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A b s t r a c t
Objectives: Rule-based expert exposure assessment based on questionnaire response patterns in 
population-based studies improves the transparency of the decisions. The number of unique response 
patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of 
patterns that need assessment using expert opinion, but each expert may identify different patterns of 
responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a 
systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to 
obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify 
groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated 
whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel 
exhaust exposure.
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Methods: Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster 
models to the diesel-related variables extracted from the occupational history and job- and industry-
specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 
jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure 
scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational 
history and module responses to diesel-relevant questions. For each subset, we varied the numbers of 
clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. 
Using previously made estimates of the probability (ordinal), intensity (µg m−3 respirable elemental 
carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined 
the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters’ 
homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized 
probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and 
continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) 
between each job’s estimate and the mean estimate for all jobs within the cluster.
Results: Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of 
the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 
when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster 
variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an 
expert to assign exposure at the cluster-level assignment and then to review each job in non-homogene-
ous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique question-
naire patterns or 14 983 individual jobs.
Conclusions: This proof-of-concept shows that using cluster models as a data reduction step to identify 
jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based 
assessment by systematically reducing the number of exposure decisions needed. While promising, 
additional research is needed to quantify the actual reduction in exposure decisions and the result-
ing homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains 
cluster-level expert assessments as part of the assessment process.

K e y w or  d s :    case–control studies; diesel exhaust; hierarchical clusters; occupational exposures

I n t r o d u c t i o n
In case–control and population-based cohort studies, 
occupational information is typically collected using 
questionnaires that elicit the subjects’ lifetime work 
histories and, in some studies, using job- and indus-
try-specific modules to obtain detailed questions on 
work tasks, location, and the chemicals, tools, and 
equipment used. The responses are usually reviewed 
job-by-job by an exposure assessor to assign exposure 
estimates for the agents of interest. Because the infor-
mation is collected systematically, expert-based deci-
sion rules are being developed that link questionnaire 
response patterns to exposure decisions to automate 
the exposure assessment (Fritschi et al., 2009; Behrens 
et  al., 2012; Pronk et  al., 2012; Friesen et  al., 2013; 
Wheeler et al., 2013; Carey et al., 2014; Friesen et al., 
2014b; Peters et al., 2014). These decision rules make 
the exposure assessment process more efficient and 
transparent. They also provide a mechanism to repli-
cate decisions in other studies.

One of the challenges in developing decision rules is 
that there can be nearly as many permutations of ques-
tionnaire response patterns as there are jobs in the study. 
Many of the permutations are rare or not observed in a 
given study population, in part because skip patterns in 
the questionnaires result in only subjects with a particu-
lar response to a question (parent question) being asked 
nested follow-up questions (child questions). Thus, it is 
not efficient to develop rules for all potential patterns. 
In efforts to develop decision rules, exposure assessors 
generally use their judgment to identify a questionnaire 
response pattern that would suggest the same exposure 
estimates and, correspondingly, identify response pat-
terns that would result in different exposure estimates. 
However, two or more exposure assessors indepen-
dently developing decision rules may identify different 
questionnaire response patterns requiring exposure 
decisions because each may weigh the aforementioned 
information differently. As a result, a systematic, trans-
parent data reduction step is needed.
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One potential approach to reduce the number of 
questionnaire permutations that need evaluation, 
prior to employing expert opinion, is to use cluster-
ing methods to identify response patterns that are 
very similar, but not necessarily completely identical. 
Clustering methods can be used to identify natural 
groupings, or clusters, of observations when no out-
come (i.e. an exposure metric) is available. A variety of 
statistical approaches to identify clusters of observa-
tions have been developed and applied in a wide range 
of settings, including genomics, identification of dis-
ease subgroups, handwriting recognition, and image 
segmentation (Garcia-Aymerich et  al., 2011; Maulik 
and Sarkar, 2013; Yoshioka et al., 2013). The goal of 
clustering methods is to partition the observations 
into mutually exclusive clusters, such that observa-
tions that are similar are grouped into the same cluster 
and observations that are dissimilar are grouped into 
different clusters. In the only occupational example we 
found, Hines et al. (1995) used hierarchical clustering 
methods to identify that workers in a cohort of semi-
conductor workers with potential exposure to 14 cor-
related exposure agents could be organized into three 
distinct groups, where workers within a group were 
exposed to the same group of agents.

