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Abstract

Vanadia nanoparticles supported on nickel manganese mixed oxides were synthesized by co-precipitation method.
The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular
oxygen as oxidant. It was observed that the calcination temperature and the size of particles play an important
role in the catalytic process. The catalyst was evaluated for its oxidation property against aliphatic and aromatic
alcohols, which was found to display selectivity towards aromatic alcohols. The samples were characterized by
employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller
analysis, thermogravimetric analysis, and X-ray photoelectron spectroscopy.
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Background

Catalysis, which is largely a surface phenomenon, is an
area of research that has been a widely studied subject
by scientists and technologists [1-4]. However, the zeal
for finding a better performing catalyst for various pro-
cesses including CO oxidation [5], Fischer-Tropsch syn-
thesis [6], MOFs for biomimetic catalysis [7], fuel cell
reactions [8], and selective hydrogenolysis of aryl ethers
[9] still is an ongoing process. Among several elements
that are being tested and tried for catalysis, vanadium
oxide and other compounds containing vanadium have
attracted significant attention as catalyst for many oxida-
tion reactions [10-14]. Apart from this, vanadium oxide
has also been explored for various other applications in-
cluding pseudocapacitors [15] and cathode material [16]
in various conversion reactions of alkanes to alkenes, or-
ganic acids, and the synthesis of light olefins by means
of oxidative dehydrogenation (ODH) [17-22]. Furthermore,
the catalytic oxidation properties of vanadium-based cata-
lysts have also been extensively exploited for several other
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reactions such as conversion of propane to CO,/H, [23],
propane partial oxidation [24], oxidation of SO, [25],
formaldehyde to formic acid [26], oxidation of «-hydroxy
ketones, a-hydroxy esters [27], aerobic oxidative cleavage of
secondary-tertiary glycols [28], and oxidative dehydrogen-
ation of ethane [29]. In some cases, it has also been used as
support material for other catalysts, e.g, Pt nanoparticles,
supported by vanadia-decorated carbon nanotubes for
methanol electro-oxidation reaction [30]. Notably, vanadium
has displayed excellent catalytic activities in all forms,
whether it has been employed as a supported active
phase or in the form of mixed oxides prepared in com-
bination with other ions; it displayed efficient catalytic
properties as an oxidation catalyst.

Recently, mixed metal oxides (MMO) have attracted
significant attention as solid catalysts, due to their low
cost, easy regeneration, selective action, and excellent
acid—base redox properties [31]. Among various MMO,
manganese-based MMO have attracted much attention
due to their higher catalytic performances [32]. Several
catalytic reactions using manganese-oxide-based MMO
have been reported. Examples include the catalytic reac-
tion of hydrogen production via autothermal reforming
of ethanol [33], steam reforming of tar from biomass
pyrolysis [34], methane combustion at low temperature
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Figure 1 SEM of the catalyst (a) V,05 (1%)-NiMnO, (b) V,05 (3%)-NiMnO, and (c) V505 (5%)-NiMnO at 300°C.

[35], and enhanced glucose electrooxidation [36] carried
out using nickel manganese MMO. Our group has been
involved in the synthesis of various MMOs [37] and
evaluated their catalytic performance for several organic
transformations [38]. In this study, to exploit the excel-
lent catalytic activity of vanadium oxide, we report the
synthesis of heterogeneous catalysts based on vanadium
oxide nanoparticles supported on nickel manganese oxide
MMO. The as-prepared catalysts were characterized using
various spectroscopic and microscopic techniques includ-
ing transmission electron microscopy (TEM), scanning
electron microscopy (SEM), X-ray diffraction (XRD), X-
ray photoemission spectroscopy (XPS), and thermogra-
vimetric analysis (TGA), and their catalytic activities
were evaluated for the oxidation of various aromatic
alcohols.

Methods

Preparation of vanadium oxide supported on nickel
manganese oxide by deposition method

Ninety-five milliliters of 0.2 M solutions of nickel nitrate
and manganese nitrate were mixed in a round-bottomed
flask, followed by addition of 10 mL of 0.2 M solution of
vanadium chloride. The resulting solution was heated to
80°C under stirring using a mechanical stirrer. A 1 M
solution of NaHCO3; was added dropwise until the solu-
tion attained a pH 9. The solution was continuously
stirred at the same temperature for about 3 h and left on
stirring over night at room temperature. The solution
was filtered using a Buchner funnel under vacuum and
then dried at 70°C overnight. The product obtained
was characterized using SEM, TEM, EDAX, XRD, XPS,

Brunauer-Emmett-Teller (BET), and TGA. The resulting
powder was then calcined at different temperatures and
evaluated for its oxidation activity for the oxidation of
benzyl alcohol as a model precursor.

