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Lithium ionic conduction and relaxation dynamics
of spark plasma sintered LisLasTa,04, garnet
nanoceramics

Mohamad M Ahmad '~

Abstract

In the present work, nanoceramics of LisLasTa,O;5 (LLT) lithium ion conductors with the garnet-like structure are
fabricated by spark plasma sintering (SPS) technique at different temperatures of 850°C, 875°C, and 900°C (SPS-850,
SPS-875, and SPS-900). The grain size of the SPS nanoceramics is in the 50 to 100 nm range, indicating minimal
grain growth during the SPS experiments. The ionic conduction and relaxation properties of the current garnets are
studied by impedance spectroscopy (IS) measurements. The SPS-875 garnets exhibit the highest total Li ionic conductivity
of 1.25x 107° S/cm at RT, which is in the same range as the LLT garnets prepared by conventional sintering technique. The
high conductivity of SPS-875 sample is due to the enhanced mobility of Li ions by one order of magnitude compared to
SPS-850 and SPS-900 ceramics. The concentration of mobile Li* ions, n., and their mobility are estimated from the analysis
of the conductivity spectra at different temperatures. n. is found to be independent of temperature for the SPS
nanoceramics, which implies that the conduction process is controlled by the Li* mobility. Interestingly, we
found that only a small fraction of lithium ions of 3.9% out of the total lithium content are mobile and contribute to

the electric modulus formalism.

the conduction process. Moreover, the relaxation dynamics in the investigated materials have been studied through
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Background

LisLa3TayO;, (LLT) lithium ion conductors with the garnet-
like structure have received considerable research interests
due to their electrical, electrochemical, and mechanical prop-
erties [1-13]. These materials have good ionicconductivity in
the range of 107® S/cm at RT with small contributions from
the grain boundaries and negligible electronic conductivity
[1-3]. Lithium conducting garnets are also electrochem-
ically stable in contact with lithium metal and other com-
mon electrodes and are also stable in ambient atmosphere
[1-3]. These properties make LLT garnets promising alter-
natives for the hazards organic and polymer-based lithium
electrolytes in lithium ion batteries produce. However, the
recorded ionic conductivity values of LLT materials are
much lower than the organic/polymer-based lithium
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electrolytes. Therefore, extensive research work is de-
voted to enhance the ionic conductivity in LLT con-
ducting garnets. The most used strategy to enhance
the conductivity is by chemical substitutions either by
divalent cations on the La sites (such as LigALa,.
Ta;O1,5, A =Ba, Ca, Sr, Mg, [2-9]) or by trivalent cat-
ions on the Ta sites (such as Lis, s LasTas (Y, Oq, [10]).
By this strategy, the conductivity could reach a value
of 107° to 10™* S/cm at RT [2-10]. Moreover, the ionic
conductivity of LLT garnets could be influenced by the
preparation techniques (solid state reaction or sol-gel
techniques) and processing conditions including the
temperature of calcinations and sintering steps [1-11].

Another route to influence the ionic conductivity of
ionic conducting materials is through modifying the
microstructure. In several examples, the ionic conduct-
ivity increases for nanostructured materials such as
CaF,-BaF, fluoride ion conductors [14], CeO, oxide ion
conducting nanoceramics [15,16], and nanocrystalline
LiNbO3; and LiTaO; lithium ion conductors [17,18].
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However, this is not straightforward since the ionic con-
ductivity was found to decrease in other materials when the
grain size is reduced [19]. Although nanocrystalline powder
of LLT lithium garnet materials have been prepared by sol-
gel techniques with a grain size of 100 to 200 nm, the grain
size increases considerably to 3 um after sintering the sam-
ple at 900°C for 5 h [11]. A similar behavior was also ob-
served in LigBaLa,Tay,O;, garnet materials [9]. The grain
growth of the nanopowder is due to the conventional sin-
tering which includes heating at high temperatures for
long durations. Therefore, other innovative sintering
techniques such as spark plasma sintering (SPS) could
overcome these drawbacks and yield nanoceramic mate-
rials [15,16,20-23]. SPS experiments, which are performed
at a lower temperature and for short time duration (within
few minutes) compared to conventional sintering, can
successfully minimize grain coarsening during the sinter-
ing process that leads to successful fabrication of dense
nanomaterials. SPS is widely used to sinter a variety of
conducting and non-conducting materials including lith-
jum ion conductors, such as NASICON-type LiTiy(POy)3
and LiHf,(PO4)3; [21,22], perovskite LizLa,/3,TiO3
[23], and garnet type LisLazBi,O;, lithium ion conductors
[24].