In this paper, we describe a proof-of-concept study 
that applies cluster models to occupational informa-
tion available within a case–control study to group 
the nearly 15 000 jobs reported by study subjects into 
groups with similar questionnaire responses (i.e. clus-
ter). We then evaluated whether the jobs within a clus-
ter had similar exposure estimates using previously 
made exposure estimates (Pronk et  al., 2012). These 
evaluations were conducted as a first step in deter-
mining the utility of clustering models to facilitate 
rule-based occupational exposure assessment in case–
control studies. We believe that the cluster models 
could be used, prior to obtaining expert estimates of 
exposure, to identify groups or ‘clusters’ within similar 
response patterns, as we report in a recent conference 
abstract (Friesen et  al., 2014a). The exposure assess-
ment could then be conducted in two stages, where 
first the experts provide cluster-level estimates based 
on each cluster’s profile of occupational responses, and 
then followed with a one-by-one expert review of a 
subset of jobs identified to be in a cluster that had vari-
able exposure estimates, thereby potentially reducing 
the number of exposure decisions to be made. Because 

the utility of clustering methods in this context is 
unknown, our goal in this paper was to provide initial 
insights into the potential use of clustering methods 
to assist in the process of developing exposure deci-
sion rules for case–control studies and to provide sup-
port for using clustering methods as a component of 
future exposure assessment efforts. The application 
of a hierarchical cluster model to assist the exposure 
assessment process, including having experts provide 
cluster-level exposure assignments, will be reported 
separately.

M at e r ia  l s  a n d  M e t h o d s

Model overview
Many clustering methods exist to group observations 
in the absence of an outcome measure (Hartigan, 
1975; Hastie et al., 2003; Everitt et al., 2011). We chose 
agglomerative (bottom-up) hierarchical methods 
because they can easily incorporate the hierarchical 
nature of the responses to the occupational question-
naires (i.e. parent/child questions). In this bottom-up 
approach, each observation (i.e. job) begins as a sepa-
rate ‘cluster’ (i.e. as many clusters as jobs). At each step, 
the clustering algorithm combines the two most simi-
lar clusters, continuing until all observations belong to 
a single cluster.

Before implementing a hierarchical clustering 
model, one chooses both a linkage criterion to deter-
mine which two clusters to combine at each step 
and a distance measure to evaluate the similarity of 
the input variables (here, questionnaire responses) 
between each observation (here, jobs). Several link-
age methods are available in standard software, such 
as complete-linkage, average-linkage, and Ward’s link-
age methods (StataCorp L, 2009). We explored these 
three methods in preliminary analyses. Both com-
plete-linkage and average-linkage methods identified 
only groups of jobs with exactly the same response 
and thus was nearly equivalent to evaluating all unique 
questionnaire response patterns; as a result, neither 
method was explored further. Ward’s linkage was the 
only method of the three examined that led to dimen-
sion reduction, our main goal, and thus the only one 
examined in detail here.

Ward’s linkage is most commonly used with the 
Euclidean squared distance measure (StataCorp L, 
2009). At each step, Ward’s linkage combines the two 
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clusters, Cm and Ck, into one cluster Cl, that minimizes 
the total within-cluster squared error. The within-clus-
ter quared error S( )Cl

2  of the lth cluster is defined as:
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where | |Cl  is the number of observations in clus-
ter Cl, P is the number of variables measured for each 
observation, xip and xjp denote the pth variable corre-
sponding to observations i and j. The total within-clus-
ter squared error is the sum of within-cluster squared 
error over all K clusters (Ward, 1963; StataCorp L, 
2009):
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Study population and occupational exposure 
information