Catalyst testing

In a typical reaction, 300 mg of catalyst was loaded in a
glass flask pre-charged with 0.2 mL (2 mmol) benzyl al-
cohol mixed with 10 mL toluene as a solvent; the mixture
was then refluxed at 100°C, and oxygen was bubbled at a
flow rate of 20 mL min~" into the mixture under vigorous
stirring. After reaction, the solid catalyst was separated by
centrifugation, and the liquid samples were analyzed by
gas chromatography to evaluate the conversion of the
desired product using an Agilent 7890A GC (Agilent
Technologies, Inc., Santa Clara, CA, USA), equipped with
a flame ionization detector (FID) and a 19019S-001 HP-
PONA column.

Catalyst characterization

SEM and elemental analysis (energy-dispersive X-ray
analysis (EDX)) were carried out using a Jeol SEM model
JSM 6360A (JEOL Ltd., Akishima-shi, Japan). This was
used to determine the morphology of nanoparticles and
its elemental composition. TEM was carried out using a
Jeol TEM model JEM-1101 (JEOL Ltd., Akishima-shi,
Japan), which was used to determine the shape and size
of nanoparticles. Powder X-ray diffraction studies were
carried out using an Altima IV (Make: Rigaku, Shibuya-ku,
Japan) X-ray diffractometer. Fourier transform infrared
spectroscopy (FT-IR) spectra were recorded as KBr pel-
lets using a PerkinElmer 1000 FT-IR spectrophotometer
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Figure 2 TEM of the catalyst (a) V,05 (1%)-NiMnO, (b) V,05 (3%)-NiMnO, and (c) V,05 (5%)-NiMnO at 300°C.
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Figure 3 XRD pattern of catalyst (a) V,05 (1%)-NiMnO, (b) V,05 (3%)-NiMnO, and (c) V,05 (5%)-NiMnO calcined 300°C.

(PerkinElmer, Waltham, MA, USA). BET surface area was
measured on a NOVA 4200e surface area and pore size
analyzer (Quantachrome Instruments, FL, USA). Thermo-
gravimetric analysis was carried out using PerkinElmer
Thermogravimetric Analyzer 7 (PerkinElmer, Waltham,
MA, USA). XPS was measured on a PHI 5600 Multi-
Technique XPS (Physical Electronics, Lake Drive East,
Chanhassen, MN, USA) using monochromatized Al Ka
at 1486.6 eV. Peak fitting was performed with CASA
XPS Version 2.3.14 software.

Results and discussion

Catalyst characterization

The morphology and the particle size of the synthesized
catalyst were characterized using SEM and TEM. The
SEM micrographs of the pre-calcined (300°C) catalyst
V5,05 (X%)-NiMnO, where X = (1, 3, and 5), are shown
in Figure 1. It was observed that the morphology of the
synthesized catalysts is not well defined, and the surface
appears to be rugged without any obvious phase separation.
The stoichiometric amount of elements was confirmed
from the EDX analysis and found to be approximately in
agreement with the calculated value.

The TEM image of the catalyst V,05 (X%)-NiMnO
(X =1, 3, 5) was carried out to investigate the shape and
size of the particles more closely (Figure 2). The average
particle size was calculated using image-processing pro-
gram Image ] software of the image adjacent to it. It
was found that the synthesized catalyst 1% and 3%
V,05-NiMnO possessed particle sizes of 2.8 and 2.7 nm,
respectively, whereas V,05 (5%)-NiMnO was found to
contain particles of size 2.2 nm. The TEM image analysis

of the other synthesized catalysts gave information of the
particles to be around 3 to 4 nm in size.

XRD spectrum

Figure 3 shows X-ray diffraction patterns of mixed oxides
of nickel manganese with different % of vanadium oxide
nanoparticles pre-calcined at 300°C. The structural results
are listed in Table 1. The analysis of the XRD spectrum of
X% V,05-NiMnO (Figure 3), where X =(1, 3, and 5) of
pre-calcined at 300°C showed that the V,05 (1%)-NiMnO,
V5,05 (3%)-NiMnO, and V,05 (5%)-NiMnO contain re-
flections corresponding to cubic hexanickel manganese
(IV) oxide (ICSD # 40584). No reflection corresponding
to vanadium oxide was observed which could be due to
the low percentage present in the catalyst.

