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A Statistical Approach for Rare-Variant
Association Testing in Affected Sibships

Michael P. Epstein,1,* Richard Duncan,1 Erin B. Ware,2 Min A. Jhun,2 Lawrence F. Bielak,2 Wei Zhao,2

Jennifer A. Smith,2 Patricia A. Peyser,2 Sharon L.R. Kardia,2 and Glen A. Satten3

Sequencing and exome-chip technologies have motivated development of novel statistical tests to identify rare genetic variation that

influences complex diseases. Although many rare-variant association tests exist for case-control or cross-sectional studies, far fewer

methods exist for testing association in families. This is unfortunate, because cosegregation of rare variation and disease status in families

can amplify association signals for rare variants. Many researchers have begun sequencing (or genotyping via exome chips) familial sam-

ples that were either recently collected or previously collected for linkage studies. Because many linkage studies of complex diseases

sampled affected sibships, we propose a strategy for association testing of rare variants for use in this study design. The logic behind

our approach is that rare susceptibility variants should be found more often on regions shared identical by descent by affected sibling

pairs than on regions not shared identical by descent. We propose both burden and variance-component tests of rare variation that are

applicable to affected sibships of arbitrary size and that do not require genotype information from unaffected siblings or independent

controls. Our approaches are robust to population stratification and produce analytic p values, thereby enabling our approach to scale

easily to genome-wide studies of rare variation. We illustrate our methods by using simulated data and exome chip data from sibships

ascertained for hypertension collected as part of the Genetic Epidemiology Network of Arteriopathy (GENOA) study.
Introduction

Many recent genetic studies of complex human traits have

been designed to determine the effects of rare or less-

common genetic variants on phenotype. These studies

have used either next-generation sequencing technology

(which enables complete interrogation of single-nucleo-

tide variants throughout the human genome) or cheaper

alternatives like the Illumina HumanExome Beadchip,

which provides genotypes for nearly 250,000 markers, pri-

marily protein-altering variants, that were identified from

large-scale resequencing efforts (details on the Beadchip

design available online; see Web Resources). These new

technologies have spurred the development of powerful

new statistical approaches for rare-variant association

testing of complex traits. However, the majority of such

tests are tailored for use in either case-control or popula-

tion-based studies that assume unrelated subjects. Fewer

rare-variant association tests exist for family-based studies,

which is unfortunate because families are uniquely suited

for studying rare variants.

Family-based studies of rare variants possess many valu-

able attributes that population studies lack. Rare suscepti-

bility variants are likely to be enriched in affected relatives

and therefore be easier to detect relative to population-

based counterparts.1,2 Family-based tests of rare-variant

association can also be made robust to population stratifi-

cation,3 which is important given recent work suggesting

that existing common-variant-based methods to correct

for stratification might not be as effective in studies of

rare variants.4,5 Several projects have initiated collection
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of families for rare-variant analysis, including studies of

epilepsy6 and simplex autism.7 Additionally, other projects

have begun analysis of rare variants in familial samples

collected from past linkage studies. One such project is

the Genetic Epidemiology Network of Arteriopathy

(GENOA) study,8 which has genotyped a large collection

of African American sibships with hypertension for the

Illumina HumanExome Beadchip. Other linkage studies

were funded for rare-variant analysis via a NIH funding

opportunity titled ‘‘Life After Linkage: The Future of Family

Studies’’ (RFA-HL-12-007) that was sponsored by the

National Heart, Lung, and Blood Institute.

To fully capitalize on the opportunities presented by

sequencing family members originally recruited into link-

age studies, it is necessary to develop new statistical tools

for rare-variant analysis in such projects. Although several

rare-variant methods exist for family-based analysis, some

are entirely restricted to quantitative traits.9–12 Other fam-

ily-based tests for use in complex diseases3,13–15 require in-

formation from both affected and unaffected individuals

for inference. For the many linkage studies that collected

only affected sibs, there might not be data from unaffected

family members that can be used for inference. The use of

historical controls is unappealing because of potential bias

from population stratification4 as well as the need to

account for differences in sequencing coverage.16 Thus, a

statistical approach for rare-variant analysis in affected

sibships that is self-contained and that does not require in-

formation from unaffected subjects is appealing.

We propose a strategy for association testing of rare var-

iants in affected sibships that is motivated by the notion
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that, among affected sibling pairs, we would expect to

observe more copies of rare susceptibility variants on hap-

lotypes shared identical by descent by the pair than on

haplotypes not shared identical by descent. We can eval-

uate this hypothesis without knowledge of haplotype

phase by using an efficient-score test derived from an esti-

mating-equation model. In this model, we regress the

number of copies of rare variants an affected sib pair pos-

sesses on the number of loci they share that are identical

by descent. Many family-based studies already have iden-

tity by descent (IBD) information from earlier linkage

studies or GWASs but, if this is not the case, such informa-

tion can be obtained from sequence data or common SNPs

found on the Illumina HumanExome Beadchip. Although

our approach uses IBD information for association testing,

it is not a test of linkage and, as we will show, can detect

rare-variant association signals in regions that do not har-

bor a significant linkage signal.