Our study included the 1213 cases and 1418 controls, 
who reported 14 983 jobs, from the New England 
Bladder Cancer Study (Colt et  al., 2011). Each sub-
ject completed a lifetime occupational history ques-
tionnaire that, for each job held, asked the job title, 
name and location of employer, type of service or 
product provided, year job started and stopped, work 
frequency (days per week, hours per day, months per 
year), principal work tasks and duties, tools and equip-
ment used, and chemicals and materials handled. Two 
supplementary questions were also asked for each 
job: ‘while on this job, did you ever work near diesel 
engines or other types of engines’ and ‘did you ever 
smell diesel exhaust or other types of engine exhaust?’ 
For 64% of the jobs, information provided in the occu-
pational histories triggered any of 67 job- or industry-
specific modules that asked the subject more detailed 
questions about tasks and work activities related to 
exposure to diesel exhaust and other agents.

The occupational history and module questions 
were previously reviewed to identify questions that 
were directly or indirectly related to diesel exhaust 
exposure as part of the process to develop and extract 
decision rules, and is described elsewhere (Friesen 
et  al., 2013; Wheeler et  al., 2013). Briefly, the occu-
pational histories provided three types of exposure 
information: (i) subject self-report of whether he or 

she worked near diesel or other engines or smelled 
diesel or other engine exhaust in that job (one vari-
able); (ii) job-related questions extracted from job, 
industry, and the open-ended questions, that resulted 
in variables such as ‘job had traffic exposure’ and ‘job 
used diesel-fueled equipment’ (50 variables); and 
(iii) standardized industry classification codes (SIC) 
and standardized occupational classification codes 
(SOC), which were dichotomized and restricted to 
those expected by an industrial hygienist to have >5% 
of workers exposed to diesel exhaust (at three-digit 
level: 87 diesel-exposed SIC variables; 71 diesel-
related SOC variables, 1 variable indicating any of 
the 87 diesel-exposed SIC, 1 variable indicating any 
of the 71 SOC). The modules provided two types 
of exposure information: (i) assigned module [67 
dichotomous variables indicating module, 1 variable 
indicating module included questions related to diesel 
exhaust (hereafter, diesel-relevant module)]; and (ii) 
diesel-relevant module questions (154 dichotomous 
or continuous variables).

Each variable does not necessarily represent a sin-
gle question, as the same question could have been 
asked across multiple modules and were thus merged. 
Similarly, questions with categorical responses 
were converted into a set of dichotomous variables. 
Questions that were not asked of all subjects were 
usually coded into two variables, one that indicated 
whether the question was asked (any response = 1; not 
asked = 0) and a second that indicated the response to 
that question (i.e. 1 = yes or number >0, 0 = no, 0, or 
not asked). For the 50 questions that occurred across 
multiple modules, ‘not asked’ was assigned ‘−1’ rather 
than coded as a second variable to maximize the dis-
crimination between those asked or not asked these 
key questions.

We re-coded continuous variables to approxi-
mate a 0–1 scale (or −1 to 1 scale) so that all vari-
ables had approximately equal weights because 
cluster models can be sensitive to the scale of the 
variables (Hennig and Liao, 2013). Units of hours 
per week were divided by 40 to re-code the variable 
into units of ‘proportion of 40 hour work week’; a 
small number of responses exceeded 1 when the 
subject reported working >40 h per week. Ordinal 
variables (i.e. low, medium, and high) were centered 
on the middle category and re-coded to −1, 0, and 
1, respectively.
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Cluster model development
Due to known structures within the data, the jobs 
were split into three subsets that varied in the amount 
and type of occupational information: (i) jobs without 
a diesel-relevant module that had no variable indicat-
ing a possible diesel exhaust scenario (n = 5929, 40%); 
(ii) jobs without a diesel-relevant module but with at 
least one variable with a response indicating a possible 
diesel exhaust scenario (hereafter, shortened to ‘jobs 
without diesel-relevant modules’, n  =  5396, 36%); 
and (iii) jobs with a diesel-relevant module (n = 3658, 
24%). Jobs in the first subset were assumed unexposed 
because of the absence of any variable suggesting an 
exposure scenario and therefore no clustering analysis 
was performed. Cluster models were developed sepa-
rately for the latter two subsets.