XPS analysis

The distinct amount of vanadium oxide supported on
the surface region and the oxidation state of the van-
adium were confirmed using XPS studies. The spectrum

Table 1 Textural and structural properties of vanadium-
oxide-doped nickel manganese oxide

Sample Loading Calcination Sger D [mm]  Phase
[wt%] temperature (°C)

V505 1 300 6828 14477 NigMnOy4

3V,0s 3 300 6281 12269  NigMnO,

5V,0s 5 300 9854 20804 NigMnOy4

5V,05 5 400 5700 16.908 NigMnOy4

5,05 5 500 2097 12326 NigMnO,

Sger is the specific surface area. D is the crystal domain size calculated by
using Scherrer Equation. Phase detected by XRD.
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Figure 4 XPS-spectra of V,05 (5%)-NiMnO. (a) Ni 2p spectrum. Blue: Fit for Ni 2ps/,- and 2p, »-peak. Yellow: Fit for the two satellite peaks. Red:
Envelope of both fits. (b) Mn 2p spectrum. Blue: Fit for Mn 2ps/,-peak. Yellow: Fit for Mn 2p; ,-peak. Red: Envelope of both fits. Al fits were shifted to
lower intensity for better visibility. (c) Spectrum over whole binding energy range. Ni, Mn, V, C, and O are marked at the highest intensity
peaks. (d) Magnification of V 2p peak as marked in (c) showing the position of the 2p;,,- and 2ps,,-peak.

is given in Figure 4. It was also intended to establish the
phase changes if any on the surface of the catalytic sys-
tem before and after catalyzing the oxidation reaction. It
was observed that there is no significant change in the
spectrum obtained for the catalysts before and after re-
action. Two weak signals observed at a binding energy
(BE) of 517.0 and 522.4 eV indicate that the oxidation
state of +5 for vanadium is present in the catalyst, which
agree well with the results published by Silversmit et al.
[39]. The very low percentage amount of vanadium

Table 2 Binding energies of transition metal compounds
calculated from the maxima in the XPS spectra

Compound  BE;(2p,5,) (eV)  BE;(2ps/,) (eV)  AE (BE;-BE;) (eV)
Vanadium 52225 516.95 5.20

Manganese 654.77 643.46 11.31

Nickel 874.47 856.63 17.84
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Figure 5 TGA curves of the synthesized catalyst (a) V,05
(1%)-NiMnO, (b) V,05 (3%)-NiMnO, and (c) V,05 (5%)-NiMnO.
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Figure 6 Graphical illustration of the kinetics of the catalyst and bar chart depicting conversion product obtained. Graphical illustration
of the (a) kinetics of the catalyst for the conversion of benzyl alcohol to benzaldehyde using the synthesized catalyst (i) V>0s (1%)-NiMnO,
(i) V2,05 (3%)-NiMnO, and (iii) V,0s (5%)-NiMnO; (b) bar chart depicting conversion product obtained with different composition percentages of
vanadia in the catalyst.

could be responsible for the weak signal. The binding en-
ergies obtained for manganese and nickel (see Table 2)
suggest that the oxidation states are +4 and +2, respect-
ively [40,41], which corroborates the results obtained from
the XRD. There was no change observed in the binding
energies corresponding to the manganese and nickel after
the reaction indicating that there is no change in oxidation
state of the metals.

From the above results, it can be concluded the oxida-
tion property of the mixed metal oxides used is not related
to the redox properties of the transition metals used but
could be a surface phenomenon.

Thermogravimetric studies

The thermal stability of the as synthesized catalyst with
different % loading of vanadium oxide nanoparticles were
studied using TGA analysis. Temperature was programmed
from 25°C to 800°C at a heating rate of 10°C min™". It was
observed that almost all the synthesized catalysts are ther-
mally stable, yielding a maximum loss of weight of 20.23%
at 800°C found in the case of 1% V,Os-nanoparticle-loaded
catalyst making it to be the least thermally stable among
the synthesized catalysts, while the catalysts with 3% V,0O5
and 5% V,05 can be assumed to be the most thermally

Table 3 Effect of calcination temperature on the catalytic
properties

Entry Catalyst Temperature Conversion  Selectivity
(°Q) (%) (%)

1 NiMnO 400 52.56 <99

2 V505 (5%)-NiMnO 300 100 <99

3 V505 (5%)-NiMnO 400 30 <99

4 V505 (5%)-NiMnO 500 8 <99

Reaction conditions: amount of catalyst 300 mg; reaction temperature 100°C;
oxygen flow rate 20 mL min~"; benzyl alcohol 2 mmol; toluene 10 mL;
reaction time 3 h.

stable catalysts with a least weight loss % of just 16.5%
and 17.2%, respectively, at 800°C. A graphical illustration
is given in Figure 5.