With our framework, we derive both ‘‘linear’’ or

‘‘burden’’ tests, which collapse multiple rare variants

within a region of interest into a single composite variable

and then test for association between that variable and IBD

status,17–21 and ‘‘quadratic’’ or ‘‘variance-component’’ tests

that compare pairwise similarity in IBD status to genotypic

similarity within the sample.22,23 Adaptive procedures that

combine aspects of both the burden and variance-compo-

nent classes of tests are also possible24 but are not consid-

ered here. As we will show, our strategy is robust to

confounding as a result of population stratification and

can handle sibships of arbitrary size. Unlike existing rare-

variant tests of complex diseases in pedigrees, our

approach is tailored for analysis of datasets comprised

entirely of affected sibships. That is, the approach does

not require variant information from unaffected relatives,

although such information can be used to assist in esti-

mating IBD sharing among affected siblings. The test has

a closed form and p values can be obtained analytically,

which facilitates genome-wide analysis. In subsequent sec-

tions, we derive our rare-variant association test and illus-

trate the approach by using both simulated sequence

data as well as exome-chip data from affected sibships

collected by the GENOA study.
Materials and Methods

Assumptions and Notation
We assume we possess sequence or exome-chip data from a

collection of N affected sibships of arbitrary size. We assume sib-

ship j (j ¼ 1, ., N) is comprised of Mj affected siblings that can

be partitioned into Sj ¼ (Mj)(Mj � 1) / 2 possible pairs. We consider

the analysis of a gene or region and let R denote the number of

polymorphic rare-variant sites observed in the gene or region

(with a rare variant defined as a variant whose frequency is less

than some threshold value, such as 0.01 or 0.05). We define Tij

as the total number of copies of rare variants at the R sites

possessed by the ith sib pair in the jth sibship. If desired, we can

up- or down-weigh the contributions of specific rare variants
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over others in the Tij count by applying site-specific weights

using information such as minor-allele frequency19,22 or func-

tional information;21 in this case, Tij denotes the weighted sum.

We further define Zij as the estimated number of copies of the

gene/region shared identical by descent by the ith sib pair in the

jth sibship, which we can infer via the Lander-Green25 algorithm

(or an extension that allows for linkage disequilibrium among

markers26), as implemented in software packages like MERLIN.27
Proposed Model
Our model assumes the mean and variance in the number of

copies of rare causal variants on haplotypes inherited by an

affected sibling pair differ depending on whether the haplotype

is inherited identical by descent or not. We define the mean and

variance of the number (or weighted sum) of rare variants on a

parental haplotype inherited identical by descent as m1 and s21,

respectively. Similarly, we define m0 and s20 as the mean and vari-

ance of the number (or weighted sum) of rare variants on a

parental haplotype that is not inherited identical by descent by

the affected pair. If a sib pair shares zero haplotypes identical by

descent, then the pair possess two independent maternal haplo-

types that are not shared identical by descent and two indepen-

dent paternal haplotypes that are not shared identical by descent.

If a sib pair shares one haplotype identical by descent, then the

pair possesses two identical haplotypes (shared identical by

descent) inherited from one parent and two distinct independent

haplotypes (not shared identical by descent) inherited from the

other parent. If the pair shares two haplotypes identical by

descent, then the pair possesses two identical maternal haplotypes

(shared identical by descent) and two identical paternal haplo-

types (shared identical by descent). Based on this information,

we can derive the mean and variance of Tij conditional on the

IBD sharing Zij as

E
�
Tij jZij

� ¼
8<: 4m0

2m0 þ 2m1

4m1

Zij ¼ 0
Zij ¼ 1
Zij ¼ 2

(Equation 1)

and

Var
�
Tij jZij

� ¼
8<: 4s2

0

2s2
0 þ 4s2

1

8s2
1

Zij ¼ 0
Zij ¼ 1
Zij ¼ 2:

(Equation 2)

Our primary interest is to test the null hypothesis that H0:

m0 ¼ m1. To simplify presentation, we reparameterize our model

by defining d ¼ m1 � m0 so that we can rewrite Equation 1 as

E
�
Tij jZij

� ¼ 4m0 þ 2dZij (Equation 3)

and reconfigure our primary null hypothesis to be H0: d ¼ 0. Based

on Equations 2 and 3, we can perform inference on the parameter

d by solving the following estimating equations for (m0, d):

XN
j¼1

XSj
i¼1

Wij

�
Tij � 4m0 � 2dZij

�� 4
2Zij

�
¼

�
0
0

�
(Equation 4)

whereWij¼ (Var(TijjZij))
�1.We are primarily interested in a 1-sided

test of H0: d ¼ 0 versus HA: d > 0 because, given the non-random

ascertainment of affected sibships, we anticipate rare risk variants

to be observed on segments shared identical by descent. However,

we can also perform the standard 2-sided test of H0: d ¼ 0 versus

HA: d s 0, if desired, to allow for the possibility of rare protective

variants observed in regions not shared identical by descent by an
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affected sib pair. We note that analysis via Equation 4 is robust to

confounding due to population stratification because, although

ancestry might correlate with the number of copies of rare variants

in a region, ancestry will not correlate with IBD sharing in a region

under the null hypothesis that the genetic variation we are testing

is neither causal nor in linkage disequilibrium with other causal

regions.

Inference on d within Equation 4 requires estimates of the vari-

ance parameters s20 and s21 shown in Equation 2. To estimate these

parameters, we first calculate the sample variance for the number

(or weighted sum) of rare variants possessed by affected sib pairs

sharing 0, 1, or 2 alleles identical by descent and denote these

quantities by bV 0; bV 1, and bV 2, respectively. Based on Equation 2,

we can then estimate the variance parameters by solving the sys-

tem of equations 24 bV 0bV 1bV 2

35 ¼
244 0
2 4
0 8

35�s2
0

s2
1

	
:

Defining bV ¼ ð bV 0; bV 1; bV 2ÞT and X ¼
244 0
2 4
0 8

35, we then estimate

the variance parameters as

� bs2
0bs2
1

	
¼ ðXTXÞ�1XT bV . We then use

these estimates to define Wij in Equation 4. If IBD state is known

only probabilistically, we assign each sib pair to its most probable

IBD state when calculating bV ¼ ð bV 0; bV 1; bV 2ÞT .
In the formulation of Equation 4, we assumed that we inferred

the IBD sharing variable Zij with certainty. Although this assump-

tion probably holds when inferring IBD information from

sequence data, the use of sparser SNP sets from the exome

chip for estimation might lead to IBD uncertainty. In this

case, we specify Zij as the expected IBD dosage by using

Zij ¼ bP½Zij ¼ 1� þ 2bP½Zij ¼ 2�, where the estimated IBDprobabilities

are calculated by MERLIN.27 We can insert such IBD dosage vari-

ables directly into the mean model in Equation 3. To model Wij ¼
(Var(TijjZij))

�1 for a pair with uncertain IBD sharing, we assign the

IBD state to be the most-likely IBD sharing category. Although

this leads to misspecification of Var(TijjZij), we note that such mis-

specificationdoesnot affect thevalidity of our estimation-equation

testing framework and only potentially affects the power.

