Skip to main content
. 2015 Feb 11;5:5. doi: 10.1186/s13561-015-0043-9

Table 1.

Total variances explained in the principal factor analysis

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings
Total % of variance Cumulative % Total % of variance Cumulative % Total % of variance Cumulative %
1 5.572 17.413 17.413 5.572 17.413 17.413 4.764 14.888 14.888
2 2.137 6.678 24.091 2.137 6.678 24.091 2.803 8.760 23.648
3 1.477 4.616 28.707 1.477 4.616 28.707 1.331 4.160 27.808
4 1.276 3.987 32.694 1.276 3.987 32.694 1.296 4.051 31.859
5 1.243 3.885 36.579 1.243 3.885 36.579 1.258 3.931 35.790
6 1.184 3.699 40.278 1.184 3.699 40.278 1.225 3.829 39.619
7 1.077 3.366 43.644 1.077 3.366 43.644 1.133 3.539 43.158
8 1.068 3.338 46.982 1.068 3.338 46.982 1.090 3.407 46.565
9 1.042 3.257 50.239 1.042 3.257 50.239 1.073 3.354 49.919
10 1.024 3.201 53.440 1.024 3.201 53.440 1.070 3.342 53.261
11 1.016 3.176 56.616 1.016 3.176 56.616 1.061 3.316 56.578
12 1.001 3.130 59.746 1.001 3.130 59.746 1.014 3.168 59.746
13 .994 3.108 62.854
14 .954 2.980 65.834
15 .938 2.932 68.766
16 .916 2.861 71.627
17 .865 2.703 74.329
18 .851 2.658 76.988
19 .807 2.522 79.510
20 .748 2.339 81.849
21 .733 2.291 84.140
22 .706 2.205 86.345
23 .626 1.957 88.302
24 .601 1.878 90.180
25 .560 1.751 91.931
26 .556 1.738 93.669
27 .483 1.509 95.178
28 .404 1.264 96.442
29 .334 1.043 97.484
30 .282 .881 98.365
31 .280 .875 99.241
32 .243 .759 100.000

Extraction Method: Principal Component Analysis.