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Summary.Random effects or shared parameter models are commonly advocated for the anal-
ysis of combined repeated measurement and event history data, including dropout from longitu-
dinal trials. Their use in practical applications has generally been limited by computational cost
and complexity, meaning that only simple special cases can be fitted by using readily available
software.We propose a new approach that exploits recent distributional results for the extended
skew normal family to allow exact likelihood inference for a flexible class of random-effects mod-
els. The method uses a discretization of the timescale for the time-to-event outcome, which is
often unavoidable in any case when events correspond to dropout. We place no restriction on
the times at which repeated measurements are made. An analysis of repeated lung function
measurements in a cystic fibrosis cohort is used to illustrate the method.
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1. Introduction

There is a close relationship between modelling longitudinal data subject to dropout and mod-
elling survival time data in the presence of imprecisely observed time varying covariates. In both
cases we have a vector of repeated measurements Y and a time to event S. In the survival con-
text S would normally be considered to be measured in continuous time, though possibly right
censored. In the dropout context S usually corresponds to a discrete interval between scheduled
measurement times. Typically the occurrence of the event terminates observation of the repeated
measurements.

A common approach for both the survival time and the dropout problems is to assume
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conditional independence between Y and S given underlying random effects U. An important
early reference is Wulfsohn and Tsiatis (1997), who assumed that Y was linear in a Gaussian
random effect U and took a proportional hazards model for S, conditional on U. Tsiatis and
Davidian (2004) have given an excellent review of work in the area to that date, and Albert
and Follmann (2009) and Diggle et al. (2009) have given additional references including later
developments. More recent contributions include Geskus (2012), Gueorguieva et al. (2012),
Proust-Lima et al. (2012) and Rizopoulos (2011, 2012).

The random-effects or shared parameter approach to jointly modelling repeated measurement
and event time data is conceptually attractive in many settings, but its routine application is
hampered by computational difficulties. Fast but approximate methods have been developed
for some forms of joint model (see for example Rizopoulos (2012) and references therein) but
implementation remains difficult unless the random-effects component is of low dimension.
Wulfsohn and Tsiatis (1997), for instance, assumed that U was bivariate Gaussian and adopted
a Laird and Ware (1982) random intercept and slope model for the longitudinal trajectory.
Henderson et al. (2000) argued that when follow-up is relatively long then it is unreasonable
to assume a sustained trend in the trajectory of Y and advocated inclusion of an unobserved
stationary Gaussian process W.t/ in a linear predictor for Y to bring more flexibility. In principle
this assumes the presence of an infinite dimensional random effect but, under either a discrete
dropout or a semiparametric proportional hazards model for S, likelihood inference requires
the value of W.t/ at only measurement times or event times. Hence W.t/ can be represented by a
finite dimensional vector U. The dimension increases with sample size and there is no generally
available software for this type of model.

In this paper we propose an approach which admits exact likelihood inference for a wide range
of random-effect specifications. The key is to consider events S to occur only at a discrete set of
potential times. In principle, the discretization can be made arbitrarily fine, but at the expense
of increasing computational effort. Hence, the practical advantage of our approach relies on
its remaining computationally feasible for a discretization that is sufficiently fine to capture the
essential features of its continuous time limit. When the events correspond to dropout, their
recorded times of occurrence are typically confined to a discrete set of scheduled measurement
times. When the event is a survival time then our approach is a form of coarsening at random
(Heitjan and Rubin, 1991). For example, in Section 6 we describe an example involving survival
in a cystic fibrosis cohort, where we choose to measure survival by calendar year of death. With
10 years of follow-up and no evidence of significant local variation in hazard rates this gives
adequate granularity. There is no need for the timescale to be discretized in the submodel for
the repeated measurements Y under our approach, which therefore allows for irregular and
subject-specific measurement timings.

The general model and some special cases are set out in Section 2. In Section 3 we derive the
key likelihood-based methods on the basis of recent work on the extended skew normal family
of distributions. Simulations to assess the performance of the method are described in Section 4.
An examination of efficiency is presented in Section 5 and in Section 6 we describe application
to the cystic fibrosis cohort study. Concluding discussion is presented in Section 7.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Model

We take a shared parameter approach, with the common assumption that event times S and
longitudinal data Y are independent conditionally on random effects U.
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2.1. General formulation
We assume that subject i provides repeated measurements Yi ={Yij : i=1, 2, : : : , N; j =1, : : : , ni}
at follow-up times tij, together with a time-to-event outcome Si, which terminates the observa-
tion of Y . Time varying covariates are allowed. We write xij for covariates that are operative on
Yij, and x̃is for covariates that are operative at time s on the event process. For the remainder
of this section we drop the subscript i and consider a generic subject. It will be implicit that the
number and timing of measurements can vary between subjects.

We assume two timescales: a discrete timescale for events, which without loss of generality we
can label as S ={1, 2, : : : , m}, and a continuous timescale T = [0, τ ] for measurements. We also
assume that there is a surjection s.t/ from T to S. For instance, S might be a partition of T . We
consider S to represent a series of time intervals; for example if the timescale T is years then
S might contain yearly or 6-monthly intervals. Alternatively, S might contain time intervals
of different lengths, or it might represent intervals between scheduled measurement times. We
denote by tÅ.s/ the midpoint of the set of times in T that map to s∈S.

2.1.1. Random effects
We model the random effects as a p-vector U = .U1, : : : , Up/T, assuming a Gaussian distribution
U ∼N.0, Σ/ with a general covariance structure.

2.1.2. Event times
With the skew normal results in mind, we adopt a probit model for the discrete hazard function
(equivalently the dropout model), which is very similar to the more widely used logistic model.
For the most general model we define W.s/=B.s/U to be a p̃-vector of linear combinations of
the random effects U, where B.s/ is a p̃ × p matrix which may depend on the time interval s.
Then we assume that

P.S = s|S>s−1, U/=1−Φ
{

x̃T
s β̃+

p̃∑
k=1

γskWk.s/

}
, s∈S, .1/

where Φ.·/ is the standard normal distribution function. In equation (1) the survival model is
allowed to depend on time through covariates that are contained in a p1-vector x̃s. In principle
a non-linear function of time could be used, and often a separate intercept would be used for
each time interval. In our examples we shall focus on models for which the probit probability
of surviving a time interval is linearly dependent on time. The association between survival and
the random effects can also vary with time, although all examples in this paper will assume that
γsk does not depend on s.