Efficient Score Function and Test Statistics
Rather than solve a system of two equations (Equation 4), we can

instead simplify the problem by finding the efficient score for

d from the weighted regression of Tij on Zij. After first normalizing

the weightsWij, we define the centered count and IBD variables as
~Tij ¼ Tij �

PN
j¼1

PSj
i¼1WijTij and ~Zij ¼ Zij �

PN
j¼1

PSj
i¼1WijZij, respec-

tively. As we show in Appendix A, the efficient score to test H0:

d ¼ 0 based on Equation 4 is proportional to

U ¼
XN
j¼1

XSj
i¼1

Wij
~Tij

~Zij ¼
XN
j¼1

XSj
i¼1

Uij: (Equation 5)

To construct the estimated variance accounting for within-

sibship correlation of sib pairs, we use a robust variance estimator

that accounts for cluster membership.28 This variance estimator

has the form

V ¼
XN
j¼1

(XSj
i¼1

Wij
~Tij

~Zij

)2

� N

�U
N

�2

: (Equation 6)
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With Equations 5 and 6, we can then construct a closed-form

burden test to assess H0: d ¼ 0 by writing

YBurden ¼ UffiffiffiffiVp :

Under H0: d ¼ 0, YBurden follows a standard normal distribution.

In addition to a burden test, we can also consider a variance-

component test of rare-variant association analogous to SKAT.22

The approach assumes that d follows a random effect with

mean 0 and variance t and then considers a score test of H0:

t ¼ 0. Such a variance-component test might be preferable to

the burden test YBurden if we expect, in addition to rare susceptibil-

ity variants in regions shared identical by descent, the possibility

that a region might harbor rare protective variants on regions

not shared identical by descent by an affected sib pair. We can

use the efficient score framework to construct such a test by sum-

ming the squared contribution of the efficient score function at

each variant site. By definition, Tij ¼
PR

r¼1Tijr , where Tijr denotes

the total number of rare variants possessed at variant site r

(r ¼ 1, ., R) by sib pair i in sibship j. Because R is fixed and rare

variants typically exhibit low linkage disequilibrium, we expect

VarðTijr

��ZijÞzð1=RÞVarðTij

��ZijÞ, suggesting that we choose Wijr ¼
Wij as calculated previously, because the weights we use are

normalized. Similar to Equation 6, we can define Uijr ¼ Wij
~Tijr

~Zij

and then define our variance-component test statistic as

YVC ¼
XR
r¼1

(XN
j¼1

XSj
i¼1

Uijr

)2

:

Under the null hypothesis, YVC follows amixture of chi-square dis-

tributions29
P

rlrc
2
1 where the l parameters denote the eigen-

values of the R by R matrix S, where row r and column r’ element

of the matrix has the form

Sr;r0 ¼
XN
j¼1

(XSj
i¼1

UijrUijr0

)
� 1

N

(XN
j¼1

XSj
i¼1

Uijr

)(XN
j¼1

XSj
i¼1

Uijr0

)
:

As before, this variance estimator accounts for within-sibship

correlation.28 We can analytically calculate the p value of YVC

via Davies method.30

Application to Simulated Datasets
We evaluated the size and power of our test for rare-variant associ-

ation testing in sibships by using simulated sequence data. With

COSI,31 we generated 10,000 haplotypes of length 10 kb whose

variation patterns emulated those observed in HapMap CEU

(Utah residents with ancestry from northern and western Europe

from the CEPH collection) samples. To generate data with con-

founding by population stratification, we similarly simulated

10,000 haplotypes whose variation patterns mimicked those

observed in HapMap YRI (Yoruba in Ibadan, Nigeria) samples.

For each population sample, we generated sequence data for a sib-

ship by first randomly sampling two haplotypes for each parent:

parents were either both European for simulations without con-

founding, or both European or both African for simulations with

confounding. We then randomly transmitted one maternal and

one paternal haplotype to each offspring in a sibship, keeping

track of the inheritance flow in the family to derive pair-wise

IBD sharing among all pairs of siblings.

We then modeled the probability of disease for an index pro-

bandwithin a sibship by using a logistic function that has an inter-

cept, a term for African origin (for simulations with confounding),
erican Journal of Human Genetics 96, 543–554, April 2, 2015 545



Table 1. Distribution of Sibship Size in GENOA Dataset

Sibship Size Count

1 (singleton) 204

2 226

3 101

4 53

5 23

6 8

7 6

8 2
and an additive model for each risk variant (for models evaluating

power). For each simulation scenario, we chose the intercept to

yield an overall disease prevalence of 0.03. African origin increased

the odds of disease by a factor of 4 for simulations with confound-

ing. For power simulations, we assumed 15% of rare (minor allele

frequency [MAF] < 0.05) variants were causal with the magnitude

of the log odds ratio given by cjlog10(MAF)j, where we chose c to be

log(4)/4, log(6)/4, or log(8)/4, corresponding to a causal risk

variant with a MAF of 0.0001 having a disease odds ratio of 4, 6,

or 8, respectively. For some power simulations, we assumed that

all causal variants increased risk for disease. For other power simu-

lations, we assumed that half of causal variants increased risk and

the other half were protective and decreased risk. We then

randomly sampled the disease outcome for the index proband

and discarded the sibship if the index proband was unaffected.