In the current work, we synthesize the nanocrystalline Li*
ion conductor LLT by a combination of mechanical milling
and solid state reaction techniques. The prepared nanopow-
der is sintered by spark plasma sintering at different temper-
atures. The microstructure, the ionic conduction, and
relaxation properties will be studied in details.

Methods

LLT was prepared by a combination of mechanical milling
and solid state reaction techniques. Stoichiometric amounts
of Li,CO3 (with 10 wt% excess of Li,CO3; was added to
compensate for lithium loss at high temperatures), Ta,Os,
and La,Oj3 (dried at 900°C overnight) were mixed together
and calcinated at 700°C for 12 h. Before and after the cal-
cination step, the powder was ball milled in 2-propanole
for 12 h using tungsten carbide balls (10 mm diameter) and
pots with a rotation speed of 350 rpm. The ratio of balls to
powder mass was kept 10:1. The dried powder was then
spark plasma sintered at different temperatures. In the SPS
experiment, the product powder was sintered at 850°C,
875°C, and 900°C (call the samples SPS-850, SPS-875, and
SPS-900, respectively) using SPS 4 - 10 system (4,000 amp,
10 tons: Thermal Technology LLC, Santa Rosa, USA). The
SPS experiments were performed by using graphite die of
20 mm diameter under 60 MPa pressure with a heating rate
of 100°C/min. The samples were first heated to 450°C and
kept at this temperature for 5 min, and then the temperature
was raised to the final sintering temperature. The dwelling
time was fixed to 10 min followed by rapid cooling.
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Powder X-ray diffraction and scanning electron mi-
croscopy measurements were performed for structural
characterization of the materials. X-ray diffraction (XRD)
data were collected over the 0<20<100 range using a
Stoe Stadi-P Image Plate, IP, (Stoe and Cie GmbH, Darm-
stadt, Germany), with monochromated Cu Kal radiation
O\ =1.5406 A). Scanning electron microscopy (SEM) mea-
surements were performed by JEOL SM7600F (JEOL Ltd.,
Akishima-shi, Japan) field emission scanning electron
microscope in order to determine the grain size of the
product materials. The electrical and relaxation properties
were studied by impedance spectroscopy (IS) measure-
ments performed on the sintered materials using Novo-
control concept 50 system in the 1 to 10’ Hz frequency
range. The IS measurements were performed in the 200
to 400 K temperature range where the temperature was
controlled by the Quatro cryosystem.

Results and discussion

X-ray powder diffraction patterns of the investigated ma-
terials are shown in Figure 1. All the spark plasma sintered
samples show similar XRD patterns as the standard pat-
terns of LLT with no secondary phases observed [1]. The
SEM micrographs of the sintered ceramics are shown in
Figure 2, which indicates that the SPS-850, SPS-875, and
SPS-900 LLT ceramics have nano-sized grains with a grain
size of 50 to 100 nm. These results indicate that spark
plasma sintering produces nanoceramics of LLT garnet
materials with considerably reduced grain size compared
to the conventionally sintered ceramics that usually have
coarse grained ceramics with grain size in the micrometer
range [5,9,11].
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Figure 1 XRD patterns of LisLasTa,0,, powder and SPS
nanoceramics.
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Figure 2 SEM micrographs of SPS LLT nanoceramics. (a) SPS-850, 5
(b) SPS-875, and () SPS-900 LLT garnets. The bar in the figures
is 100 nm.
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The electrical properties of the investigated materials 2'(Q CIn)X106

have been studied through impedance spectroscopy mea- i N ] ox impedance di
surements. Representative complex impedance diagrams igure 3 Representative complex impedance diagrams at
£ th . h I ) different temperatures of SPS LLT nanoceramics. (a) SPS-850,
of the SPS ceramics are shown in Figure 3 at selected tem- (b) SPS-875, and (c) SPS-900 nanoceramics.
peratures. The impedance diagrams show one semicircle