Note that the model thus defined is a sequential probit model because the probability of
surviving a time interval is conditional on having survived all previous time intervals.
Albert and Chib (2001) have provided discussion on the application of sequential models in
survival.

2.1.3. Repeated measurements
We consider a linear mixed effects Gaussian model for the sequence of repeated measurements,
Y ={Yj : j =1, : : : , n}, at measurement times tj. At time tj we assume

Yj =xT
j β+aT

j U +Zj, j =1, 2, : : : , n, .2/

where xj and aj are a p2-vector and a p-vector respectively, of possibly time-dependent covari-
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ates. The {Zj} are mutually independent measurement errors, taken as Z ∼MVN.0, ν2I/ with
I an identity matrix. We can write expression (2) in the vector form

Y =Xβ+AU +Z .3/

where X= .x1, x2, : : : , xn/T and A= .a1, a2, : : : , an/T.

2.2. Examples
2.2.1. Random intercept
Our formulation includes the random-intercept model. Assume that U is a scalar random effect
with N.0,σ2/ distribution. Then set aj =1 for all j and Ws =U, with γs =γ for all s∈S.

2.2.2. Random intercept and slope
Let .U1, U2/T be zero mean bivariate normal with variance matrix

ΣIS =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

and set aj = .1, tj/T. For s ∈ S set W.s/ = U1 + U2 tÅ.s/ and γs = γ for all s ∈ S. Thus we can
model a sustained trend in the survival hazard, albeit with a piecewise constant form. Given
that we work with events in discrete time this is unavoidable. Alternatively we can adjust the
model to allow the intercept and slope random effects to enter the event times model directly,
setting W.s/= .U1, U2/T and γs = .γ1,γ2/T:

2.2.3. Stationary Gaussian process
For the stationary Gaussian process model we assume that U is an m-vector with variance matrix

.ΣSGP/jk =σ2ρ|tÅ.j/−tÅ.k/|,

so that the random effects correspond to a discretely observed stationary Gaussian process.
Here W.s/ = Us and γs =γ for all s ∈S. We assume that measurements Yj and Yk with s.tj/ =
s.tk/ share the same Us. We define aj to be an m-vector with value 1 at element s.tj/ and 0
elsewhere. If fluctuation at a very short timescale is thought to be materially important then a
fine discretization S is needed to capture this behaviour. Note that the discretization does not
need to scale with sample size. By extending W.s/ we can allow survival or dropout to depend
on the prior history of random effects; for example for one time lag set W.s/= .Us, Us−1/T and
γs = .γ,γlag/T.

2.2.4. Stationary Gaussian process plus random intercept and slope
We can combine a stationary Gaussian process with a random intercept and slope by defining
U to be an .m+2/-vector with variance matrix

Σ=
(

ΣSGP 0
0 ΣIS

)

Now W.s/= .Us, U1, U2/ and γs = .γ,γ1,γ2/ for all s> 1.

3. Inference

We now set out the general form of the likelihood for the class of models that was defined in
Section 2.1. For simplicity we shall continue with the contribution of a single individual only.
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We shall make use of results concerning the properties of the skew normal distribution
(Azzalini, 1985, 2005; Arnold and Beaver, 2000; Arnold, 2009) to obtain a closed form for
the likelihood. In particular, a multivariate Gaussian hidden truncation distribution that was
considered by Arnold (2009) leads to the result

Φ.k1/.ω1; 0, Σ22/=
∫

Φ.k1/.ω1 −ΣT
12Σ

−1
11 .ω2 −η/; 0, Σ22 −ΣT

12Σ
−1
11 Σ12/φ.k2/.ω2;η, Σ11/dω2 .4/

where ω1, ω2 and η are k1 ×1, k2 ×1 and k2 ×1 vectors respectively, and Σ11, Σ22 and Σ12 are
concordant variance and covariance matrices. Here φ.k/.x;μ, Σ/ is the k-dimensional Gaussian
density with mean vector μ and covariance matrix Σ and Φ.k/.x;μ, Σ/ is the corresponding
distribution function. By rearranging the likelihood so that it takes the form of the integrand
on the right-hand side of equation (4), we can use this result to integrate out the random effects
to arrive at a closed form expression.

3.1. Preliminaries
We begin by rearranging the longitudinal and random-effects components of the likelihood so
that they take the form of the Gaussian density function under the integrand in equation (4).

Assume that the dropout or survival time is s and introduce an indicator δ of an event being
observed (δ=1) or right censoring (δ=0). The random-effects and longitudinal components of
the likelihood are

f.u/= 1
.2π/p=2|Σ|1=2 exp

(
− uTΣ−1u

2

)

and

f.y|u/= 1
.2π/n=2νn

exp
{

− .y −Xβ−Au/T.y −Xβ−Au/

2ν2

}
:

Note that f.y|u/f.u/ contains two terms under the exponential which are quadratic in u. We
can complete the square in u so that u appears in a single quadratic term (see Appendix A for
details). It will be convenient to collect all unknown parameters into vector θ and to write

f.y|u/f.u/=L1.θ; y/φ.p/.u; h, H−1/, .5/

where

H = .ATA=ν2 +Σ−1/,

h=H−1AT.y −Xβ/=ν2:

Note that φ.p/.u; h, H−1/ depends on a subvector of the parameter vector θ through h and H .
The expression for L1.θ; y/ is

L1.θ; y/= 1
.2π/n=2νn|ΣH |1=2 exp

{
− .y −Xβ/T.y −Xβ/

2ν2 + hTHh

2

}
:

Turning to the event times, we have

f.s, δ|u/=
{

s−1∏
v=1

Φ
(

x̃T
v β̃+

p̃∑
k=1

γvkwk

)}
Φ
(

x̃T
s β̃+

p̃∑
k=1

γskwk

)1−δ{
1−Φ

(
x̃T

s β̃+
p̃∑

k=1
γskwk

)}δ

.6/
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where w=B.s/u and Φ.·/ is the standard Gaussian cumulative distribution function. Now define
X̃v = .x̃1, x̃2, : : : , x̃v/T, and an s× p̃ matrix Γ such that Γvk =γvk. Then equation (6) can be written
as

f.s, δ|u/=
{

Φ.s/{X̃sβ̃+Γs B.s/u} δ=0,
Φ.s−1/{X̃s−1β̃+Γs−1B.s−1/u}−Φ.s/{X̃sβ̃+ΓsB.s/u} δ=1,

.7/

where Γs denotes the first s rows of Γ. Here Φ.s/.·/=Φ.s/.·; 0, I/ is the standard s-dimensional
multivariate Gaussian cumulative distribution function.