Given that the index proband is affected, we then generated dis-

ease outcomes for each of the proband’s siblings assuming a total

sibship size of 2, 3, or 4 with the following model. Let y1 and y2
denote the disease status (y¼ 1 denotes affected) for the index pro-

band and an additional sibling, respectively. Further, define g1 and

g2 as the genotype vectors for rare susceptibility variants at the test

gene possessed by the index proband and additional sibling,

respectively. Also, let a be an indicator of African origin for the

two siblings. Wemust specify P(y2 ¼ 1jy1 ¼ 1,g1,g2,a); the probabil-

ity the additional sibling is affected conditional on the index pro-

band being affected and conditional on the rare-susceptibility

genotypes and ancestry of both siblings. To do this, we define

a conditional version of Risch’s sibling recurrence risk ratio32 as

lC ¼ P(y2 ¼ 1jy1 ¼ 1,g1,g2,a)/P(y2 ¼ 1jg1,g2,a), which models the

overall risk of disease due to shared sibling effects conditional on

the sibling’s ancestry and genotypes at the rare risk variants in

the gene of interest. We rewrite lC as a function of our probability

of interest as P(y2 ¼ 1jy1 ¼ 1,g1,g2,a) ¼ lCP(y2 ¼ 1jg1,g2,a). By

making the reasonable assumption that P(y2 ¼ 1jg1,g2,a) ¼
P(y2 ¼ 1jg2,a) (risk of disease of the additional sibling is indepen-

dent of the genotype information of the index proband

conditional on the additional sibling’s own genotype and the

ancestry of the sibship), our probability of interest simplifies to

P(y2¼ 1jy1¼ 1,g1,g2,a)¼ lCP(y2¼ 1jg2,a).We thenmodel this prob-

ability by varying the value of lC among values of 2, 4, and 8 (with

larger value indicating increased global risk of disease due to

shared sibling effects) and specifying P(y2 ¼ 1jg2,a) via the same

logistic function used to generate the disease phenotype for the

index proband. Data for each successive sib are sampled condi-

tional on the index proband but independently of the disease sta-

tus of subsequent sibs.
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With this model, we generated disease outcomes for 1, 2, or 3

successive sibs independently to obtain data for sibships of size

2, 3, or 4, respectively. We retained the sibship for analysis if the

resulting disease data satisfied the ascertainment criterion and dis-

carded the sibship otherwise. Our primary ascertainment criterion

was that the sibship possess at least two affected siblings but, for

sibships of size 3 and 4, we also considered a criterion requiring

three or more affected siblings for analysis. For a given simulation

model, we prospectively generated sequence and phenotype data

on sibships until we achieved a targeted number of sibships that

fulfilled the ascertainment criterion.

Application to GENOA Dataset
The GENOA study,8,33 which forms a component of the NHLBI

Family Blood Pressure Program,34 seeks to identify genetic variants

that influence risk for hypertension and arteriosclerotic/athero-

sclerotic complications involving the heart, brain, kidneys, and

peripheral arteries. As part of the study, GENOA ascertained a

cohort of African American sibs from Jackson, Mississippi, in

which R2 siblings had essential hypertension diagnosed prior to

the age of 60. 1,854 subjects were enrolled in the initial study

and approximately 80% were re-recruited for a second exam

many years later. Clinical data collected on such subjects include

essential hypertension status as well as quantitative and qualita-

tive outcomes related to lipid metabolism and organ function.

This study was approved by the institutional review boards at

the parent institutions of all participating laboratories involved

in GENOA.

The GENOA investigators genotyped 1,429 samples for 233,507

SNPs on the Illumina HumanExome Beadchip. After standard

data cleaning to remove problematic individuals and SNPs, the

final sample for analysis consisted of 1,392 participants in 623

sibships. We summarize the distribution of sibships in Table 1.

GENOA investigators used PLINK35 to estimate genome-wide

IBD sharing among relative pairs to confirm putative pedigree

structure. To infer site-specific IBD sharing in the GENOA sibships

for use in our proposed tests, we used 4,448 common autosomal

SNPs specifically included on the Illumina HumanExome Bead-

chip to infer inheritance flow. We identified the sex-averaged

linkage map position for each of these SNPs from the Rutgers

Map v.336 (see Web Resources). With this information, we first

used MERLIN27 to identify likely genotyping errors for the

4,448 SNPs in the GENOA families and subsequently set such

problematic genotypes to be missing. We then applied MERLIN

on the cleaned genotype data to infer IBD sharing among GENOA

family members at 1 centiMorgan (cM) intervals across the

autosomes.

With our rare-variant association test, we performed two sets of

analyses with affected siblings in GENOA.We first studied GENOA

affected siblings with essential hypertension (MIM 145500); pub-

lished sibling recurrence risk ratios for hypertension range be-

tween 1.5 and 3.5.37 We analyzed rare and less-common variants

(MAF % 0.05) found in a set of candidate genes containing com-

mon variation previously associated with blood pressure in inde-

pendent African American GWAS samples.38 We next focused on

GENOA affected siblings with obesity (MIM 601665); published

sibling recurrence risk ratios for obesity range between 2.6 and

4.2.39 We analyzed rare and less-common variants found in genes

harboring common variation previously associated with body-

mass index (BMI) in independent African American GWASs.40

For each set of analyses, we removed unaffected siblings prior

to association testing. We show the distribution of GENOA
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Table 2. Distribution of Affected Sibships in GENOA

Sibship Size
Count with
Hypertension

Count with
Obesity

2 204 183

3 75 68

4 35 26

5 12 9

6 4 1

7 0 1

8 1 1

Total Number of Pairs 847 697

Number of Pairs with Both
Hypertension and Obesity

484

Figure 1. Quantile-Quantile Plots of Observed p Values versus
Expected p Values on –log10 Scale for the YBurden and YVC Tests
under the Null Hypothesis for Samples of European Ancestry
Top left shows QQ plot for 500 sibships of size 2, top right shows
500 sibships of size 4, bottom left shows 1,000 sibships of size 2,
and bottom right shows 1,000 sibships of size 4. Each set of results
based on 10,000 replications with lC ¼ 4.
affected sibships with the hypertension and obesity phenotypes in

Table 2. As shown in the table, there are a total of 847 affected sib-

ling pairs that are hypertensive and 697 affected sibling pairs that

are obese. Of these sib pairs, 484 overlap between the two datasets,

so that the proportion of hypertensive sib pairs that were also

obese was 0.57 while the proportion of obese sib pairs that were

also hypertensive was 0.69.

