F(E) = max[5p+(1−p), p+3(1−p)].

(1)

Now we suppose that there is a perfectly informative environmental cue C which accurately 

reveals the state E of the environment. How do we measure the information provided by this 

cue?

Within an information-theoretic framework, we measure the amount of information in the 

cue by calculating mutual information between the cue and the environment; this measures 

how much the cue tells us about the environment. Since the cue is perfectly informative, the 

conditional uncertainty about the environment once the cue is observed is zero: H(E|C) = 0. 

The mutual information is therefore

(2)
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Figure 1A plots the mutual information between cue and environment as a function of the 

probability p that environment e1 occurs.

Within a decision theoretic framework, we measure the value of the information in the cue 

by calculating how much the ability to detect the cue improves the expected fitness of the 

organism. When an organism receives the cue, it can always develop the appropriate 

phenotype for the environment, and thus obtain a single-generation expected fitness of F(E|

C) = 5p + 3(1 − p) = 3 + 2p. The decision-theoretic value of information in this case is 

therefore

(3)

By using the cue, the organism increases its single-generation expected fitness by the 

decision-theoretic measure of the value of information. This quantity, illustrated in Figure 

1B, differs considerably from the information-theoretic measure of mutual information 

shown in Figure 1A. Not only do the graphs take on different forms, but their units of 

measurement differ. Mutual information is measured in bits, whereas the value of 

information is measured in fitness units.

3 The fitness value of information

In the previous section, we measured the value of information by its effect on expected 

fitness over a single generation. But as many authors have shown (Dempster, 1955; Haldane 

and Jayakar, 1963; Cohen, 1966; Lewontin and Cohen, 1969; Gillespie, 1973; Yoshimura 

and Jansen, 1996), organisms will not always be selected to use a strategy that maximizes 

their fitness in a single generation. Instead, a better proxy for the likely outcome of evolution 

is to think of organisms as maximizing the long-term growth rate of their lineage. This 

distinction is critical when the environment changes from one generation to the next, and 

affects all individuals within one generation in the same way—as, for example, with drought 

or abundant spring rains. Under these circumstances, maximizing the long-term growth rate 

over a very large number of generations is equivalent to maximizing the expected value of 

the logarithm of the fitness in a single generation.

From an evolutionary perspective, it therefore makes sense to define the value of a cue not 

in terms of single-generation fitness consequences, but rather in terms of the increase in 

long-term growth rate it makes possible. Let g(x) = Σe p(e) log f (x, e) be the expected long-

term growth rate of a strategy x. We write the maximum long-term growth rate obtainable 

without a cue as G(E) = maxxΣe p(e) log f (x, e). Similarly, we write the maximum long-

term growth rate attainable with a cue as G(E|C) = Σc p(c) maxxc Σe p(e|c) log f (xc, e).

Definition: The fitness value of information ΔG(E; C) associated with a cue or 

signal is the greatest fitness decrement or cost that would be favored by natural 

selection in exchange for the ability to detect and respond to this cue: ΔG(E; C) = 

G(E|C)−G(E).
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3.1 Proportional betting

To explore the connection between environmental uncertainty and long-term growth rate, 

we will first look at an even simpler example, where the organism survives only if it 

matches its phenotype to the environment perfectly.

In the short run, individuals maximize expected fitness by employing the highest-payoff 

phenotype only. But we can immediately see that the long-run fitness of lineage is not 

maximized in the same way: playing only one strategy will inevitably lead to a year with 

zero fitness and consequent extinction for the lineage. Thus organisms will be selected to 

hedge their bets, randomizing which of the two phenotypes they adopt (Cooper and Kaplan, 

1982; Seger and Brockmann, 1987).