3.2. Likelihood
Combining expressions (5) and (7) and integrating out the random effects leads to the likelihood

L.θ; y, s, δ/=
∫

f.s, δ|u/f.y|u/f.u/du

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L1.θ; y/

∫
Φ.s/{X̃sβ̃+Γs B.s/u}φ.p/.u; h, H−1/du δ = 0,

L1.θ; y/

∫
[Φ.s−1/{X̃s−1β̃+Γs−1 B.s−1/u}

−Φ.s/{X̃sβ̃+ΓsB.s/u}]φ.p/.u; h, H−1/du δ=1. (8)

We can convert the right-hand side of expression (4) to the form of the integrals in expression
(8) by defining the parameters ω1, ω2, η, Σ11, Σ12 and Σ22 appropriately (see Appendix A for
details). Using expression (4) to obtain closed form expressions for the integrals then gives

L.θ; y, s, δ/=L1.θ; y/L2.θ; y, s, δ/ .9/

where

L2.θ; y, s, δ/=

⎧⎪⎪⎨
⎪⎪⎩

Φ.s/{X̃sβ̃+ΓsB.s/h; 0, I +ΓsB.s/H−1B.s/TΓT
s } δ=0,

Φ.s−1/{X̃s−1 β̃+Γs−1B.s−1/h; 0, I

+Γs−1B.s−1/H−1B.s−1/TΓT
s−1}

−Φ.s/{X̃sβ̃+Γs B.s/h; 0, I +Γs B.s/H−1B.s/TΓT
s }: δ=1:

Numerical evaluation of equation (9) is now straightforward by using available software to
calculate multivariate normal probabilities; we used the R package mnormt (Azzalini, 2013).
Parameter estimation can be conducted by numerical maximization of the likelihood, and can-
didate models can be compared by exact likelihoods or information criteria. Having specified a
fully parametric model, the maximum likelihood estimator θ̂ is asymptotically Gaussian, cen-
tred at the true value θ0, and with variance given by the inverse Fisher information. Standard
regularity conditions apply, with some supplementation to ensure identifiability of parameters
when data can be missing. Details are provided in Appendix B.

4. Simulation studies

We simulated repeated measurements with dropout data from the models specified by equations
(1) and (2). Random effects were generated either as a stationary Gaussian process or as a
random intercept and slope. Longitudinal measurements took place at n measurement times
randomly distributed over m time intervals, so that individuals could have a varying number
of visits in each time interval. A uniform distribution was chosen for the measurement times,
motivated by our cystic fibrosis application. We assumed that dropout could occur during any
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time interval. For the stationary Gaussian process models we generated m-dimensional random
effects U = .U1, : : : , Um/T and Gaussian repeated measurements

Yj =xT
j β+Us.tj/ +Zj, j =1, 2, : : : , n,

where tj are the measurement times, and

P.S = s|S>s−1, U/=1−Φ.x̃T
s β̃+γUs/, s=1, 2, : : : , m:

For the random intercept and slope simulations we generated bivariate random effects U =
.U1, U2/T and Gaussian repeated measurements

Yj =xT
j β+U1 +U2tj +Zj, j =1, 2, : : : , n,

and

P.S = s|S>s−1, U/=1−Φ.x̃T
s β̃+γ1U1 +γ2U2/, s=1, 2, : : : , m:

For each simulation study 500 data sets were generated; each of 1000 individuals followed
over m = 5 time intervals, with 1–10 repeated measurements per person. Survival parameters

Table 1. Simulation results from a stationary Gaussian process model†

Parameter Results for simulation SGP I Results for simulation SGP II

True Mean Coverage MSE True Mean Coverage MSE
value value

Longitudinal
Intercept 90 89.947 0.959 6.521 90 90.005 0.944 0.016

(2.556) (0.127)
Time −1.7 −1.700 0.941 0.074 −1.7 −1.700 0.944 0.000

(0.272) (0.016)
Age at t0 −1.7 −1.696 0.957 0.013 −1.7 −1.700 0.942 0.000

(0.115) (0.006)
Sex (males) 2 1.943 0.943 1.803 2 2.001 0.948 0.004

(1.343) (0.061)

Survival
Intercept 2 1.998 0.949 0.044 2 2.013 0.942 0.046

(0.210) (0.214)
Time 0.01 0.009 0.952 0.001 0.01 0.009 0.948 0.001

(0.031) (0.036)
Age at t0 0.01 0.011 0.949 0.000 0.01 0.010 0.946 0.000

(0.009) (0.009)
Sex (males) 0.1 0.098 0.957 0.010 0.1 0.097 0.952 0.011

(0.099) (0.105)
γ 0.05 0.050 0.961 0.000 0.05 0.049 0.966 0.005

(0.003) (0.072)

Others
ν 7 7.005 0.959 0.011 1 1.000 0.944 0.000

(0.104) (0.014)
σu 25 24.985 0.959 0.203 1 0.999 0.948 0.001

(0.450) (0.025)
ρ 0.7 0.699 0.947 0.000 0.7 0.700 0.946 0.001

(0.015) (0.025)

†Sample size 1000 and 500 replicates. Shown are the mean (with standard deviations in parentheses) parameter
estimates, empirical coverage probabilities of nominal 95% confidence intervals and mean-squared errors MSE.
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were chosen such that the death rate per time interval was 1–2%, which is similar to that
observed in the cystic fibrosis application. Censoring took place at the end of the fifth time
interval. Covariates that were included in both models were age, with initial values generated
uniformly from the interval (15,30), and a binary covariate, which was either 0 or 1 with prob-
ability 1

2 . These covariates were similar to the observed covariate structure in the cystic fibrosis
data.