We identified the physical location of each tested gene from

the UCSC Genome Browser41 and included all variants on the

Illumina HumanExome Beadchip with MAF % 0.05 from 20 kb

upstream of the start of the gene position to 20 kb down-

stream beyond the end of the gene position. We found the corre-

sponding linkage map position (sex averaged) for each gene by

using Rutgers Map v.3 and extracted the IBD sharing of the

GENOA affected sibships at that position from our MERLIN

output. We considered both YBurden and YVC and performed

both unweighted analyses as well as more standard analyses

that weighted rare variants inversely proportional to their MAF

(using a weight corresponding to ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAFð1�MAFÞp Þ�1 as sug-

gested by others19).
Simulations with Uncertainty in IBD Sharing
In the power simulations described previously, we assumed that

IBD sharing among affected sib pairs was known exactly when

constructing YBurden and YVC. By using next-generation

sequencing data, we would expect to infer IBD with near certainty.

However, for sparser data like the common SNPs found on the

Illumina HumanExome Beadchip, ambiguity in IBD sharing is a

possibility. To investigate the impact of IBD uncertainty on our

approaches, we looked at pairwise IBD estimates among affected

siblings in GENOA across the candidate genes that we explored

in this article. We provide a histogram of these estimates in

Figure S1. We repeated the simulations described previously but,

instead of using the true IBD sharing for each pair, we induced

ambiguity in IBD sharing by sampling from the distribution of

IBD estimates observed in the GENOA pairs. Specifically, if a pair’s

true IBD sharing was 0, we sampled the observed IBD sharing from

the distribution of GENOA IBD estimates between 0 and 0.5. If

true IBD sharing was 1, we sampled an observed IBD from GENOA

estimates between 0.5 and 1.5. Finally, if true IBD sharing was 2,

we sampled an observed IBD estimate from the GENOA estimates

between 1.5 and 2.
The Am
Results

Type I Error Results

We performed null simulations to ensure that YBurden and

YVC had appropriate size under different conditions.

Figure 1 shows quantile-quantile (QQ) plots for the

two tests in a situation where the sample consisted

entirely of subjects of European ancestry. The top half of

Figure 1 shows the QQ plots assuming a sample size of

500 sibships of size 2 (top left) or of size 4 (top right),

and the bottom half of Figure 1 shows QQ plots for

sample sizes of 1,000 sibships of size 2 (bottom left) or

of size 4 (bottom right). For each design, we analyzed

10,000 replicates of the data assuming lC ¼ 4 (we show

QQ plots under the same models when lC ¼ 8 in

Figure S2). The results show that both statistics have

appropriate type I error under the null and, based on

results that assumed sibships of size 4, appropriately

account for the dependency among observations due to

within-sibship correlation.

The type I error simulations shown in Figure 1 assumed

samples entirely of European ancestry (no confounding).

Figure 2 shows QQ plots for simulations with confound-

ing, assuming a sample size of 500 sibships of size 2 (top

left) or of size 4 (top right), or a sample size of 1,000 sib-

ships of size 2 (bottom left) or of size 4 (bottom right).

For each model, we analyzed 10,000 replicates of the

data assuming lC ¼ 4 (we provide QQ plots for lC ¼ 8 in

Figure S3). The results show that both tests are valid in
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Figure 2. Quantile-Quantile Plots of Observed p Values versus
Expected p Values on –log10 Scale for the YBurden and YVC Tests
under the Null Hypothesis with Samples of Both African and
European Ancestry
Odds ratio of disease for African versus European ancestry is 4. Top
left shows QQ plot for 500 sibships of size 2, top right shows 500
sibships of size 4, bottom left shows 1,000 sibships of size 2, and
bottom right shows 1,000 sibships of size 4. Each set of results
based on 10,000 replications with lC ¼ 4.

Figure 3. Power of YBurden and YVC Tests at a ¼ 2.5 x 10�6

Data were generated under a model where 15% of variants with
MAF % 0.05 were causal with effect on log(OR) of c,jlog10(MAF)j
(for risk variants) and �c,jlog10(MAF)j (for protective variants).
Results are shown for c ¼ log(6)/4 and 500 sib pairs (top left), c ¼
log(6)/4 and 1,000 sib pairs (top right), c ¼ log(8)/4 and 500 sib
pairs (bottom left), and c ¼ log(8)/4 and 1,000 sib pairs (bottom
right). Each set of results based on 1,000 replications with lC ¼ 4.
the presence of confounding resulting from population

stratification.

Power Results

In Figure 3 we compare the power of YBurden and YVC for

simulated data on affected sib pairs of European ancestry.

For all simulations we assumed lC¼ 4. Power wasmarkedly

higher for all tests when all causal alleles are risk alleles.

However, even when half the causal alleles are protective,

we observed that both the 1-sided and 2-sided YBurden

test outperformed YVC. This result is in contradistinction

to results showing that variance-component tests generally

outperform burden tests in case-control and cross-

sectional studies when the proportion of causal variation

is small.22 We believe the reason we observe this phenom-

enon is that the sampling of affected sibs implies the pres-

ence of cosegregating risk alleles in the family, which in

turn implies rare risk variants are shared identical by

descent. Protective variants preferentially found on haplo-

types not shared identical by descent would probably have

a smaller effect than risk variants for two reasons. First,

each sib already has enough risk alleles to cause disease.

Second, recall that haplotypes in affected sibships not

shared identical by descent are like untransmitted haplo-

types in a transmission-disequilibrium test; the distortion

of allele frequencies in untransmitted haplotypes is typi-

cally much smaller than that in transmitted haplotypes.

In a related finding, Jiang et al.42 observed burden tests
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to be more powerful than variance-component tests in

the study of case-parent trios, even when a gene harbored

an equal mixture of rare and protective variants. Based on

our findings, we recommend using the 1-sided YBurden test

as the primary analytic tool for rare-variant testing in

affected sibships.