If environment e1 occurs with probability p and environment e2 occurs with probability (1 − 

p), with what probability should an individual adopt each phenotype? As we consider a 

larger and larger span of generations, a larger and larger fraction of the probability is taken 

up by “typical sequences” of environments, in which environment e1 occurs around N p 

times, and environment e2 occurs around N (1 − p) times (Cover and Thomas, 1991). A 

strategy that maximizes the growth rate over these typical sequences will, with very high 

probability, be the one that is observed as the result of natural selection (Robson et al., 

1999). To find this genotype, let us assume a genotype that develops with probability x into 

phenotype ϕ1 and with probability (1 − x) into phenotype ϕ2; the population growth over a 

typical sequence of N events will be (7 x)Np(7/2 (1 − x))N(1−p). Maximizing the population 

growth is equivalent to maximizing the per-generation exponent of growth, or the log of the 

expression divided by N:

(4)

The only part of this equation that depends on x is p log(x)+(1−p) log(1−x), so any 

dependence on the fitnesses when the organism properly matches the environments (i.e. on 

the values “7” and “7/2”) has dropped out. The maximum occurs when x = p, a strategy 

called proportional betting. With this strategy, organisms develop into the two phenotypes 

in proportion to the probabilities of the two environments — and these optimal proportions 

do not depend on the fitness benefits (Cover and Thomas, 1991). The optimal growth rate is 

thus

(5)
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3.2 Uncertainty and optimal growth

To understand the connection between environmental uncertainty and optimal growth more 

fully, it is instructive to generalize the simple model above to include several different 

environments and phenotypes. Let us assume that there are n environments, and that for 

each environment there is one optimal phenotype. The payoff for phenotype ϕe in 

environment e is de, and the payoff for any other phenotype in environment e is 0. Let the 

probability of environment e occurring be p(e), and the probability of developing into 

phenotype ϕe be x(e). Then the growth rate of the lineage over a typical sequence of 

environments, in which environment e occurs approximately Np(e) times, is Πe(dex(e))Np(e). 

Again, instead of maximizing the above expression, we can maximize its log, divided by N:

(6)

The left part does not depend on the strategy x, so we just need to maximize the right part, 

which as before is independent of the fitness values de in the different environments. But 

instead of simply giving the solution, let us rewrite the above expression as

(7)

The term DKL(p||x) ≡; e p(e) log(p(e)/x(e)) is the Kullback-Leibler divergence (K-L 

divergence) between the distribution of environments and the distribution of phenotypes. 

The K-L divergence, also known as the relative entropy, quantifies how greatly a given 

distribution x(e) varies from a reference distribution p(e). To illustrate its meaning, we return 

to the example of a field ecologist recording the species of each individual as it is observed. 

If the true frequencies of each species are given by the distribution p(s), then the most likely 

sequences of observations are the ones where each species s is observed in proportion to its 

frequency, n(s)/N ≈ p(s). The observed frequency of each species is thus the maximum 

likelihood estimate for the true frequency of each species. However, other types of 

sequences are possible, where the observed frequency of each species q(s) = n(s)/N does not 

match the true frequency—leading the ecologist to an incorrect estimate. How often does 

this happen? As long as the total number of observations N is large, the probability of 

observing a sequence with species frequencies q when the true species frequencies in the 

habitat are p is approximately 2−D(q||p)N. As the number of observations grows, deviations 

from p become less and less likely. The Kullback-Leibler divergence is a measure of the 

deviation of a distribution p from another distribution q, which reflects how unlikely it is 

that we would observe species frequencies q when the true frequencies are p.

The representation of the growth rate given in Equation 7 allows us to generalize and 

interpret the results of the previous section. We note that the term DKL(p||x) is the only part 
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of the expression for g(x) that depends on the organism’s choice of strategy; this is zero 

when x(e) = p(e). Therefore the optimal assignment of phenotypes will be a proportional 

betting strategy, and and will achieve a growth rate of

(8)

similar to Equation 5 above. When the distribution of phenotypes is x(e) instead of the 

optimal p(e), then the growth rate per generation will be reduced by DKL(p||x).

Furthermore, if the organism knew exactly what the environment would be at every 

generation, it would choose the optimal phenotype every time. The growth rate would then 

be Πe(de)Np(e), corresponding to an average log growth rate of Σe p(e) log de. Comparing 

this quantity to Equation 8, we see that the growth rate associated with the proportional 

betting strategy is equal to the growth rate that could be achieved with full information, 

minus the entropy of the unknown environmental state. At least for this special case, 

environmental uncertainty reduces the log growth rate by an amount equal to the entropy of 

the environment!