Hierarchical cluster models were developed 
using the ‘cluster wardslinkage’ command with the 
Euclidean squared distance measure (L2) in Stata 
S.E. v11.2 (StataCorp LP, College Station, TX, USA) 
using the available occupational information, but no 
exposure estimate. Cluster models for jobs without 
diesel-relevant modules used all diesel-related varia-
bles obtained from the occupational history responses. 
Cluster models for jobs with diesel-relevant modules 
incorporated both the occupational history and mod-
ule diesel-related variables.

Evaluating within-cluster variability in exposure
The greatest challenge when working with cluster-
ing methods is determining how many clusters is 
‘enough’ because of the absence of an outcome vari-
able. Although there are some stopping rules based 
on statistical properties (Tibshirani et al., 2001), it is 
generally up to the user to identify a sufficient num-
ber of clusters depending on the purpose of analysis. 
We focused our stopping rules on a practical question: 
how many clusters would an exposure assessor be able 
to evaluate in a reasonable time period? Thus, in the 
evaluations described below, we varied where we trun-
cated each cluster tree, such that the jobs in each subset 
were grouped into varying numbers of clusters ranging 
from 100 clusters representing broad groupings higher 
up in the cluster tree (at 10–15 min per scenario, esti-
mated 2  days for cluster-level assessment) to 1000 
clusters representing more detailed groupings lower 
in the cluster tree (estimated 6–8 weeks). These time 
estimates do not include the likely needed second 

stage review, one-by-one review of jobs in heterogene-
ous clusters, which will be a function of the number 
of clusters used and the ability of the cluster models 
to identify similar exposure scenarios based on ques-
tionnaire response patterns (described in the section 
‘Estimated number of exposure decisions’).

To gain insight into whether the cluster models 
identified groups of jobs that would be assigned the 
same values for the exposure metrics, we used previ-
ously developed algorithm-based estimates of prob-
ability, intensity, and frequency of exposure (Pronk 
et  al., 2012) that were independent of the clustering 
model process. Briefly, Pronk et al. (2012) developed 
consensus decision rules for occupation-, industry-, 
source-, and time period-specific exposure scenarios 
and then linked those scenarios to questionnaire 
response patterns in the occupational histories and 
modules to obtain an algorithm-based probabil-
ity, intensity, and frequency estimate for each job. 
Probability was estimated as the expected proportion 
of workers likely exposed to diesel exhaust for that sce-
nario, with cut points of <5, 5–49, 50–79, and ≥80% 
and assigned values 0, 1, 2, and 3, respectively, in the 
calculations described below. Intensity was estimated 
as the average level of respirable elemental carbon (µg 
m−3) after review of the published monitoring data. 
Frequency was estimated as the average number of 
hours per week exposed to diesel exhaust. The rules 
were provided as supplementary material in Pronk 
et al. (2012). These exposure estimates were not used 
in the cluster model building process.

We evaluated the within-cluster variability using the 
algorithm-based estimates in two ways. First, we dichoto-
mized the probability metric based on two definitions of 
exposure status (≥5 versus <5% probability; ≥50 versus 
<50% probability) and defined a cluster as ‘homogene-
ous’ if ≥75% of the jobs were assigned the same exposure 
status. We then calculated the proportion of clusters that 
were homogeneous at varying numbers of clusters (100 
to 1000). Because ‘homogeneity’ was an arbitrary con-
struct, we also examined the impact of using more or less 
stringent definitions of homogeneity using cumulative 
distribution plots of the proportion of homogeneous 
clusters. Second, to assess the within-cluster variability 
for the metrics using a continuous scale, we calculated 
the intraclass  correlation coefficient (ICC) between 
the job estimates and the cluster mean (mean of the job 
estimates for all jobs assigned the same cluster). ICC is 
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the ratio of the variability between cluster means to the 
total variability in the data, where the values approach 
1 as clusters become more homogeneous. ICCs were 
calculated using one-way analysis of variance models 
developed separately for cluster sizes increasing in incre-
ments of 100 from 100 to 1000 clusters per subset, with 
the cluster ID used as the grouping variable. ICCs for 
the probability metric were calculated based on all jobs 
within the subset. ICCs for the intensity and frequency 
metric were calculated based on only the clusters with a 
mean probability rating (rounded to the nearest integer) 
of 2 or 3, reflecting medium or high probability of expo-
sure. This restriction reflects a common practice of using 
the intensity and frequency metrics in epidemiologic 
analyses only when a strict definition of exposure is met 
(Kromhout and Vermeulen, 2001; Purdue et al., 2011).