We also performed simulations to compare the power of

our rare-variant association tests for affected sibships to the

power of a case-control study having the same sample size.

We assumed samples comprised ofM individuals that were

collected under one of three possible designs. First, we

generated sequence data prospectively under a case-con-

trol design assuming M/2 case subjects and M/2 control

subjects, and we analyzed the data via a logistic-regression

burden test that regressed disease status on the total num-

ber of rare variants possessed by a subject. Second, we

generated data on M/2 affected sib pairs and analyzed the

data via our 1-sided YBurden test. Finally, we generated

data on M/3 families, each having three affected sibs (sib

trios) and analyzed the data again with our 1-sided YBurden

test. Although ascertainment of siblings based on three or

more affected individuals is rare, we were curious to see

whether increasing the genetic load by requiring three

affected sibs would increase the power even as the number

of sibships decreased.

Figure 4 provides power comparisons at a ¼2.5 x 10�6

(corresponding to a Bonferroni correction for testing

20,000 independent genes) of case-control, affected sib

pair, and affected sib trio designs assuming 1,000 or

2,000 total sampling units. For all simulations, we used
015



Figure 4. Power at a¼ 2.5 x 10�6 to Detect Rare Susceptibility Variants under Different Sampling Designs Assuming a Fixed Number
of M Sampling Units
Yellow bar denotes power using M/2 cases and M/2 controls using logistic-regression burden test. Green bar denotes power for M/2
affected sib pairs using 1-sided YBurden test. Blue bar denotes power forM/3 affected sib trios using 1-sided YBurden test. Results are shown
for c ¼ log(4)/4 (left column), c ¼ log(6)/4 (middle column), and c ¼ log(8)/4 (right column). Top row, lC ¼ 2; middle row, lC ¼ 4; bottom
row, lC ¼ 8. Each set of results based on 1,000 replications assuming 15% of rare variants are causal with 100% of causal variants
increasing risk.
only samples of European ancestry and assumed that all

causal variants increased risk. We varied the value of lC

among the values of 2, 4, and 8 with corresponding power

results shown in the top, middle, and bottom panels of

Figure 4. In all scenarios, the results show that sampling

affected sibships is more powerful than the using a case-

control sample assuming the same number of sampling

units. Figure 4 also shows that the power of sib trios is

considerably higher than sib pairs, suggesting that more

stringent ascertainment criteria can improve the ability

to detect rare susceptibility variation. We should note

that the 1-sided YBurden test has appropriate size for

affected sib trios (see Figure S4). Further, when we repeated

the simulations summarized in Figure 4, using the

‘‘observed’’ IBD sharing estimated in the GENOA sibs in

place of the true IBD sharing, we observed negligible power

loss for our method, compared to using the true IBD for a

pair (see Figure S5).

Figure 4 also shows that the power of the 1-sided YBurden

test generally decreases with increasing value of lC. This

trend occurs because an increase in lC represents an in-

crease in the overall (polygenic) risk due to shared sibling

factors, not just the risk at the test locus. As lC increases,

the risk of disease increases even for sibs with no rare risk

variants in the gene of interest. Consequently, the propor-
The Am
tion of risk load carried by rare variation in a gene of inter-

est among affected sibships decreases as lC increases,

which leads to reduced power with the 1-sided YBurden

test. Nevertheless, even at sibling recurrence risk ratios of

8, the 1-sided YBurden test has equal or improved power

compared to the case-control design for a fixed sample size.

We also compared the power of rare-variant association

testing via the 1-sided YBurden test to the power of detecting

linkage at the same gene using the affected sibling pairs

generated to create Figure 4. We tested for linkage via a

minimax test43 assuming the IBD sharing of each affected

sib pair was known with certainty. We assumed the

genome-wide significance threshold for declaring linkage

suggested by Lander and Kruglyak.44 In Figure 5, we

compare the power to detect linkage to the power to detect

association assuming an appropriate genome-wide signifi-

cance threshold for both approaches, using our simulated

datasets that assumed lC ¼ 4. The results clearly show

that the power to detect a genome-wide significant associ-

ation via the 1-sided YBurden test is greater than the corre-

sponding power to detect a genome-wide significant

linkage signal across simulation models. Further, although

we observed correlation between the p values of the link-

age and association tests, the correlation was imperfect

and we identified many instances where we observed a
erican Journal of Human Genetics 96, 543–554, April 2, 2015 549



Figure 5. Power to Detect Linkage and
Power to Detect Association in Affected
Sib Pairs under Different Sampling De-
signs Assuming 500 or 1,000 Affected Sib
Pairs
Yellow bar denotes power to detect linkage
at genome-wide significance threshold of
10�5. Magenta bar denotes power to detect
association using YBurden at genome-wide
threshold of 2.5 3 10�6. Results shown
for c ¼ log(4)/4 (left), c ¼ log(6)/4 (middle),
and c ¼ log(8)/4 (right). Each set of
results based on 1,000 replications
assuming lC ¼ 4 and 15% of rare variants
are causal with 100% of causal variants
increasing risk.
significant association signal in the absence of a linkage

signal. For example, among the simulated datasets

assuming c¼ log(6)/4 (middle bar plot in Figure 5), we esti-

mated that the Spearman rho coefficient between the link-

age and association p values was 0.30 for 500 affected sib

pairs, which indicates a significant (p < 0.0001) yet imper-

fect correlation. However, of the 294 replicates that yielded

an (unadjusted) linkage p value > 0.05 (indicating little or

no evidence of linkage), 40% yielded a genome-wide-sig-

nificant association signal via the 1-sided YBurden test.

These results demonstrate that our approach can detect

association between rare variants and IBD sharing in the

absence of a strong linkage signal.