3.3 The illustrative example, revisited

In the previous two sections, we assumed that organisms can only survive when they choose 

exactly the right phenotype for the environment. In general, however, choosing the wrong 

phenotype need not be fatal. How does this affect the optimal growth rate, and the fitness 

value of information?

Let us return to the first example presented in Section 2.1; in this example the wrong 

phenotype had a fitness of 1 instead of 0. Now the expected log growth rate in the absence 

of a cue is g(x) = p log(4x + 1) + (1 − p) log(3 − 2x) and here, organisms will not follow a 

strict proportional-betting strategy. Instead, the optimal strategy x* will be to always develop 

into a single phenotype when p is near 0 or 1, and to hedge bets when p takes on an 

intermediate value:

(9)

This yields a growth rate without the cue of

(10)

If organisms could sense a cue that perfectly revealed the state of the environment, all 

individuals could develop as the phenotype which matches the environment, and we would 
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see a log growth rate of G(E|C) = p log(5) + (1 − p) log(3). The difference in expected log 

fitness — and thus the fitness value of information — is given by:

(11)

In the central region, where , the fitness value of information is equal to the entropy 

of the environment plus a linear function of the probability of each environment: p log 5/7 + 

(1 − p) log 6/7. Outside the range, when the optimal strategy invests in only one of the 

phenotypes, the value of the cue depends linearly on the probability of each environment: p 

log 5 or (1 − p) log 3. Since in this region the strategy used is identical to the strategy 

optimizing fitness in a single generation, the value of the cue is just like the difference in 

long term growth rate when optimizing over only a single generation. Calculus reveals that 

the function is continuous and once continuously differentiable everywhere. The fitness 

value of information for the cue appears to be related to the mutual information between the 

cue and environment. In the next sections, we present a general model that will allow us to 

quantify and interpret that relationship.

3.4 Effective proportional betting

In order to explore the connection between fitness value and information, we will develop a 

general model based on the one presented in Section 3.2, but which relaxes the assumption 

that developing the wrong phenotype is always fatal. Let us again assume that an organism 

has to make a developmental decision between n possible phenotypes, each of which is a 

best match to one of n environments. Each environmental state e occurs with probability 

p(e), and the fitness of phenotype ϕ in environment e is f(ϕ, e). The best match for 

environment e is phenotype ϕe; that is, maxϕ [f (ϕ, e)] = f (ϕe, e). The strategy x defines the 

probability x(ϕ) that an individual will develop into phenotype ϕ. We want to find the 

strategy that maximizes the expected long-term growth rate, g(x) = Σe p(e) log Σϕ f (ϕ, 

e)x(ϕ).

In a previous paper (Donaldson-Matasci et al., 2008), we introduced a method for 

calculating optimal bet-hedging strategies that will prove useful in the present analysis. 

What follows is a very brief outline of the method; full details are provided in the previous 

paper.

We first define a set of hypothetical “extremist” phenotypes which fit the model of Section 

3.2, so that each hypothetical phenotype  is ideally adapted to one environment e, where it 

has fitness de, but fails to survive in any other environment. We next aim to describe each 

actual phenotype ϕ as a bet-hedging strategy combining the hypothetical phenotypes . 

That is, we would like to find fitnesses de for the extremist phenotypes and mixing strategies 

s(e|ϕ) across extremist phenotypes such that
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(12)

for all environments e and phenotypes ϕ. For each phenotype ϕ, the strategy s(e|ϕ) describes 

the bet-hedging proportions of hypothetical phenotypes  that would produce the same 

fitness, measured separately for each environment. This problem is equivalent to defining 

the fitness matrix F, with entries Fϕe = f(ϕ, e), as a product of two unknown matrices: S, 

with entries Sϕe = s(e|ϕ), and D, with diagonal entries Dee = de and 0 elsewhere. Solving for 

these two matrices is straightforward and can almost always be done uniquely (Donaldson-

Matasci et al., 2008).