Table 1 summarizes the results of two studies with stationary Gaussian process random effects.
For the first simulation (SGP I), the repeated measures and random effects were taken to have
large standard deviations, similar to those observed for the cystic fibrosis patients. The simulation
was repeated (SGP II) with smaller standard deviations. For both scenarios the means of the
parameter estimates are close to the true values. For simulation SGP I the standard deviations
of parameter estimates are relatively large for the longitudinal parameters owing to the high

Table 2. Simulation results from a random intercept and slope model†

Parameter Results for simulation IS I Results for simulation IS II

True Mean Coverage MSE True Mean Coverage MSE
value value

Longitudinal
Intercept 90 89.842 0.940 7.743 90 89.994 0.950 0.020

(2.781) (0.141)
Time −1.7 −1.701 0.950 0.012 −1.7 −1.701 0.952 0.001

(0.109) (0.036)
Age at t0 −1.7 −1.693 0.956 0.016 −1.7 −1.700 0.950 0.000

(0.125) (0.006)
Sex (males) 2 2.056 0.952 1.840 2 2.003 0.956 0.005

(1.357) (0.071)

Survival
Intercept 2 2.051 0.946 0.054 2 2.015 0.962 0.035

(0.226) (0.187)
Time 0.01 0.009 0.956 0.001 0.01 0.010 0.946 0.001

(0.037) (0.037)
Age at t0 0.01 0.010 0.932 0.000 0.01 0.010 0.948 0.000

(0.010) (0.009)
Sex (males) 0.1 0.112 0.966 0.010 0.1 0.113 0.938 0.012

(0.100) (0.107)
γ1 0.01 0.011 0.970 0.000 0.01 0.019 0.950 0.011

(0.005) (0.107)
γ2 0.1 0.112 0.970 0.011 0.1 0.107 0.946 0.007

(0.106) (0.084)

Others
ν 7 6.997 0.952 0.006 1 1.000 0.972 0.000

(0.080) (0.011)
σ1 25 24.993 0.948 0.409 1 0.994 0.980 0.002

(0.640) (0.042)
σ2 2 1.989 0.940 0.012 1 0.999 0.952 0.001

(0.112) (0.027)
ρ −0.6 −0.600 0.950 0.001 −0.6 −0.599 0.958 0.001

(0.038) (0.032)

†Sample size 1000 and 500 replicates. Shown are the mean (with standard deviations in parentheses) parameter
estimates, empirical coverage probabilities of nominal 95% confidence intervals and mean-squared errors MSE.
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level of measurement error. For simulation SGP II the corresponding standard deviations are
smaller, but the standard deviation of γ is larger. This is because the variance of the random
effects is smaller, so we are effectively regressing on a covariate with a smaller range of values.
Coverage probabilities for both simulation SGP I and simulation SGP II are good, with all
empirical values within simulation noise of the nominal level and no consistent overestimation
or underestimation of the coverage.

Table 2 shows the results of two simulation studies with random intercepts and slopes. Again,
for one study (IS I) data were generated with large measurement error, very high variance in
the random intercept U1 and high variance for the random slope U2, as observed for cystic
fibrosis patients. For the second simulation study (IS II) the variance parameters were reduced.
Means of parameter estimates are once more close to the true values. The standard deviations
of longitudinal parameter estimates are large for simulation IS I and small for IS II, as expected,
whereas the standard deviation of estimates of γ1 is much higher for simulation IS II than for
IS I. Interestingly, the standard deviation for γ2 is approximately the same in both scenarios.
Coverage probabilities are once more close to the nominal levels.

In a second simulation study data were generated from a Weibull model and analysed by using
four methods. To reduce the computation time a simpler model was chosen with a random
intercept only and using a single binary covariate. The Weibull parameters were based on a
Weibull fit to cystic fibrosis survival, with intercept −4.2 and shape 1.2. Other aspects of the
model that was used to generate data were the same as in the previous simulation study, except
times were censored at t =6 to enable us straightforwardly to carry out different discretizations
of the timescale. Each simulated data set was analysed by using

(a) a longitudinal model with a random intercept (so ignoring the survival data),
(b) the R package joineR to fit a joint model with a shared random intercept and propor-

tional hazards survival model,
(c) the discrete time method that is described in this paper with six time intervals and
(d) the discrete time method with three time intervals (note that our sequential probit model

is misspecified for this scenario).

Table 3. Simulation results from a Weibull model†

Parameter True Results for longitudinal model Results for joineR

value
Mean Coverage MSE Mean Coverage MSE

Longitudinal
Intercept 90 90.213 (1.133) 0.948 1.326 89.982 (1.106) 0.954 1.222
Time −1.7 −1.628 (0.061) 0.794 0.009 −1.698 (0.061) 0.954 0.004
Sex (males) 2 1.806 (1.578) 0.964 2.522 1.944 (1.581) 0.946 2.497
Survival
Sex (males) −0.3 — — — −0.300 (0.196) 0.958 0.038
γ1 −0.1 — — — −0.100 (0.005) 0.926 0.000

Others
ν 7 7.007 (0.086) 0.928 0.007 6.999 (0.082) 0.946 0.007
σ1 25 24.789 (0.577) 0.824 0.377 24.977 (0.547) 0.956 0.300

†Sample size 1000 and 500 replicates. Shown are the mean (with standard deviations in parentheses) parameter
estimates, empirical coverage probabilities of nominal 95% confidence intervals and mean-squared errors MSE.
For the longitudinal model standard errors were calculated for variance parameters by using bootstrapping.
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Table 4. Simulation results from a Weibull model†

Parameter True Results for discrete time model, Results for discrete time model,
value 6 intervals 3 intervals

Mean Coverage MSE Mean Coverage MSE

Longitudinal
Intercept 90 90.034 (1.108) 0.958 1.225 90.041 (1.105) 0.960 1.221
Time −1.7 −1.700 (0.061) 0.956 0.004 −1.697 (0.061) 0.954 0.004
Sex (males) 2 1.952 (1.584) 0.947 2.505 1.952 (1.581) 0.948 2.497

Survival
Intercept — 2.150 (0.122) — — 1.813 (0.132) — —
Time — −0.038 (0.024) — — −0.039 (0.029) — —
Sex (males) — 0.163 (0.110) — — 0.183 (0.126) — —
γ1 — 0.054 (0.004) — — 0.061 (0.004) — —

Others
ν 7 6.998 (0.082) 0.945 0.007 7.000 (0.082) 0.948 0.007
σ1 25 24.932 (0.548) 0.958 0.303 24.908 (0.546) 0.958 0.305

†Sample size 1000 and 500 replicates. Shown are the mean (with standard deviations in
parentheses) parameter estimates, empirical coverage probabilities of nominal 95% confi-
dence intervals and mean-squared errors MSE.