Ahmad Nanoscale Research Letters (2015) 10:58 Page 4 of 10
® SPS-850 0T 0 230K @)
s O SPS-875 A
O SPS-900 \Y
T+
o
§or 5
2 2.8
© ©
g8 g
-9
10 -
-10
] ] ] ] ]
2.5 3.0 35 4.0 4.5
1000/T (K™
Figure 4 The temperature dependence of the ionic conductivity
for the SPS samples. -6
at the high frequency region that could not be separated
to grain and grain boundary contributions. Therefore, the 7
intercept of the semicircle with the real axis represents the E
total (grain + grain boundary) ionic conductivity. At low £
frequencies, a large spike is observed which originates 50'8
from electrode polarization effects and becomes more °
prominent at higher temperatures. The temperature de-
pendence of the ionic conductivity of the SPS samples is -9
shown in Figure 4. The values of the total conductivity at
27°C for the investigated materials are listed in Table 1.
The total ionic conductivity first increases by one order of -10
magnitude with increasing the SPS temperature from a
value of 2.98x1077 S/cm for the SPS-850 sample to
1.25 x 10°° S/cm for the SPS-875 sample. With further in- -6
crease of the SPS temperature to 900°C, the conductivity
drops to 1.3x 1077 S/cm. The conductivity value of the
SPS-875 nanoceramics in the present work is similar to
the values reported previously for conventionally sin- 7
tered LLT samples prepared either by solid state reac- 0
tion or sol-gel techniques and sintered at 950°C and >
900°C, respectively [1,11]. I;’-S
Table 1 The conductivity and the activation energy of ioﬂ
SPS LLT nanoceramics
Oy (S/cm) AE (eV) AE(eV) E;(eV) Ey(eV) Ep(eV) En(eV) -9
<350K >350 K
SPS-850 298x107 067 058 067 065 065 067
SPS875 125%10° 064 052 061 059 059 064 10 } } } } } }
SPS900 13x107 069 061 072 072 072 069 !

The dc conductivity o4c at 27°C and the associated activation energy AE at
the low- and high-temperature regions of the SPS LLT garnet nanoceramics.
The activation energy values determined from the conduction E,, the hopping
frequency Ey, the diffusion coefficient Ep, and the electric modulus relaxation
time E,, are also summarized.

3 4 5
log o (rad/s)

Figure 5 The conductivity spectra at different temperatures.
(@) SPS-850, (b) SPS-875, and (c) SPS-900 samples. The solid curves
are the best fits according to Equation 3.
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The conductivity data in Figure 4 shows two straight-
line regions for the all studied samples with different
values of activation energy. It is interesting mentioning
that the conductivity data in the literature of most lith-
ium conducting garnets are treated as a single straight
line region with a single activation energy value, despite
the clear curvature of the conductivity data especially at
high temperatures [1-11]. Recent conductivity and NMR
studies on LigsLaysBagsZrTaO;, garnets showed two
temperature regions with activation energy values of
0.57 and 0.37 e.V for the low- and high-temperature re-
gions, respectively [25]. The conductivity data in Figure 4
could be fitted by the Arrhenius relation:

o= o ew (- %) (1)

where o, is the pre-exponential factor, k is Boltzman
constant, and AE is the activation energy for the ionic
conduction. The values of the activation energy deter-
mined from the conductivity data are summarized in
Table 1. It is noticed from this table that the activation
energy values of the low-temperature region (<350 K)
are higher than in the high-temperature region, with the
SPS-875 sample showing the lowest activation energy.
The presence of two thermally activated regions may
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indicate a change in the conduction mechanism with in-
creasing temperature [25].