The advantage of this approach is that it will allow easy comparison to the simplified model 

presented in Section 3.2, which highlights the connection between growth rate and 

uncertainty. We can express a strategy x as a row vector x⃗, with each element xφ = x(φ) 

representing the probability of developing phenotype φ. To describe the strategy’s fitness in 

any particular environment e, we need simply look at the eth element of the vector x⃗ F:

(13)

This means that the strategy x, which produces each phenotype ϕ with probability x(ϕ), is 

exactly equivalent to a strategy y that produces each hypothetical phenotype  with 

probability y(e) = [x⃗ S]e. We can write down the long-term growth rate for a lineage that 

uses strategy x by calculating the growth rate for the equivalent strategy y:

(14)

This equation is very similar to Equation 7, except that instead of measuring the Kullback-

Leibler divergence of the strategy x from the environmental distribution, we measure the 

divergence of the effective strategy y from the environmental distribution. The maximum 

growth rate that can be achieved occurs when y(e) = [x⃗ S]e = p(e), in which case DKL(p||y) = 

0 (see Figure 2A.) If there is no strategy x that can achieve this, then the strategy that 

minimizes the Kullback-Leibler divergence is optimal (see Figure 2B.) If we think of the 

effective strategy y as representing the effective bets the strategy is placing on each 

environment, then we see that the optimal strategy effectively does proportional betting—or 

as close as it can get.

The optimal growth rate for a strategy that effectively does proportional betting is therefore

(15)
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just as it was for a diagonal fitness matrix (Equation 8.) Thus, even when choosing the 

wrong phenotype is not fatal, the optimal growth rate is limited by the entropy of the 

environment. However, the first term is no longer the growth rate that could be achieved if 

individuals could predict the environment perfectly. Instead, it is the growth rate that could 

be achieved if individuals could predict each environment e perfectly, and instead of using 

the actual phenotype ϕe with fitness f(ϕe, e), they could use the higher-fitness hypothetical 

phenotype  with fitness de. The value of perfect information is therefore the reduction in 

entropy it facilitates, H(E), plus a negative term that reflects the fitness cost due to the fact 

that individuals are in practice restricted to the actual phenotypes rather than the 

hypothetical ones, Σe p(e) log f (ϕ, e)/de (for example, see Equation 11.)

3.5 Information and fitness value

Until now, we have considered only cues that allow individuals to predict the state of the 

environment perfectly. We would now like to calculate the value of a partially informative 

cue.

All individuals within a generation observe the same environmental cue c, which occurs 

with probability p(c). Once that cue has been observed, the probability of each 

environmental state is given by the conditional probability distribution, p(e|c). A conditional 

strategy x specifies the probability of developing into each phenotype ϕ, after observing the 

cue c: x(ϕ|c). This can be represented as a matrix X, with entries Xcϕ = x(ϕ|c). To describe 

the strategy’s fitness in a particular environment e, after a cue c has been observed, we can 

look at the c-th row and the e-th column of the matrix XF:

(16)

This shows that a conditional strategy y which produces the hypothetical phenotype  with 

probability y(e|c) = [XS]ce, conditional on observing the cue c, is exactly equivalent to the 

conditional strategy x. The growth rate of the strategy x can therefore be written as:

(17)

which is like a conditional version of Equation 14. Instead of the uncertainty of the 

environment H(E), we have the conditional uncertainty after observing a cue, H(E|C). 

Instead of the relative entropy DKL(p||y), we measure the conditional relative entropy 

DKL(p(e|c)||y(e|c)), which reflects the difference between the bets the strategy effectively 

places on environments and the environmental probabilities, conditional on which cue is 

observed. As usual, the best strategy is effective proportional betting, conditional on the cue, 

but this may not always be possible.

What is the fitness value of the cue C? First of all, consider the situation where a bet-

hedging strategy can effectively do proportional betting, both without the cue and with each 
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possible cue. Then the Kullback-Leibler divergence terms in Equations 14 and 17 are always 

zero. We can therefore write:

(18)

The value of receiving a cue—when effective proportional betting is possible—is exactly 

the mutual information between the cue and the environment (see Figure 3.)