Estimated number of exposure decisions
As an approximation, we estimated the total number 
of potential exposure decisions that may be needed 
to assess diesel exhaust exposure assuming a two-
stage assessment process. The number of exposure 
decisions was calculated as the sum of the number 
of clusters (representing the first stage, cluster-level 
expert review) and the number of jobs that were not 
in homogeneous clusters (representing second stage 
expert review, where jobs in heterogeneous clusters 
would likely need to be reviewed one-by-one).

R e s u lt s
The 5396 jobs without diesel-relevant modules had 
201 extracted response variables that represented 

1120 unique questionnaire response patterns of the 
diesel-relevant variables, with a median of 1 and a 
mean of 4.8 jobs per pattern. The 3658 jobs with 
diesel-relevant modules had 392 extracted response 
variables that represented 3135 unique questionnaire 
response patterns, with a median of 1 and mean of 1.2 
jobs per pattern.

To illustrate the visual output and relationship 
between observations, in Fig. 1 we show the hierarchi-
cal linkage relationship (cluster tree) for each of the 
two subsets when the observations were grouped into 
100 clusters (shown at the bottom row) and their rela-
tionship to other higher level clusters (moving from 
bottom to top). The vertical axis indicates the magni-
tude of the distance measure between adjacent clus-
ters. The branch lengths decrease substantially as one 
moves a horizontal line down from the top of the tree, 
showing that ‘neighboring’ clusters are more dissimi-
lar at the top levels of the tree and more similar as one 
moves downwards. The scale of the distance measures 
and the resulting shape of the trees differed by subset 
because of the differing number and type of variables 
included in each model. Analyses grouping the obser-
vation into >100 clusters go deeper into the tree than 
what can be shown visually.

The cluster models can be directly used to create 
profiles of the questionnaire response patterns for each 
cluster that could be used in the first stage of a rule-
based, expert-based exposure assessment. To illustrate, 
Table  1 lists the mean values for selected variables for 
four clusters from a cluster tree that was truncated at 300 
clusters for jobs without diesel-relevant modules. Values 

Figure 1  The top 100 clusters, with their Euclidean squared distance measures, for jobs 
without diesel-relevant modules (A) and with diesel-relevant modules (B).
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of ‘0’ indicate that all jobs within that cluster had a ‘no’ 
response for that variable; values of ‘1’ indicate that all 
jobs had a ‘yes’ response. For instance, all jobs in cluster 
‘237’ had identical questionnaire response patterns for 
the selected variables, with a value of ‘1’ (yes) to ‘traffic-
related job, any’, ‘drivers’, ‘diesel-powered equipment, 
any’, ‘diesel-exposed SIC’, and ‘diesel-exposed SOC’ 
and a value of ‘0’ (no/not identified) for the remaining 
variables listed in the table. Values >0 but <1 indicate 
varying amounts of heterogeneity in the responses to 
each variable within that cluster. For instance, the mean 
value for the variable ‘worked near engines or smelled 
engine exhaust’ for jobs in cluster ‘9’ was 0.75, indi-
cating that 75% of the jobs had a ‘1’ (yes) response. If 

the heterogeneity occurred in a variable that an expert 
determined influenced the exposure decision, the asses-
sor would need to move further down the cluster tree 
(i.e. increase the number of clusters) to separate dispa-
rate jobs or, alternatively, depending on the number of 
jobs and the amount of heterogeneity, evaluate each job 
within that cluster individually.

Within-cluster variability
Based on the dichotomized probability rating, the 
proportion of homogeneous clusters generally 
increased as the number of clusters used to group 
the jobs increased for both subsets, but the rate of 
improvement decreased after 400 clusters (Fig.  2). 