Application to GENOA Study

We applied our approach to test whether rare variants in

previously identified candidate genes affected essential hy-

pertension or obesity in the GENOA affected sibs. Based on

our simulation findings, we used the 1-sided YBurden test as

our primary analysis tool. We list each gene analyzed in

Table 3 along with its corresponding p values derived

from a weighted (based on MAF) or unweighted 1-sided

YBurden test. We performed association testing of 5 genes

withhypertension and12 geneswith obesity (withnoover-

lap in the genes tested for each phenotype). We then

performed these 17 tests twice using both the weighted

and unweighted forms. Although the weighted and un-

weighted tests are likely to be correlated,we elected to apply

a Bonferroni adjustment for 34 tests that yielded a signifi-

cance threshold of a ¼ 0.05/34 ¼ 0.0015. Although we

observed no significant association between rare variants

in blood-pressure genes with essential hypertension, we

observed an interesting association between rare variants

in NRXN3 (MIM 600567) and obesity (unadjusted p ¼
0.0024, adjusted p ¼ 0.0816). The unweighted 1-sided

YBurden test for this gene was less interesting, because it

yielded an unadjusted p value of 0.043. Further, we did

not observe a corresponding linkage signal at the locus
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(LOD score of 0 using the Kong and

Cox45 exponential model imple-

mented in MERLIN). Examination of
IBD sharing among affected sib pairs at the NRXN3

confirmed no evidence of linkage as the proportion of

affected sib pairs that shared 0, 1, and 2 alleles identical

by descent (rounded to nearest integer) was 27%, 51%,

and 22%, respectively (see Table 4). To determine why the

weighted YBurden test yielded an interesting association in

the absence of either a signal from the unweighted YBurden

test or the linkage test, we examined the average rare-

variant burden of affected sib pairs with IBD ¼ 0, 1, and 2.

As shown in Table 4, the average rare-variant burdens of

the IBD ¼ 0 and IBD ¼ 2 affected sib pairs were similar for

the unweighted analysis. However, the allele frequency

of the rare variants decreased monotonically as the IBD

state increases, so that for theweighted analysis, the average

burdenof the IBD¼2affected sibpairswas greater than that

in IBD¼ 1 pairs, which in turn was greater than that of the

IBD ¼ 0 affected sib pairs.

The limited number of interesting rare-variant findings

in the GENOA study might indicate inherent differences

between our simulated and real data examples. We don’t

believe these differences are due to the sibling recurrence

risk ratios assumed in the simulations because they

include published values reported for hypertension and

obesity (1.5–3.5 and 2.6–4.2, respectively37,39). We do

note there are two intrinsic differences between our simu-

lation design and the GENOA analyses. First, the GENOA

study provided Illumina HumanExome Beadchip data

whereas our simulations assumed sequence data. Thus,

it is possible that the issue might be that the true

causal variation in the candidate genes investigated in

the GENOA study are not well interrogated on the

HumanExome Beadchip and must be assayed by a

sequencing approach. Second, we note the sample size

of the GENOA study (865 affected subjects in 331 sibships

for studying hypertension; 740 affected subjects in 289

sibships for studying obesity) is smaller than the sample

sizes considered in our simulations, which could explain

some of the difference between the power we observed



Table 3. Rare-Variant Analysis in GENOA Affected Sibships

Outcome Gene
p Value
(Weighted)

p Value
(Unweighted)

Hypertension GOSR2 0.865 0.674

GUCY1A3 0.421 0.513

PLEKHG1 0.378 0.387

SH2B3 0.970 0.932

ULK4 0.834 0.578

Obesity ADCY3 0.799 0.671

BDNF 0.520 0.585

FTO 0.597 0.346

GNPDA2 0.636 0.451

KLHL32 0.442 0.254

MAP2K5 0.890 0.670

MC4R 0.142 0.191

NFE2L3 0.919 0.872

NRXN3 0.0024 0.043

SEC16B 0.739 0.632

SH2B1 0.393 0.305

QPCTL 0.382 0.232

p value for YBurden based on 1-sided test. Weights based on
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MAFð1�MAFÞp Þ�1.

Table 4. Rare-Variant Association Analysis of NRXN3 in GENOA
Study

IBD State

Number
(Proportion)
of Affected
Sib Pairs

Average
Frequency of
Rare Variants
in NRXN3

Average Burden Per
Sib Pair

Unweighted Weighted

0 187 (0.27) .0070 0.043 0.820

1 354 (0.51) .0052 0.080 1.568

2 156 (0.22) .0024 0.067 2.310

IBD state of each affected sibling pair rounded to nearest integer value. Rare
variants are those with sample MAF < 0.05. Weighted analysis applied weight
based on ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MAFð1�MAFÞp Þ�1.
in our simulations and the results of our analyses of the

GENOA data.
Discussion

As interest grows in sequencing or genotyping exome

chips on familial samples (such as those collected previ-

ously for linkage analysis), novel statistical procedures

that permit rare-variant association testing for these

studies are necessary. In this work, we proposed a rare-

variant association test for affected sibships of arbitrary

size that examines the relationship between the distribu-

tion of rare variants in a gene and the number of genes

shared identical by descent among affected sib pairs.

With simulations, we showed that rare-variant testing in

affected sibships is more powerful than a case-control

study with the same sample size, thereby illustrating the

strengths of family-based data for rare-variant association

analysis. Our method also possesses additional practical

features: it does not use any information from control sam-

ples; it is robust to confounding due to population stratifi-

cation; and our test statistics have simple closed forms with

analytic p values, making use of our approach straightfor-

ward via standard software packages (seeWeb Resources for

R code implementing our approach). Further, we have

shown that our methods perform well even when there

is uncertainty in IBD estimates from sparse SNP sets. We

illustrated the approach with an application to exome
The Am
chip data from the GENOA study in efforts to identify

genes harboring rare variation that increase risk for essen-

tial hypertension and obesity and identified a gene

(NRXN3) that might warrant further study for association

with obesity.

Although our rare-variant association test is based on

IBD sharing in affected sibling pairs, it is not a test of link-

age and does not require the presence of a linkage signal to

detect association (as demonstrated in the Results section

and in Figure 5). Linkage tests treat IBD sharing as the

outcome variable and looks for regions where estimated

IBD sharing across affected pairs deviate from their ex-

pected values based only on familial relationships. Our

proposed association test compares patterns of rare varia-

tion in a gene conditional on the IBD sharing in a region.