In order to understand the conduction behavior of the
investigated materials, it is essential to determine the pri-
mary factors that control the ionic conduction process.
The dc conductivity could be described by the following
relation:

Ogc = €Nl (2)

where e is the electronic charge, n, is the concentration of
mobile charge carriers, and y is the charge carriers' mobil-
ity. Therefore, the primary factors that influence the ionic
conduction process are the concentration and mobility of
Li* ions. Here, we can estimate the concentration of the
mobile Li" ions 7. and their mobility 4 through the ana-
lysis of the frequency dependence of the real part of the
complex conductivity. The conductivity spectra of differ-
ent ionic conductors are usually analyzed by a power-law
model of the form [26],

o'(@) = oa[l+ (0/w)"], (3)

where o is the angular frequency, # is the power-law ex-
ponent, and w, is the crossover frequency from the dc to
the dispersive conductivity region. The dc conductivity in

Table 2 The parameters of the conduction process in SPS LLT garnet nanoceramics

T (K) 0Ogc (S/cm) wy (Hz) n ne (em™3) u(em?Vv's™) D (cm?s™)
SPS-850

230 1.15%107'° 487 x 10 060 6.08x 10% 118x107"2 234x 107"
240 416x107"° 168x10° 060 6.62x10% 392x 10712 811x 10"
250 145%107° 521x10° 060 778 % 10%° 116x107" 251%x 107"
260 532x107° 193x10* 061 799 % 10% 416x 107" 931x 10 "2
270 1.75%10°® 6.10x 10* 062 865x10% 126x107'° 294x 10712
SPS-875

220 147x107'° 590% 10° 061 6.13%10% 150 107" 284x 107"
230 537x107"° 212%10° 061 6.50x 10% 516x 1072 102x107"3
240 183x107° 648 x10° 061 756 % 10%° 151x 10" 312x107"
250 6.44% 1077 232x10° 062 7.74%10% 519%x 107" 1.12x107"2
260 218x 1078 733%10* 062 864 x10% 1571070 353%x 1072
SPS-900

240 128x107'° 488 x 10 060 7.02%10% 114x107" 235%x 107"
250 463x107'° 183x10° 062 7.07 % 10% 409x 107" 880x 10"
260 169%107° 6.36% 10° 0.64 7.71%10% 137x107" 306x 107"
270 597x107° 230x 10" 066 7.81%10% 477x107" 111x107"2
280 185x107° 6.83x 10* 064 845x10% 137x1071° 330x 102

The values of the dc conductivity oq4., the hopping frequency wy, the exponent n, the concentration of mobile Li ions n., the mobility u, and the diffusion
coefficient D are summarized for the SPS LLT garnet nanoceramics at different temperatures.
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Equations 2 and 3 could be given by the Nernst-Einstein
relation;

n.e?yA?

kT O (4)

Ode = encih
where y is a geometrical factor for ion hopping, A is the
hopping distance, and wy is the hopping frequency of
mobile ions. The crossover frequency w,. represents a
good estimate of the true hopping frequency of mo-
bile ions, wy [27-30]. Therefore, we have analyzed the
conductivity spectra of the investigated materials
using Equation 3 in order to determine the values of
4. and we.

The fitting results of the conductivity data are shown
as solid curves in Figure 5a,b,c for SPS-850, SPS-875,
and SPS-900 garnet nanoceramics. The extracted values
of 0,4, wy and n are summarized in Table 2, and the
temperature dependence of o, and wy is shown in
Figure 6. Both n. and wy of mobile Li" ions may be
thermally activated and could be written as [28]

n. = nyg Exp <— kE—; >, (5a)
E
WH = g Exp <— ﬁ ), (Sb)

where E. and Ey are the activation energies for the cre-
ation and migration of charge carriers, respectively. It is
observed from Equations 4 and 5 that the activation en-
ergy of the dc conductivity is E; = E. + Ey. The activation
energy values for the ionic conduction, E; and for ion
hopping, Ey, determined from the straight-line fits of
the data in Figure 6 are listed in Table 1 for the SPS gar-
net nanoceramics. The close agreement of E; and Ey
leads to a value of E. ~ 0 e.V, indicating that the concen-
tration of mobile Li* ions, n,, is independent of temperature
[27-30]. Since 7. is independent of temperature for each
SPS sample, then the ionic conduction in these materials is
controlled by the mobility of mobile Li* ions.