Table 1. Cluster profiles with the mean response values for selected occupational history variables for 
four clusters identified from a cluster model for jobs without diesel-relevant modules, grouped into 
300 clusters

Occupational history variable (subset) Mean response valuea

Cluster 7 
(n = 14)

Cluster 236 
(n = 3)

Cluster 237 
(n = 3)

Cluster 238 
(n = 3)

Free-text responses specifically said ‘diesel’ 0 0 0 0

Worked near engines or smelled engine exhaust 0.93 0 0 0.67

Traffic-related job, anyb 0 1 1 1
  Drivers 0 1 1 0
  Firefighters 0 0 0 1
  Parking attendants 0 0 0 0

Diesel-powered equipment, anyb 1 1 1 1
  Bus/truck 0 1 0 1
  Heavy equipment 1 0 0 0

Industry with probable exposure, anyb 1 0 0 0
  Heavy construction 1 0 0 0
  Logging 0 0 0 0

Industry with possible exposure, anyb 0 0 0 0
  Light construction 0 0 0 0
  Military 0 0 0 0

Diesel-exposed SIC 1 0.33 1 0.67

Diesel-exposed SOC 1 0.67 1 1

aMean response values: 1 = response for all jobs within cluster was 1 (yes); 0 = response for all jobs within cluster was 0 (no/not identified); >0 to 
<1 = response for that variable varied for jobs within cluster.
b‘Any’ refers to the presence of any category within this group. Specific categories were identified in separate variables.
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For jobs without diesel-relevant modules, 77–84% 
of the clusters were homogeneous when 100 clusters 
were used, increasing to 85–91% when 400 clusters 
were used. For this subset, the proportion of homo-
geneous clusters was somewhat higher when exposure 
status was defined as ≥50 versus <50% probability 
than for ≥5 versus <5% probability. For jobs with die-
sel-relevant modules, 62% were homogeneous when 
100 clusters were used, increasing to 79–80% when 
400 or 500 clusters were used. In this subset the defi-
nition of exposure status had little influence on cluster 
homogeneity (Supplementary Figure S1, available at 
Annals of Occupational Hygiene online). Cumulative 
distribution plots of the proportion of homogeneous 
clusters for the subset of jobs without diesel-relevant 
modules had a nearly flat slope between the values of 0 
(all unexposed) and 1 (all exposed), indicating that the 
definition of homogeneity was robust (Supplementary 
Figure S1A, available at Annals of Occupational Hygiene 
online). The slope was steeper for the subset of jobs 
with diesel-relevant modules, indicating that the 
proportion homogeneous was more sensitive to the 
definition for this subset (Supplementary Figure S1B, 
available at Annals of Occupational Hygiene online).

For the ordinal probability and continuous inten-
sity and frequency metric, ICCs reflecting the agree-
ment between the job estimate and the cluster mean 
increased as more clusters were used to group the jobs 
(Fig.  3). The ICCs for all metrics and both subsets 
were generally >0.7 when 200 or more clusters were 

used, indicating very high agreement and minimal 
within-cluster variability, with one exception. For the 
frequency metric in the subset of jobs without diesel-
relevant modules, ICCs ranged from 0.4 to 0.7 for 
100–1000 clusters, suggesting more within-cluster 
variability for this metric and subset compared to the 
other metrics.

Estimated number of exposure decisions
The relationship between increasing the number 
of clusters and the expected number of exposure 
decisions that might be required, assuming a two-
stage assessment, is non-linear (Fig.  4). The esti-
mated number of decisions was minimized at ~800 
decisions and 250 clusters for jobs without diesel-
relevant modules (5% of jobs; 22% of the unique 
questionnaire response patterns) and at ~1150 deci-
sions and 300 clusters for jobs with diesel-relevant 
modules (8% of jobs; 10% of unique questionnaire 
response patterns). Thus, we estimated that ~2000 
exposure decisions (sum of number of decisions 
needed in both subsets) would be needed, rather 
than the 4255 decisions needed if every unique 
questionnaire response pattern was evaluated or the 
14 983 decisions needed if each job was reviewed 
individually.