If linkage exists but there is no difference in rare-variation

patterns between regions shared identical by descent and

not shared identical by descent, then our proposed test

will not find a significant result. Conversely, our approach

can detect a significant association if the patterns of rare

variation differ between haplotypes that are and are not

shared identical by descent, even if there is no excess IBD

sharing as would be expected under linkage.

Our approach is tailored for rare-variant analysis in

affected sib pairs within sibships. In theory, we could

expand our approach to incorporate discordant sib pairs

in sibships where one sib is affected and the other sib is un-

affected. For such discordant sib pairs, we would expect to

find more rare susceptibility variants found on regions not

shared identical by descent than on regions shared iden-

tical by descent. We can modify our framework in Equa-

tion 4 to detect such patterns by incorporating the

expected sign of d (positive for affected sib pairs, negative

for discordant sib pairs) into the analysis. However, when

we performed preliminary power simulations to investi-

gate the potential utility of incorporating discordant pairs

into analysis, we found that such discordant units pro-

vided meager power (slightly more than the empirical

size) to identify regions harboring rare susceptibility vari-

ants unless the proportion of causal variants and their asso-

ciated effect sizes were unreasonably large (results not

shown). In fact, this is related to our finding that our vari-

ance components test was always less powerful than the
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two-sided burden test even when half of the causal alleles

were protective. Consequently, although we can use ge-

netic information on unaffected sibs to improve the accu-

racy of IBD estimation in affected sib pairs, we do not

recommend incorporating their information directly into

our rare-variant testing framework.

As we demonstrated in our simulations, our burden and

variance-component tests follow known asymptotic distri-

butions to facilitate genome-wide analysis. If desired,

we can also use resampling procedures to derive p values

for such tests; such procedures are probably valuable

when analyzing small samples. Because we assume an un-

derlying linear model in Equation 4, we can implement a

resampling procedure via a nonparametric bootstrap

approach46 that resamples residuals from the regression

analysis in Equation 4. This can be easily accomplished,

for example, in the R programming language. Formultiplex

sibships we should resample in a way that preserves the

within-sibship correlation, i.e., by resampling residuals

from a single sibship. With care, this can be done with

residuals fromsibships at least as large as theoneweare sam-

pling; for example, we can resample data for a sibship of size

3 by using residuals from a sibship of size 5, as long as we

choose (any) three sibs from that sibship and then select

the residuals that correspond to their (three) pairings.

Our regression framework in Equation 4 extends easily to

allow for modeling covariates at the pair level. Although

adjusting for potential covariates in non-randomly ascer-

tained samples is controversial,47–49 there might be value

in such adjustment, especially to untangle the effects of

rare variants from known common variants in a gene.50

To perform this adjustment, we create a variable for each

sib pair that counts the number of copies of theminor allele

of the common variant possessed by the pair, and we

include this count as a covariate in our model. We plan to

explore the value of such adjustment more in future work.

Our simulations show that using affected sib trios is even

more powerful than using affected sib pairs, even when the

sample size is held fixed. Although ascertaining families

based on three affected subjects is rare, some studies do

employ this strategy when collecting extended pedi-

grees.6,51 This motivates an extension of our approach to

handle data comprised of affected relative pairs of arbitrary

relatedness (e.g., first cousins, avuncular). For each type of

affected relative pair (e.g., affected first cousins), we can

implement the same framework discussed earlier by con-

structing an efficient score function that compares rare

variant count to IBD sharing across the pairs. To combine

results across different types of affected relative pairs

(e.g., a sample comprised of a mixture of affected sibling

pairs and affected first-cousin pairs), we can still use our

efficient score framework but require a separate intercept

parameter for each type of affected relative pair (to control

for differences in genotypic correlation between different

types of relative pairs). We are unsure whether an analysis

based on these distant affected pairs will be more powerful

than using case-control data, because second-order (and
552 The American Journal of Human Genetics 96, 543–554, April 2, 2
higher-order) relatives can share at most only one haplo-

type identical by descent (with the majority possessing

IBD ¼ 0). We intend to explore this in more detail in an

additional manuscript.
Appendix A

Deriving the Efficient Score Function in Equation 5

from Estimating Equations in Equation 4

Given the estimating equations in Equation 4, define

Umðm0; dÞ ¼ 4
XN
j¼1

XSj
i¼1

Wij

�
Tij � 4m0 � 2dZij

�
;

Udðm0; dÞ ¼ 2
XN
j¼1

XSj
i¼1

Wij

�
Tij � 4m0 � 2dZij

�
Zij;

Hmmðm0; dÞ ¼
vUm

vm0

ðm0; dÞ ¼ �16
XN
j¼1

XSj
i¼1

Wij

Hmdðm0; dÞ ¼
vUm

vd
ðm0; dÞ ¼ �8

XN
j¼1

XSj
i¼1

WijZij

Then the efficient score for d is defined as

Ueff
d ðdÞ ¼ Udðbm0ðdÞ; dÞ �

Hmdðbm0ðdÞ; dÞ
Hmmðbm0ðdÞ; dÞ

Umðbm0ðdÞ; dÞ

where bm0ðdÞ is the value of m0 that solves Um(m0,d) ¼ 0 (as a

function of d). Assuming the weightsWij are normalized, it

is straightforward to show that bm0ðdÞ ¼ ðPN
j¼1

PSj
i¼1WijðTij�

2dZijÞÞ=4. Hence, we find

Ueff
d ðdÞ ¼ 2

XN
j¼1

XSj
i¼1

Wij

�
~Tij � 2d~Zij

�
~Zij;

where ~Tij and ~Zij are as defined in Equation 5. Dropping

the superfluous factor of 2, we thus conclude that U given

in Equation 5 is proportional to U
eff
d ðd ¼ 0Þ, the efficient

score for d at d ¼ 0. A simple interpretation of the efficient

score when estimating functions derived from a likelihood

is that the efficient score is the derivative of the profile

likelihood.
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