The values of 7, for mobile Li* ions in LLT nanocera-
mics have been estimated using Equation 4, with a hop-
ping distance as short as 1 = 1.7 A has been used [31].
The estimated values of n. at different temperatures for
the investigated materials are listed in Table 2. We no-
tice that the values of n. for all the SPS LLT ceramics
are almost independent of temperature with average
values of 7.42 x 10%, 7.31 x 10%, and 7.61 x 10*° cm™
for SPS-850, SPS-875, and SPS-900 nanoceramics, re-
spectively. These results show that the values of n, for all
the SPS LLT garnets are almost the same. Therefore, the
enhanced conductivity of SPS-875 ceramics by about one
order of magnitude compared to SPS-850 and SPS-900
samples is due to the enhanced Li ionic mobility/hopping
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frequency as observed in Figure 6b and Table 2. There are
different factors that may affect the mobility of Li ions in
garnet materials processed by spark plasma sintering in-
cluding the grain size, the grain-to-grain bonding, the pos-
sible loss of Li at high sintering temperatures, and the
possible formation of secondary insulating phases in the
materials [20]. The enhanced mobility/conductivity in
SPS-875 ceramics compared to SPS-850 could be due to
the improved grain-to-grain bonding with increasing the
SPS temperature [20-23]. With further increasing the
SPS temperature, partial decomposition and/or loss of
Li could occur, which may lead to the formation of
minor impurity phases in the materials [20,32,33].
These features could be the reasons for the drop of the
conductivity for SPS-900 ceramics. Similar dependence
of the Li ionic conductivity on the SPS temperature
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Figure 6 The temperature dependence of o4 and wy of the
SPS lithium conducting garnets. o4 and w; have been
determined from the fitting of the conductivity spectra in Figure 5.
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was observed for LisLazgNb,O,, and Li;3Alg3Ti; 7
(PO4)5 ceramics [33,34].

It is interesting to compare the values of n. with that
of the total density N of Li* ions, which is calculated
using the relation; N =m/V, where m is the number of
lithium ions per unit cell (m =40 in LLT) and V is the
volume of the unit cell. Using a lattice parameter value
of 12.804 A [1] gives a value of N of 1.91 x 10> cm ™2,
Accordingly, the ratio of the concentration of mobile Li*
ions, n,, to the total Li* density, N, is about 3.9% in the
spark plasma sintered LLT nanoceramics.

The diffusion coefficient, D, of Li" ions could be esti-
mated from the following relation:

e n,

kT

Odec = D (6)

The values of the mobility # and the diffusion coeffi-
cient D of mobile Li* ions in the SPS LLT garnets have
been calculated using Equations 2 and 6, respectively.
The values of y and D at different temperatures are
listed in Table 2. Moreover, the temperature dependence
of D for different SPS LLT nanoceramics is shown in
Figure 7. The diffusion coefficient is thermally activated
with the same activation energy of the conduction
process as is observed in Table 1. The extrapolation of
the diffusion coefficient to RT (27°C) gives a value of D
of 436 x 107", 1.11 x 107'%, and 2.37 x 10™"! ecm” 57" for
SPS-850, SPS-875, and SPS-900 samples, respectively.
These values of D are two to three orders of magnitude
lower than Li superionic conductors (D ~107% cm? s7%)
that exhibit ionic conductivity values of >10™ S/cm at
RT [35].
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Figure 7 The temperature dependence of the diffusion coefficient
D of the SPS garnets.
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Figure 8 The electric modulus spectra at different temperatures.
(a) SPS-850, (b) SPS-875, and (c) SPS-900 garnet nanoceramics.
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The relaxation dynamics of Li* ions in SPS LLT nano-
ceramics are studied through the frequency dependence
of the electric modulus formalism. The electric modulus
is related to the impedance by the relation:

M'(0) = joCoZ' (o) 7)

where C, = ¢, A/d is the capacitance of a free sample cell
with electrode aria A and electrode separation d, and
€0 = 8.854 x 107'* F/cm is the permittivity of free space.
The frequency dependence of the imaginary part of the
electric modulus, M", at different temperatures is shown in
Figure 8a,b,c for the investigated garnet materials. Well-
defined peaks are observed in the modulus spectra. These
peaks represent re-orientation relaxation process of mobile
Li" ions [10]. The low-frequency side of the peaks is the re-
gion where Li" ions are capable to form successful hopping
from one site to the next, whereas the high frequency side of
the peak is where Li" ions can perform local (re-orientation)
motion only [36]. The peak positions in the modulus spectra
shift toward high frequency with increasing temperature, in-
dicating a thermally activated relaxation process [36]. The
most probable conductivity relaxation time is determined
from the frequency of the peak according to the relation:

Tpr = 1/27f a0 Where [, is the frequency at peak max-
imum. The temperature dependence of the relaxation time
of the investigated materials is presented in Figure 9 and
could be expressed in the following Arrhenius relation:

e, p(f_;> (8)

1o sps-8s50
B SPS-875
2" @ SPS-900
3+
E
(=
g -or
6+
T+
-8k I I I I
3.0 3.5 14.0 4.5
1000/T (K )
Figure 9 The temperature dependence of the conductivity
relaxation time for the SPS garnets.
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where 1, is the pre-exponential factor and E,,, is the acti-
vation energy of the relaxation process. The values of E,
are summarized in Table 1 and agree with the activation
energy of the ionic conduction process in the low-
temperature region. This agreement indicates that mo-
bile Li" ions are responsible for both the long-range
transport and re-orientation relaxation process in the
garnet materials.

The modulus scaling of the investigated SPS garnets
have been performed using M, . and f.x as the scaling
parameters of the M’ and the frequency axes, respect-
ively. The results of the scaling processes at different
temperatures for the SPS LLT ceramics are shown in
Figure 10. The modulus spectra at different tempera-
tures are superimposed into a single master curve for
each sample, indicating that the relaxation process is in-
dependent of temperature. The full width at half max-
imum (FWHM) has similar values of 1.77 decades for
the SPS-850, SPS-875, and SPS-900 nanoceramics. These
values are larger than that of the ideal Debye relaxation
(FWHM of 1.14 decades, ref. [37]), which suggests a dis-
tribution of relaxation times due to disordering nature in
the current lithium garnet nanoceramics. Scaling of the
modulus spectra of the different SPS ceramics together at
different temperatures is shown in Figure 11. This figure
shows that the modulus spectra of all the samples are
merged into a single master curve, implying that the stud-
ied materials exhibit similar relaxation processes.

Conclusions
The present study confirmed that spark plasma sintering
is a powerful technique to fabricate nanoceramics of
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different types of materials including lithium conducting
garnets. Nanoceramics of LisLazTa;O1, lithium conduct-
ing garnets with grain size of 50 to 100 nm have been
achieved by SPS experiments at 850°C, 875°C, and 900°C
for a short dwelling time of 10 min. SPS-875 sample
shows the highest ionic conductivity of 1.25 x 107 S/cm
at RT. The ionic conductivity exhibits two temperature
regions with different activation energy, which suggests
changing the conduction mechanism at high tempera-
tures. The parameters that usually control the ionic con-
duction, the concentration and mobility of mobile ions,
have been estimated. The concentration of mobile Li"
ions is independent of temperature; therefore, the en-
hanced conductivity is attributed to the enhanced mobil-
ity of Li* ions. The fraction of Li" ions that is mobile
and participates in the conduction process surprisingly
represents a small percentage of only 3.9% out of the
total density of Li content in the current LLT garnets.
The relaxation processes in the SPS garnet nanoceramics
are found to be independent of temperature, and the
conduction and relaxation processes are thermally acti-
vated by the same activation energy, which implies that
Li* ions are the origin of both the long-range transport
as well as the short-range (local) reorientation relaxation
in the garnet materials.
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