Table 3 shows the results for the longitudinal model and the joint model fitted by using
joineR. Fitting the longitudinal model separately gives slightly biased estimates for the lon-
gitudinal slope parameter and binary covariate. The joint model fit using joineR, however,
gives parameter estimates with less bias and with good coverage, as would be expected be-
cause the data were generated under the same model as used in fitting. Table 4 shows results by
using the discrete time model with six and three time intervals. Here the model that was used
to generate the survival data and the model used to fit the survival data are not equivalent,
and so survival parameters estimated by the discrete time model cannot be compared with true
values of the survival parameters. The coverage probabilities and mean-squared error could not
therefore be calculated for these parameters. We can, however, see that the directions of the
survival parameter estimates agree with those of the true model; positive parameter estimates in
the discrete time model are in accordance with negative estimates in the true model because the
former are linked to the probability of survival rather than the hazard of an event. Comparing
longitudinal parameters, the standard errors are similar to the joineR results. Again, survival
parameters are not directly comparable between the two models because the survival parameters
of the six-interval model relate to the probability of surviving 1 year, and the parameters of the
three-interval model to the probability of surviving 2 years. We would expect covariate effects
to be similar, however, as is indeed the case. Comparing standard errors of survival parameter
estimates, we find that the standard errors are slightly larger for the coarser time discretization.

5. Efficiency under coarsening at random

Although we allow the longitudinal measurements to be obtained in continuous or discrete time,
we have required the event time data either originally to be measured on a discrete scale or to
be placed on a discrete scale through coarsening at random via artificial interval censoring. We
assume that our discrete time model is correct and so—because we use exact likelihood—our
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estimates are consistent and fully efficient given the data that we have chosen to use. However,
discretization will affect the efficiency of an analysis, which is considered briefly in this section
and expanded on in an on-line supplementary document. Here we concentrate only on survival
analysis and omit much of the detail: this is provided together with further examples in the
supplementary material. The supplementary material also includes a separate study into loss of
information caused by discretization in the presence of random effects.

Let T be the continuous event time. Assume type 1 censoring at a maximum follow-up time
τ . The follow-up interval .0, τ ] is partitioned into m disjoint intervals, with boundaries 0= t0 <

t1 <t2 <: : :<tm =τ . Let S denote the interval within which T falls, with S =m+1 if T is censored
at τ . Define W = .T − ts−1/=.ts − ts−1/, which is the within-interval information on a (0,1) scale.
Note that there is a one-to-one correspondence between T and .S, W/. We shall investigate the
loss of efficiency that is caused by ignoring W .

The sequential probit model (1) is assumed for event probabilities within each interval j, for
j = 1, 2, : : : , m, with time constant covariates and covariate effects, but possibly time varying
intercepts:

P{S>j|S>.j −1/, x̃}=Φ.β̃0j + x̃Tβ̃/:

We assume for simplicity that the conditional within-interval distribution of event times is the
same for all intervals. Let the corresponding probability density function be h.w|x̃/, which
will usually depend on β̃ (and perhaps other parameters). Information on β̃ from the within-
interval distribution of event times provides the extra efficiency for the complete-data analysis.
To illustrate, assume that

h.w|x̃/= rψ

1− .1−ψ/r
.ψw +1−ψ/r−1,

where r = r.x̃Tβ̃/= exp.x̃Tβ̃/ and 0 <ψ< 1. This is the within-interval distribution that arises if
a Weibull distribution is discretized.

The information on β̃ that is brought by W depends on how strongly h.w|x̃/ depends on β̃.

Table 5. Efficiency of the coarsened-at-random analysis
compared with the complete-data analysis†

ψ c(x̃) Results for the following values of m:

m=3 m=5 m=7 m=9

0.9 9.75 0.919 0.930 0.936 0.939
0.8 2.28 0.958 0.964 0.967 0.969
0.7 0.91 0.976 0.979 0.981 0.982
0.6 0.44 0.986 0.988 0.989 0.990
0.5 0.22 0.992 0.993 0.994 0.994
0.4 0.11 0.996 0.996 0.997 0.997
0.3 0.05 0.998 0.998 0.998 0.998
0.2 0.02 0.999 0.999 0.999 0.999
0.1 0.00 1.000 1.000 1.000 1.000

S.τ |x̃=1/ 0.201 0.152 0.123 0.104

†Values in the main block are the ratios of asymptotic variance
estimators for β̃ without and with W .
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We can measure this through the curvature

c.x̃/=
∫ 1

0
h′.w|x̃/2 dw:

Given this set-up, the information that is associated with the marginal likelihood based only on
S can be derived and compared with that from the full likelihood given both S and W . Table 5
provides some numerical values for the ratio of asymptotic variances of maximum likelihood
estimators. For this example we took a single binary covariate and set S.τ |x̃ = 0/ = 0:7 and
β̃=−1. Since β̃ is fixed, changing m changes S.t|x̃=1/: The final row in Table 5 gives S.τ |x̃=1/

for each m. Intercepts β̃0j were chosen by assuming equal failure probabilities within each
interval at x̃=0.

Some calibration based on curvature of discretized Weibull distributions is provided in the
on-line supplementary material. The curvature in Table 5 at ψ>0:7 is higher than anything seen
for the Weibull discretizations that we considered. Even so, the efficiency was more than 90%
in all simulation scenarios and was more than 97% in more realistic cases. We obtained similar
results for other β̃, and when we fixed S.t|x̃=1/ and allowed β̃ to vary with m.

6. Application: disease progression and survival in cystic fibrosis patients

We now apply our methods to data on repeated measurements of lung function in cystic fibrosis
patients, some of whom died during follow-up. The data were from the UK Cystic Fibrosis
registry and cover the years 1999–2010. Cystic fibrosis is the commonest serious inherited dis-
ease among Caucasian populations, and most patients die as a result of progressive respiratory
disease (Davies and Alton, 2009). Previous examples of longitudinal modelling applied to cystic
fibrosis data include Schluchter et al. (2002), van Diemen et al. (2011) and Taylor-Robinson
et al. (2012). Here, we fit a range of joint models to data from the 1980–1984 birth cohort of
the UK registry, conditional on survival to capture in the registry in 1999. The data set in-
cluded 1231 patients who were alive in 1999, of whom 230 died during the course of follow-up
to 2010. Our repeated measurement outcome is per cent predicted forced expiratory volume
in 1 s, %FEV1, which is used as a measure of lung function and is recognized as a key out-
come measure in cystic fibrosis (Rosenfeld et al., 2005; Davies and Alton, 2009; Orens, 2006).
Measurements were taken approximately annually, with some variation between patients. The
number of measurements per person varied from 1 to 17. The covariates used were sex and age
at initial visit. The timescale was the number of years since the initial visit, with initial age fitted
as a separate covariate to allow for left truncation and cohort effects. For the survival model the
timescale was discretized into yearly intervals. At the initial visit 54.2% of patients were male,
the mean age was 18.9 years (standard deviation SD 2.8) and the mean %FEV1 was 67.1 (SD
25.3).