Di  s c u s s i o n
Hierarchical clustering methods were applied to 
diesel-relevant variables extracted from responses to 

Figure 2  Proportion of homogeneous clusters (≥75% of jobs with same exposure status 
within cluster) with increasing number of clusters for jobs without diesel-relevant module 
(A) and for jobs with diesel-relevant modules (B). Dashed lowess (smoothing spline) 
lines = exposure status ≥5 versus <5% probability. Solid lowess lines = exposure status ≥50 
versus <50% probability.
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occupational questionnaires to group jobs into clus-
ters with similar questionnaire response patterns. Our 
evaluations comparing the resulting clusters to previ-
ously assigned probability, intensity, and frequency 
estimates suggest that the clusters, for the most part, 
identified groups of jobs with the same exposure sta-
tus with minimal within-cluster variability (ICCs gen-
erally >0.7). Some heterogeneity in the clusters was 
expected, because some exposure scenarios occurred 
too rarely to fully distinguish into a separate cluster. 
In practice, we expect that heterogeneity within clus-
ters could be accounted for in a two-stage exposure 
assessment approach that first assesses exposure at 
the exposure scenario level (cluster level), followed 

by review of individual jobs within expert-identified 
heterogeneous clusters (job level). We estimated that 
this two-stage approach can drastically reduce the 
number of exposure decisions required. Based on the 
insights gained in this proof-of-concept study, suf-
ficient support was provided to move forward with 
using hierarchical cluster models as part of the expo-
sure assessment and to conduct further evaluations 
into their use (i.e. Friesen et al., 2014a).

Clusters became more homogeneous, with less 
within-cluster variability, as the number of clusters used 
increased. However, in our particular example, the sum 
of the number of clusters and the number of jobs in 
non-homogeneous clusters began rising more rapidly 

Figure 3  ICCs evaluating the agreement of the cluster-mean estimates to the algorithm-
based estimates for probability (triangles), intensity (circles), and frequency (squares), 
for jobs without diesel-relevant module (A) and jobs with diesel-relevant modules (B). 
Analyses of the intensity and frequency estimates were restricted to clusters with a mean 
probability rating of medium or high.

Figure 4  Sum of the number of clusters and the number of jobs in non-homogeneous 
clusters for jobs without diesel-relevant module (A) and jobs with diesel-relevant modules 
(B). Solid lines with circles = exposure status ≥5 versus <5% probability; dashed lines with 
triangles = ≥50 versus <50% probability.
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when >300 clusters were used. Thus, simply increas-
ing the number of clusters did not reduce the exposure 
assessment burden. Minimums of the sum occurred 
when the number of clusters used was ~5–8% of all jobs 
and 10–22% of the number of unique permutations of 
questionnaire responses. Not surprisingly, more clusters 
were needed for the jobs with modules to identify simi-
lar response patterns to create homogenous clusters than 
for jobs without modules, despite the fewer number of 
jobs represented by this subset, because of the greater 
amount of information available for those jobs (i.e. 154 
additional variables).While it is possible to determine the 
optimal number of clusters when the exposure decision 
(i.e. outcome) is available, in practice the cluster models 
would be developed and used to help obtain the expo-
sure decisions and thus the optimal number of clusters 
would not be known in advance. The approximations 
described above could be used to estimate the exposure 
assessment burden against resource constraints in future 
uses of cluster models. Simulation studies and additional 
sensitivity analyses (e.g. changing the distance measure 
or the linkage method) may also provide guidance.

A strength of this study was the preselection of the 
variables to those directly or indirectly related to the 
agent of interest (for instance, excluding SOC and SIC 
variables that were unrelated to diesel exhaust scenar-
ios). Preliminary analyses that incorporated all available 
variables required more exposure decisions (data not 
shown), which is not surprising because of the greater 
amount of information included in the model and 
because the model is agnostic to whether the variable is 
relevant to the exposure of interest. Thus, the develop-
ment of a hierarchical cluster model to identify similar 
questionnaire response patterns (exposure scenarios) is 
likely best suited to an evaluation of a single agent or a 
small number of agents where exposure decisions would 
be determined based on the same subsets of occupa-
tional questions. Consequently, we expect that it would 
be more efficient to develop separate cluster models for 
agents that rely on different subsets of questions.