Now let us consider the more general situation, where effective proportional betting may not 

be possible. Let y* be the best possible effective betting strategy when no cue is available, 

and let  be the best possible effective betting strategy when the cue C is available. The 

fitness value of information is then

(19)

We would like to show that the mutual information I(E; C) is an upper bound for the fitness 

value of information ΔG(E; C). That means we need to show that the right-hand term is 

never negative: the cost of constraining the unconditional strategy cannot be greater than the 

cost of constraining the conditional strategy. We’ll do this in two steps. First of all, we 

define the unconditional strategy  as the strategy an observer would 

see, watching someone play  in response to the cues c, but without observing the 

cues. The first step is to show that this marginal strategy can be no farther from the marginal 

distribution of environments than the conditional strategy is from the conditional distribution 

of environments. We can write the Kullback-Leibler divergence between the two joint 

distributions over cues and environments in two different ways:

(20)

However, the marginal distribution over cues is the same for the two distributions, because 

 is defined in terms of the way it responds to cues generated according to the distribution 

p. This means the last term is zero, so

(21)

as desired. Finally, we note that since y* is defined as the optimal unconditional strategy for 

the environmental distribution p, . This shows that the 
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fitness value of a cue cannot exceed the mutual information between that cue and the 

environment:

(22)

Figure 3 illustrates a case where the fitness value of the cue is exactly equal to the 

information it conveys; Figure 4 illustrates two cases in which the fitness value of the cue is 

strictly less than the information it contains.

4 Discussion

Many organisms living in a fluctuating environment show remarkable plasticity in life 

history traits. Desert annual plants often fail to germinate in their first year, on the chance 

that future conditions will be better (Philippi, 1993; Clauss and Venable, 2000). Similarly, 

some insects and crustaceans can enter diapause to wait out unfavorable conditions 

(Danforth, 1999; Philippi et al., 2001). For amphibians and fish, there is a trade-off between 

producing a few large eggs or many small ones; if the smallest eggs can only survive under 

the best conditions, this can provide an incentive to make eggs of variable size (Crump, 

1981; Koops et al., 2003). Furthermore, some amphibians that breed in temporary pools 

show extremely variable time to metamorphosis, because the pools sometimes dry up before 

the tadpoles mature (Lane and Mahony, 2002; Morey and Reznick, 2004). Aphids and some 

plants can switch between sexual and asexual modes of reproduction depending on 

environmental conditions and uncertainty (Berg and Redbo-Torstensson, 1998; Halkett et 

al., 2004). In all these cases, the observed variation in life histories is thought to be an 

adaptation to environmental variability; the best studies show a quantitative agreement 

between the amount of observed plasticity and what is predicted to be optimal (Venable, 

2007; Simons, 2009). However, it is often difficult to tell empirically whether the life history 

variation is produced randomly, as in bet-hedging, or in response to predictive 

environmental cues (Morey and Reznick, 2004; Philippi, 1993; Clauss and Venable, 2000; 

Adondakis and Venable, 2004); in some cases, it may actually be a combination of both 

mechanisms (Richter-Boix et al., 2006).

In this paper, we examined the adaptive value of responding to predictive cues in the context 

of environmental uncertainty. We have shown that the fitness value of using information 

about the environment gained from predictive cues is intimately related to the amount of 

information the cues carry about the environment. Under appropriate circumstances, the 

fitness benefit of being able to detect and respond to a cue is exactly equal to the mutual 

information between the cue and the environment. More generally, the mutual information 

provides an upper bound on the fitness value of responding to the cue. These results are 

surprising, in that the mutual information measure seemingly takes into account nothing 

about the fitness structure of the environment.

Why do we observe this connection between the fitness value of information and the mutual 

information? To answer that question, it helps take a closer look at the information-theoretic 
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definition of information: information is the reduction of uncertainty, where uncertainty 

measures the number of states a system might be in. Thus mutual information between the 

world and a cue is the fold reduction in uncertainty about the world after the cue is received. 