Table 6 shows the results from fitting four random-effects models to the data: a stationary
Gaussian process SGP, a stationary Gaussian process with one time lag in the survival model,
lagged SGP, a random intercept and slope model IS and a stationary Gaussian process plus
random intercept and slope, SGP+ IS. The positive effect of the sex covariate in the survival
model indicates that males have a significantly better probability of survival than females. The
estimated covariate effects are in agreement with expectations for cystic fibrosis patients, with
older patients tending to have poorer lung function and survival than younger patients and
males tending to have better lung function and to survive longer than females.

For the SGP model, the positive estimate of γ means that better lung function is associated
with improved survival in cystic fibrosis patients. For the lagged SGP model there is no evidence
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Table 6. Joint model fits of the data from cystic fibrosis patients†

Parameter Results for the following models:

SGP Lagged SGP IS SGP + IS

Longitudinal
Intercept 74.899 (4.868) 74.904 (4.948) 76.683 (5.069) 76.669 (4.406)
Time −1.502 (0.074) −1.502 (0.074) −1.762 (0.082) −1.652 (0.080)
Age at t0 −0.454 (0.250) −0.454 (0.256) −0.577 (0.262) −0.568 (0.218)
Sex (males) 0.786 (1.415) 0.785 (1.377) 1.759 (1.420) 1.506 (1.143)

Survival
Intercept 2.964 (0.344) 2.962 (0.355) 3.290 (0.422) 3.441 (0.276)
Time −0.023 (0.011) −0.023 (0.012) −0.050 (0.014) −0.052 (0.013)
Age at t0 −0.021 (0.017) −0.021 (0.018) −0.034 (0.020) −0.034 (0.013)
Sex (males) 0.234 (0.084) 0.234 (0.084) 0.268 (0.091) 0.287 (0.097)
γ 0.037 (0.002) 0.037 (0.003) — 0.040 (0.009)
γlag — 0.000 (0.001) — —
γ1 — — 0.035 (0.002) 0.036 (0.004)
γ2 — — 0.270 (0.032) 0.418 (0.084)

Others
ν 7.235 (0.100) 7.235 (0.100) 8.806 (0.084) 7.231 (0.108)
σu 25.081 (0.485) 25.081 (0.485) — 12.832 (1.655)
σ1 — — 24.240 (0.523) 20.486 (1.211)
σ2 — — 2.152 (0.074) 1.249 (0.108)
ρSGP 0.969 (0.002) 0.969 (0.002) — 0.890 (0.031)
ρIS — — −0.066 (0.042) 0.218 (0.086)

AIC 49551.96 49553.96 49878.47 49522.25

†The random-effects models fitted were a stationary Gaussian process SGP, a stationary
Gaussian process with one time lag in the survival model, lagged SGP, a random intercept
and slope model IS and a stationary Gaussian process plus random intercept and slope,
SGP+ IS. For each model estimated parameter values are presented with standard errors
in parentheses, and the Akaike information criterion AIC.

that lung function during the previous time interval affects survival, after adjusting for current
lung function. The estimated parameters γ1 and γ2 from model IS indicate that patients with
higher intercepts and less negative slopes of %FEV1 are more likely to survive. Comparing the
fit to the data of all four models by using the Akaike information criterion AIC suggests that
the model providing the best fit is the model combining both a stationary Gaussian process and
a random intercept and slope.

One way to facilitate interpretation of the parameters of the probit model is suggested in Table
7. Here we explore the effect of changing a parameter value on the probability of death in a time
interval, while all other parameters are fixed to their default (i.e. mean or baseline) values. For
example, the probability of death in year 1 for a woman with default covariate values is 0.003,
compared with a probability of 0.001 for a man with the same characteristics.

7. Discussion

We have described a method that combines flexibility of model specification with tractability
of likelihood. It can be applied to repeated measurement data with dropout occurring between
scheduled measurement times, or to the joint analysis of longitudinal and survival time data,
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Table 7. Interpretation of probit parameters†

Survival parameter Default Test Probability
value value of death

Time effects
Year 1 0.003
Year 2 0.003
Year 3 0.004
Year 4 0.004
Year 5 0.005
Year 6 0.006
Year 7 0.006
Year 8 0.007
Year 9 0.009
Year 10 0.010

Covariate effects
Age at t0 (years) 18.9 23.9 0.004
Sex Female Male 0.001
Stationary Gaussian process U 0 −10 0.008
Random intercept U1 0 −10 0.007
Random slope U2 0 −2 0.025

†Default values are the mean or baseline value of each parameter. For the
effect of time, the probabilities of death in each time interval are given, at
default values of other parameters. For other covariate effects the probability
of death in the first year is given, when the parameter indicated is changed to
the test value, and all other parameters take their default values.

provided that the survival timescale is discrete, or can realistically be discretized. It avoids the
need for numerical approximation of an integral over the random effects or EM methods.

The method allows the fitting of models with more complex random effects because the
number of random-effects terms in the survival model is not constrained by computational
time. This may come at the cost of discretizing the timescale, but simulation studies and analysis
of special cases suggest that, although some information is inevitably lost, parameter estimation
may not be greatly influenced by discretization. In the on-line supplementary material we show
that there is no loss of information if the survival functions are linear between discrete time
points. Hence a discretization that keeps approximate linearity is recommended. Our evidence
shows that there can be little loss of efficiency even in the presence of quite strong non-linearity.
In practice there may often be a natural discrete timescale. For example the cystic fibrosis patients
had visits around once a year, and an annual discretization seems suitable because shorter-term
fluctuations in the underlying continuous time hazard will be poorly identified.