Our evaluations of within-cluster variability were 
assessed based on algorithm-based exposure estimates 
rather than the estimates obtained from a one-by-one 
review of each job because our use of hierarchical clus-
ter models was designed to closely replicate the algo-
rithm-based assessment approach (Pronk et  al., 2012;  
Friesen et al., 2013). Comparisons to a one-by-one 
review would likely identify more heterogeneity than 

was observed here because the one-by-one reviews 
consider the entire pattern of responses, not just the 
responses related to diesel exhaust exposure. However, 
comparisons to estimates from a single expert is not 
considered to be a gold standard and would not account 
for the natural variability between any two experts. 
Previous comparisons of the algorithm-based estimates 
in a subset of this dataset to estimates from a one-by-
one review by three experts found very good agreement 
with the aggregate rating of the three raters (weighted 
kappa  =  0.82) (Friesen et  al., 2013), providing strong 
support for using algorithm-based approaches to effi-
ciently incorporate the estimates from multiple experts.

Our use of a hierarchical cluster model to identify 
diesel exhaust-related exposure scenarios provided 
important insights into differences in the models’ per-
formance by the type of information available (occu-
pational history only or both occupational history and 
modules) and the impact of varying the number of 
clusters on the within-cluster variability and number of 
estimated exposure decisions. Our evaluations also had 
several limitations. First, the evaluations did not account 
for exposure assignment differences for jobs with similar 
response patterns but held in different time periods, and 
thus likely underestimates the proportion of homogene-
ous clusters if time period-specific cluster estimates were 
going to be obtained. In practice, we would ask experts 
to provide cluster-level assignments for multiple time 
periods predefined by major changes in exposure, regu-
lations or other changes in use patterns (e.g. pre-1980, 
1980–1994, 1995+) (e.g. Friesen et al., 2014a). Second, 
our evaluations of the number of potential exposure 
decisions needed assumed that an exposure assessor 
would identify the same clusters as heterogeneous as 
those identified by the exposure status variables; how-
ever, this would vary based on the exposure assessor, 
the agent, and the extent of the variability among the 
variables for each cluster. Third, the number of decisions 
required may be overestimated because we may be able 
to capture some within-cluster heterogeneity by directly 
using the response to a variable in a programmable 
decision rule, rather than a one-by-one job review. For 
example, if the frequency estimate was directly related to 
the response to the question ‘how many hours a week 
did you drive a truck’, the response to that question for 
each subject could be directly linked to that subject’s 
frequency estimate in automated decision rules. Lastly, 
the impact of variable coding on the identification of 
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clusters requires additional study. For instance, we chose 
not to normalize the variables (i.e. mean =  ‘0’) so that 
the responses remained interpretable for the experts and 
because the data was highly skewed toward 0 because 
‘1’s’ (yes responses) were not prevalent so the mean 
overall response was near 0 for most variables. For the 
50 diesel-relevant variables asked across multiple mod-
ules, the mean was <0 because ‘−1’ was assigned when 
that question was ‘not asked’ (ranged from 49 to 99% 
not asked) rather than indicated in a separate vari-
able because we wanted to maximize the discrimination 
between those asked or not asked these key questions. 
Additionally, one could consider weighting schemes that 
provided more weight for variables a priori expected to 
be highly predictive of exposure.

In summary, our evaluations provide a proof-of-con-
cept that hierarchical clustering methods can systemati-
cally identify exposure scenarios represented by groups 
of jobs with similar questionnaire response patterns and 
similar exposure estimates when a large number of occu-
pational questions are available electronically and coded 
systematically. Implementing this approach is expected 
to help us more efficiently use multiple exposure asses-
sors to assess the same exposure scenarios. The imple-
mentation of this approach to help a team of exposure 
assessors to assess an exposure agent based on question-
naire responses will be evaluated in future studies.
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