For example, if a system could be in any of six equiprobable states, and a cue serves to 

narrow the realm of possibility to just three of these, the cue provides a twofold reduction in 

uncertainty. For reasons of convenience, information is measured as the logarithm of the 

fold reduction in uncertainty. Logarithmic units ensure that the measure is additive, so that 

for example we can add the information received by two successive cues to calculate the 

total information gained (Nyquist, 1924; Hartley, 1928; Shannon, 1948). Thus while 

information concepts are often thought to be linked with the famous sum −Σp log(p), the 

fundamental concept is not a particular mathematical formula. Rather, it is the notion that 

information measures the fold reduction in uncertainty about the possible states of the world.

With this view, it is easier to see why information bears a close relation to biological fitness. 

For simplicity, consider an extreme example in which individuals survive only if their 

phenotype matches the environment exactly, and suppose that there are ten possible 

environments that occur with equal probability. In the absence of any cue about the 

environment, the best the organism can do is randomly choose one of the ten possible 

phenotypes with equal probability. Only one tenth of the individuals will then survive, since 

only a tenth will match the environment with their phenotype. If a cue conveys 1 bit of 

information and thus reduces the uncertainty about the environment twofold, the 

environment can be only in one of five possible states. The organism will now choose 

randomly one of five possible phenotypes, and now a fifth of the population will survive — 

a twofold increase in fitness, or a gain of 1 bit in the log of the growth rate.

What happens when the environments are not equiprobable? In this case we can understand 

the connection between information and fitness by looking to long sequences of 

environments and the theory of typical sequences. The theory tells us that almost surely one 

of the “typical sequences” — those sequences in which the environments occur in their 

expected frequencies — will occur (Cover and Thomas, 1991). Moreover, all typical 

sequences occur with equal probability. Thus a lineage is selected to divide its members 

equally among all typical sequences. Since any one mistake in phenotype is lethal, only a 

fraction of these lineages, namely those that have just the right sequence of phenotypes, will 

survive. The number of typical sequences in this case is exactly 2NH(E) where N is the 

number of generations in the sequence and H(E) is the entropy of the environment. 

Correspondingly, the fraction of surviving lineages will be 2−NH(E). If a cue C is received 

that reduces the uncertainty of the environments by I(E; C), then the fraction of surviving 

lineages can be increased by exactly 2NI(E;C). This is analogous to the situation in 

communication: if we need to encode a string of symbols that are not equiprobable, we turn 

to a long sequence of such symbols. Our code then needs only to be efficient for 

representing typical sequences of symbols, and those typical sequences occur with equal 

probability. The number of such sequences is 2NH, where N is the length and H is the 

entropy of the symbols. If the message recipient also obtains side information related to the 

message itself, then the mutual information I between the message and the side information 

measures the reduction in the number of possible messages that need to be encoded by the 
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transmitter. This number of messages is reduced exactly 2NI-fold by the presence of the side 

information.

Finally, what happens when having the wrong phenotype is not lethal, but simply decreases 

fitness? In this case, we can no longer simply count the number of lineages that have the 

correct sequence of phenotypes to determine the fraction that survive. However, we can 

transform the system into one where this is possible, by constructing an alternate set of 

hypothetical phenotypes that survive in just one environment, and expressing everything in 

terms of those phenotypes. We imagine that, instead of an individual developing a single 

phenotype, it develops a certain combination of the alternate phenotypes; instead of 

following lineages of individuals, we follow lineages of these alternate phenotypes. The 

fraction that survive without information is, at best, 2−NH(E), while the fraction that survive 

with information is, at best, 2−NH(E|C). The mutual information I(E; C) places an upper limit 

on the fold increase of lineages that survive when a cue is available.