Computational time is driven primarily by the need to calculate multivariate normal prob-
abilities, which can be time consuming for high dimensional data. But the intercept and slope
model fitted in around a third of the time required by the R package joineR using 200 boot-
straps to calculate standard errors. Alternative approaches to maximizing the likelihood may
enable computation time to be further reduced, e.g. by iterating between a Newton–Raphson
step for covariate parameters and numerical maximization over variance parameters. Alterna-
tively a prespecified number of steps of an EM algorithm could be used to obtain initial values,
as in the R package JM (Rizopoulos, 2010). Even with our current procedure we could fit fairly
high dimensional random-effects models in simulations and the cystic fibrosis application (i.e.
model SGP, which has a random effect associated with each time interval), whereas current
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software (R packages JM and joineR) is limited to simple random-effects models or relies on
rough approximations of multiple integrals over random effects. Inclusion of stationary Gaus-
sian process random effects led to a marked improvement in AIC for the cystic fibrosis data
(Table 6).

Without readily available software it is unlikely that any reasonably sophisticated statistical
methodology will find wide use in applications. Our intention is to develop R software to imple-
ment the technique and so to supplement the joint models that can be fitted in JM and joineR.
We have provided R code to calculate the likelihood as supplementary material available from

http://wileyonlinelibrary.com/journal/rss-datasets

Acknowledgements

We thank John Matthews for drawing our attention to the skew normal results. We thank
Adelchi Azzalini, Torsten Hothorn and Alan Genz for advice on the numerical integration of
multivariate Gaussian cumulative distribution functions. JB was supported by Medical Research
Council grant G0902100. DTR was supported by a Medical Research Council Population
Health Scientist Fellowship to him (G0802448). We thank the UK Cystic Fibrosis Trust for
access to the UK cystic fibrosis registry and all the staff who input cystic fibrosis data to the UK
cystic fibrosis registry. We are grateful for the helpful comments of the Joint Editor and three
referees.

Appendix A: Evaluation of the likelihood

A.1. Evaluation of L1
The longitudinal and random-effects components of the likelihood together are

f.y|u/f.u/= 1
.2π/.p+n/=2νn|Σ|1=2

exp
{

− .y −Xβ−Au/T.y −Xβ−Au/

2ν2

}
exp

(
−uTΣ−1u

2

)
:

This can be rearranged as

f.y|u/f.u/= 1
.2π/.p+n/=2νn|Σ|1=2

exp
{

− .y −Xβ/T.y −Xβ/

2ν2
+ hTHh

2

}
exp

{
− .u−h/TH.u−h/

2

}
,

where

H = .ATA=ν2 +Σ−1/,

h=H−1AT.y −Xβ/=ν2:

In turn

f.y|u/f.u/= 1
.2π/n=2νn|ΣH |1=2

exp
{

− .y −Xβ/T.y −Xβ/

2ν2
+ hTHh

2

}
φ.p/.u; h, H−1/ .10/

where φ.p/.·; h, H−1/ denotes the p-dimensional Gaussian density with mean vector h and variance matrix
H−1. Collecting all unknown parameters into vector θ, equation (10) can be written as

f.y|u/f.u/=L1.θ; y/φ.p/.u; h, H−1/, .11/

where

L1.θ; y/= 1
.2π/n=2νn|ΣH |1=2

exp
{

− .y −Xβ/T.y −Xβ/

2ν2
+ hTHh

2

}
:
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A.2. Evaluation of L2
The full likelihood, integrating over random effects, is

L.θ; y, s, δ/

=

⎧⎪⎨
⎪⎩

L1.θ; y/

∫
Φ.s/{X̃sβ̃+Γs B .s/u}φ.p/.u; h, H−1/du δ=0,

L1.θ; y/

∫
[Φ.s−1/{X̃s−1β̃+Γs−1B.s−1/u}−Φ.s/{X̃sβ̃+ΓsB.s/u}]φ.p/.u; h, H−1/du δ=1.

.12/
Consider the integral in likelihood (12) at δ=0, i.e.

L2.θ; y, s, δ=0/=
∫

Φ.s/{X̃sβ̃+Γs B.s/u}φ.p/.u; h, H−1/du: .13/

To perform the integration we use the skew normal result (4), which is

Φ.k1/.ω1; 0, Σ22/=
∫

Φ.k1/{ω1 −ΣT
12Σ

−1
11 .ω2 −η/; 0, Σ22 −ΣT

12Σ
−1
11 Σ12}φ.k2/.ω2;η, Σ11/dω2: .14/

We can convert the right-hand side of equation (14) to the form (13) by sequentially setting

k1 = s, k2 =p, ω2 =u, η=h, Σ11 =H−1, ΣT
12 =−Γs B.s/Σ11;

then

Σ22 = I +ΣT
12Σ

−1
11 Σ12

= I +Γs B.s/H−1B.s/TΓT
s

and finally ω1 = X̃sβ̃+ΓsB.s/h. Hence

L2.θ; y, s, δ=0/=Φ.s/{X̃sβ̃+ΓsB.s/h; 0, I +ΓsB.s/H−1B.s/TΓT
s }:

The contribution of the integral L2.θ; y, s, δ= 1/ in expression (12) at δ= 1 can be obtained similarly, to
give

L2.θ; y, s, δ=1/=Φ.s−1/{X̃s−1β̃+Γs−1B.s−1/h; 0, I +Γs−1B.s−1/H−1B.s−1/TΓT
s−1}

−Φ.s/{X̃sβ̃+ΓsB.s/h; 0, I +Γs B.s/H−1B.s/TΓT
s }:

Appendix B: Regularity conditions

Collect all unknown parameters into a vector θ, with true value θ0 in the interior of a compact set Ω.
Let the observed data on individual i be zi, consisting of longitudinal responses, event times, censoring
indicator and covariates. Write f.zi|θ/ for the likelihood contribution of subject i, for i=1, 2, : : : , n.

From Cramér’s theorem (Ferguson, 1996; Kotz and Johnson, 1985) the following conditions are suffi-
cient for the maximum likelihood estimator θ to converge in distribution to a Gaussian variable, centred
at θ0 and with variance given by the inverse expected information.

Condition 1. Z1, Z2, : : : , Zn are independent and identically distributed.

Condition 2. There is an open subset ω of Θ such that for all θ∈ω and almost all z the second partial
derivatives @2f.z|θ/=@θ @θT exist and may be passed under the integral sign in∫

f.z|θ/dν.z/,

where ν.z/ is the measure associated with Z.