Evaluation of catalytic properties

Optimization of percentage of Vanadium oxide
nanoparticles and calcination temperature

In order to ascertain the percentage composition of van-
adium oxide nanoparticles to be supported on the nickel-
manganese-mixed oxide for the best catalytic performance
as an oxidation catalyst, a series of catalysts with varying
percentages of vanadium oxide nanoparticles were synthe-
sized and evaluated for their catalytic property, monitoring
the oxidation of benzyl alcohol to benzaldehyde as a
model reaction. The reaction was carried out at 100°C,
while passing molecular O, gas as a source of oxygen.
During the study, a trend of steady increase in perform-
ance of the synthesized catalyst was observed with the
increase in the composition percentage of vanadium
oxide, which explains the influence of vanadium oxide
nanoparticles on the catalytic performance. The catalyst
with 1% and 3% vanadium oxide yielded 65.77% and
74.27% conversion product, respectively, within 75 min,
while the catalyst with 5% vanadium oxide nanoparticles
yielded 100% conversion product within the same time. In
order to understand the effect of presence of vanadium
oxide nanoparticles, a similar reaction was carried out in
the presence of the catalyst without the vanadium oxide
nanoparticles (i.e., NiMnO) which yielded a 52.56% con-
version product. This indicated that vanadium oxide acts
as a promoter for the selective catalytic oxidation.

The kinetics of the reaction were studied by collecting
the sample in regular intervals of 15 min and subjected
to gas chromatography from which the percentage conver-
sion was calculated. It was observed that the catalyst
with 1% and 3% V,Os5 start of by giving 30% and 37%
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Figure 7 Graphical illustration of the conversion of benzyl alcohol to benzaldehyde and effect of calcination temperature. (a) Graphical
illustration of the conversion of benzyl alcohol to benzaldehyde using the synthesized catalyst V,0s (5%)-NiMnO calcined at different temperatures
(i) 300°C, (ii) 400°C, and (iii) 500°C; (b) effect of calcination temperature on the catalytic properties.
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conversion product, respectively, in the first 15 min of
the reaction time. However, as the reaction proceeds,
the rate slows down, and after 75 min, there was very
slight change in the conversion product obtained; hence,
the reaction was not carried on further. But the catalyst
with 5% V,Os5 yields about 52% conversion product in the
first 15 min and gradually proceeds to the 100% conver-
sion in 60 min. From this, it can be clearly stated that
there is a promoter effect on the catalytic performance of
the catalyst by incorporating vanadium oxide nanoparti-
cles. The selectivity in all the above reactions was found to
be >99%. A graphical illustration is given in Figure 6.
Calcination temperature has an effect on the surface
area and porosity, which in turn affects the catalytic
performance as reported by Al-Fatesh and coworker [42].
In order to establish the above mentioned effect of
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Figure 8 Graphical illustration of the conversion of benzyl
alcohol to benzaldehyde using the synthesized catalyst V,05
(5%)-NiMnO. Graphical illustration of the conversion of benzyl
alcohol to benzaldehyde using the synthesized catalyst V,0s
(5%)-NiMnO using different sources of oxygen.

calcination temperature on the synthesized catalyst,
V,05 (5%)-NiMnO catalyst, which yielded 100% conver-
sion product in the earlier study, was taken and was cal-
cined at different temperatures, ie., 300°C, 400°C, and
500°C. Under similar reaction conditions, the conversion
of benzyl alcohol to benzaldehyde was carried out. It was
observed that with the catalyst V,05 (5%)-NiMnO cal-
cined at 300°C the reaction starts off by yielding a 51%
conversion product in the first 15 min of the reaction time
and yields a 100% conversion product within 60 min,
while the catalyst calcined at 400°C and 500°C yielded 40%
and 13% conversion product, respectively, in a reaction
time of 180 min. The results are summarized in Table 3; a
graphical illustration is given in Figure 7.