We can now see why the concept of information is the same across different disciplines. In 

communication theory, the transmission of information is the reduction of uncertainty about 

what signals will come through a channel, from an initial set of all possible signals down to 

the post hoc set of signals actually received. In thermodynamics, a decrease in entropy refers 

to the fold reduction in the number of states that a system can be in. In evolutionary biology, 

the fitness value of a cue about an uncertain environment refers to the fold increase in the 

number of surviving lineages made possible by responding to the cue.
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Figure 1. 
Two different measures of the information in a cue are commonly used. (A) The mutual 

information between the cue and the environment measures the reduction in environmental 

uncertainty once the cue has been observed. (B) The decision-theoretic value of information 

measures the change in expected fitness that is made possible by using the cue.
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Figure 2. 
Maximal growth rate when choosing the wrong phenotype is not fatal. The red solid line 

indicates the maximal growth rate using the two phenotypes ϕ1 and ϕ2. The black solid line 

is the growth rate that could be achieved with an unconstrained strategy, using the 

hypothetical phenotypes  and . Since the hypothetical phenotypes are fatal in the wrong 

environment, the optimal unconstrained strategy always uses proportional betting. In 

contrast, the optimal constrained strategy bet-hedges only in an intermediate range of 

environmental frequencies, labeled the “region of bet-hedging”. Outside that region, it uses 

the single phenotype that does best on average. (A) Within the region of bet-hedging, the 

constrained strategy does just as well as the unconstrained strategy. Compared to an 

unconstrained strategy that can perfectly predict the environment, both strategies incur a cost 

of uncertainty equal to the entropy of the environment H(E) (see Equations 8 and 15.) (B) 

Outside the region of bet-hedging, the constrained strategy does worse than the constrained 

strategy, since it cannot bet-hedge anymore. It always uses phenotype ϕ1 on the right of the 

region, where environment e1 is more common, and ϕ2 on the left. The growth rate achieved 

is therefore exactly as with the decision-theoretic strategy, optimizing fitness in just one 

generation. In this case, the constrained strategy pays not only the cost of uncertainty, H(E), 
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but also a cost of constraint that arises from the inability to bet strongly enough on the most 

common environment. This constraint further reduces the growth rate by the Kullback-

Leibler divergence DKL(p||si), which gets larger as we get farther from the boundary of the 

region of bet-hedging (see Equation 14.)
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Figure 3. 
When the optimal strategy is to bet-hedge, both with and without a cue, the fitness value of 

information is equal to the mutual information between the cue and the environment. We 

calculate the value of a partially informative cue by looking at the reduction in growth rate, 

as in Figure 2, relative to a perfectly informed, unconstrained strategy. (A) With no cue at 

all, the cost of uncertainty is equal to the entropy of the environment H(E). (B) Once a 

particular cue ci has been observed then the reduction in growth rate is just the cost of 

uncertainty, H(E|ci). Averaging across the different cues, the reduction in growth rate for a 

strategy using a partially informative cue is simply the conditional entropy H(E|C). (C) The 

fitness value of information is, in this case, the amount by which the cue reduces uncertainty 

about the environment — that is, exactly the mutual information between the cue and the 

environment (see Equation 18.)
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Figure 4. 
The mutual information between a cue and the environment is an upper bound on the fitness 

value of that information. For an unconstrained strategy, using the extremist phenotypes ϕ′, 

the value of a cue is exactly equal to the information it conveys. We illustrate two cases of a 

constrained strategy where the value of information is strictly less than the amount of 

information. (A) For example, say that the optimal strategy without a cue would be to bet-

hedge; the optimal response to a perfectly informative cue would be to choose the single 

best phenotype ϕ1 or ϕ2. For an unconstrained strategy, the value of this perfect cue would 

be equal to the mutual information. The fitness value for the constrained strategy is lower, 

because although it can achieve just the same growth rate as the unconstrained strategy 

without information, once information is available the unconstrained strategy can do better. 

(B) If there is no bet-hedging even without a cue, then the constrained strategy does worse 

both with and without the cue. The value of the cue using a constrained strategy is thus not 

directly comparable to the value of the cue when using an unconstrained strategy. However, 

we prove in the text that the difference in growth rates for the constrained strategy cannot 

exceed the difference in growth rates for the unconstrained strategy (see Equation 22.)
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