Condition 3. The Fisher information

I.θ/=−E[@2f.Z|θ/=@θ @θT]

is positive definite for all θ in ω.
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Condition 4. There are functions K.z/, independent of θ, such that each component of @2f.z|θ/=@θ @θT

is bounded by K.z/ uniformly for θ∈ω.

Condition 5. f.z|θ/ is identifiable, i.e. if f.z|θ1/=f.z|θ2/ almost everywhere then θ1 �=θ2.

Condition 6. The support of f.z|θ/ does not change with θ.

Conditions 1–4 are standard given our fully parametric Gaussian random-effects model, provided that
we assume (as we do) that the longitudinal measurement schedule {tj}, the number of discrete intervals m
and the selection of covariates are all fixed and ancillary. Further, all variance parameters are finite and
strictly positive.

Conditions 5 and 6 need more attention in the presence of missing data. We need to ensure that as the
sample size increases there are sufficient observations to identify the survival probability for each discrete
time interval, and all parameters in the longitudinal model. Hence we make the following additional
assumptions.

Assumption 1. Let θY be the subset of θ that appears in the marginal distribution f.y|θY / of Y implied
by expressions (2) and (3). If γ=0, condition 5 holds for f.y|θY / and θY .

Assumption 2. Any right censoring of event times is independent (Andersen et al. (1993), definition
II.2.1).

Assumption 3. There exists c> 0 such that P.Δ=0/< 1− c, where Δ is the censoring indicator.

Assumption 4. There exist c1 > 0 and c2 > 0, independent of θ, such that

c1 <EX[Φ.X̃
T
s β̃/] < 1− c2

for each s∈S and all β̃ in the appropriate subset of ω.

Assumption 5. For all s∈S and all U, the second-partial-derivative matrix

EU,X[@2Φ.X̃
T
s β̃+ΓsBsU/=@θS@θT

S ]

is of full rank, where θS ∈ω denotes the combined parameters .β̃, γ/ appearing in the event time model (7).

Recalling that the parameter vector γ links the longitudinal and event processes, assumption 1 ensures
that the longitudinal model is well defined. The independent censoring assumption referred to in assump-
tion 2 is essentially a requirement that there is no prognostic information in knowing that an event time
is censored. Assumption 3 ensures that all event times in S are observable and assumption 4 makes sure
that in large samples there are both events and survivors for each interval. Finally assumption 5 ensures
identifiability of β̃ and γ.

In assumptions 4 and 5 we have assumed a structural model in which the covariates are considered to
be independent and identically distributed random variables. In the functional case we need alternatives
of the form

c1 <
1
n

n∑
i=1

Φ.X̃
T
isβ̃/< 1− c2

and

1
n

n∑
i=1

EU

[
@2Φ.X̃

T
isβ̃+ΓsBsU/

@θS @θT
S

]

is of full rank, in each case for n>n0 say.

References

Albert, J. H. and Chib, S. (2001) Sequential ordinal modelling with applications to survival data. Biometrics, 57,
829–836.



148 J. Barrett, P. Diggle, R. Henderson and D. Taylor-Robinson

Albert, P. S. and Follmann, D. A. (2009) Shared-parameter models. In Longitudinal Data Analysis (eds G. Fitz-
maurice, M. Davidian, G. Verbeke and G. Molenberghs), pp. 349–366. Boca Raton: Chapman and Hall–CRC.

Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993) Statistical Models based on Counting Processes.
New York: Springer.

Arnold, B. C. (2009) Flexible univariate and multivariate models based on hidden truncation. J. Statist. Planng
Inf., 139, 3741–3749.

Arnold, B. C. and Beaver, R. J. (2000) Hidden truncation models. Sankhya A, 62, 22–35.
Azzalini, A. (1985) A class of distributions which includes the normal ones. Scand. J. Statist., 12, 171–178.
Azzalini, A. (2005) The skew-normal distribution and related multivariate families (with discussion). Scand. J.

Statist., 32, 159–200.
Azzalini, A. (2013) mnormt: the multivariate normal and t distributions. R Package Version 1.4-7. (Available from

http://CRAN.R-project.org/package=mnormt.)
Davies, J. C. and Alton, E. W. (2009) Monitoring respiratory disease severity in cystic fibrosis. Respir. Care, 54,

606–617.
van Diemen, C. C., Postma, D. S., Siedlinski, M., Blokstra, A., Smit, H. A. and Boezen, H. M. (2011) Genetic

variation in TIMP1 but not MMPs predict excess FEV1 decline in two general population-based cohorts. Respir.
Res., 12, article 57.

Diggle, P. J., Henderson, R. and Philipson, P. (2009) Random effects models for joint analysis of repeated-
measurement and time-to-event outcomes. In Longitudinal Data Analysis (eds G. Fitzmaurice, M. Davidian,
G. Verbeke and G. Molenberghs), pp. 349–366. Boca Raton: Chapman and Hall–CRC.

Ferguson, T. S. (1996) A Course in Large Sample Theory. London: Chapman and Hall.
Geskus, R. B. (2012) Which individuals make dropout informative? Statist. Meth. Med. Res., to be published.
Gueorguieva, R., Rosenheck, R. and Lin, H. (2012) Joint modelling of longitudinal outcome and interval-censored

competing risk dropout in a schizophrenia clinical trial. J. R. Statist. Soc. A, 175, 417–433.
Heitjan, D. F. and Rubin, D. B. (1991) Ignorability and coarse data. Ann. Statist., 19, 2244–2253.
Henderson, R., Diggle, P. and Dobson, A. (2000) Joint modelling of longitudinal measurements and event time

data. Biostatistics, 1, 465–480.
Kotz, S. and Johnson, N. L. (eds) (1985) Encylopedia of Statistical Sciences, vol. 5. New York: Wiley.
Laird, N. M. and Ware, J. H. (1982) Random-effects models for longitudinal data. Biometrics, 38, 963–974.
Orens, J. B., Estenne, M., Arcasoy, S., Conte, J. V., Corris, P., Egan, J. J., Egan, T., Keshavjee, S., Knoop, C.,

Kotloff, R., Martinez, F. J., Nathan, S., Palmer, S., Patterson, A., Singer, L., Snell, G., Studer, S., Vachiery,
J. L. and Glanville, A. R. (2006) International guidelines for the selection of lung transplant candidates: 2006
update—a consensus report from the Pulmonary Scientific Council of the International Society for Heart and
Lung Transplantation. J. Hrt Lung Transplnt, 25, 745–755.
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