Optimization of source of oxygen

The compatibility of the synthesized catalyst with dif-
ferent sources of oxygen such as dibenzoyl peroxide
and hydrogen peroxide was tested. It was observed that
there is a profound effect on the catalytic performance
of the synthesized catalyst V,05 (5%)-NiMnO calcined
at 300°C when different sources of oxygen were
employed. It was found that the catalyst displayed excel-
lent performance with 100% conversion and >99% select-
ivity when molecular oxygen is used; while when
dibenzoyl peroxide and hydrogen peroxide were used, the
conversion product obtained was 17.75% and 5.31%,

Table 4 Effect of different sources of oxygen on the
catalytic properties

Entry Source Conversion (%)
1 0, 100

2 Dibenzoyl peroxide 17.75

3 Hydrogen peroxide 531

Reaction conditions: amount of catalyst 300 mg; reaction temperature 100°C;
benzyl alcohol 2 mmol; toluene 10 mL; reaction time 2 h.
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Table 5 Selective oxidation of benzyl alcohol and derivatives into corresponding aldehydes in the presence of O, as
clean oxidant

R. No. Reactants Products Conversion (%) Selectivity
1 OH _0 100.00 >99
2 OH 0 H 94.50 >99
CHs z
CH;
3 OH o) H 89.36 >99
OCH
OCH, 8
4 OH 0 H 9247 >99
Cl Cl
5 OH o H 100.00 >99
N02 NOZ
6 OH o) H 62.96 >99
7 OH o) H 5932 >99
FiF
F F F
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Table 5 Selective oxidation of benzyl alcohol and derivatives into corresponding aldehydes in the presence of O, as

clean oxidant (Continued)

8 OH O<_H

NO,
NO,

H3;C™ "CHs

87.04 >99

407 >99
)\A)\AO

respectively. A graphical illustration is given in Figure 8.
The results have been summarized in Table 4.

Catalytic performance on different substrates of benzyl
alcohol

From the conversion of benzyl alcohol to benzaldehyde
which was used as a model reaction, it was ascertained
that the best catalytic activity was displayed by V,0O5
(5%)-NiMnO, calcined at 300°C, which was established
by spectral studies to contain a mixture of cubic hexa-
nickel manganese(IV) oxide and orthorhombic dinickel
dioxide hydroxide. It can be concluded that the catalyst
with a large surface area and the presence of orthorhombic
dinickel dioxide hydroxide on the surface of the catalyst
plays a crucial role. It was confirmed that the surface area
plays a crucial role in the catalytic performance as the cata-
lysts calcined at other temperatures too and were found to
possess cubic hexanickel manganese(IV) oxide and ortho-
rhombic dinickel dioxide hydroxide, but it did come out as
the best catalyst among the synthesized catalysts which
could be due to the low surface area. It was also confirmed
that the catalyst performs best in the presence of molecular
oxygen as a source of oxygen. In order to determine the
catalytic performance of V,0s5 (5%)-NiMnO (300°C), the
reaction was carried out under a similar set of conditions
using a series of substituted benzyl alcohols, contain-
ing 4-CHjz, 4-OCHs, 4-Cl, 4-NO,, 4-C(CHj)s, 4-CF;,
and 3-NO, groups as different substrates, and their con-
version to corresponding aldehydes was studied. It was
found that the conversion product obtained was >60%,
and selectivity displayed by the catalyst was >99%. It was
observed that the catalyst selectively oxidizes aromatic
alcohols, which was confirmed by the similar reaction
carried out using citronellol as a substrate which yielded a
conversion product of citronellal with 4%, unlike the re-
sults obtained from aromatic substrates. The results have
been summarized in Table 5.

Conclusions

We have synthesized vanadia-supported nickel manga-
nese mixed oxide catalyst using facile sol-gel chemistry.
Nanovanadia-supported nickel manganese oxide shows
high activity and stability for the oxidation of benzyl al-
cohol using molecular oxygen as a source of oxygen. A
synergistic effect between optimum calcination tempera-
tures and the chemical kinetics of the reaction was ob-
served, and it was confirmed that calcination temperature
plays an important role forming an active and durable
catalyst. It can be believed that this catalyst can be fur-
ther used for the evaluation of its oxidative property for
the synthesis of other important aromatic and aliphatic
aldehydes.
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