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Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high
computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility
of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the
overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to
reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire
trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments
on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further
validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular
dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity
as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored

to a specific ligand.

1. Introduction

Proteins are intrinsically flexible systems and this flexibility
is relevant to determine their functions for discovering new
potential drugs [1]. Nevertheless, realistic docking softwares
that consider the molecular flexibility for both receptor and
ligand are still far from accurately and reliably predicting
complex structures for arbitrary ligand-receptor pairs [2].
Molecular dynamics (MD) simulations are a well-known
technique used to investigate the detailed, atomic dynamic
behavior of proteins in aqueous solution. It is capable of
recognizing subtle internal motions and slow conformational
changes, including bond vibration, chain reorientation, and
backbone rearrangements at different timescales [3, 4].

Even though MD simulation is one of the most versatile
and widely applied approaches to represent the natural

behavior of ligand and protein within a flexible environment,
it is also considered a time-consuming process. The high
computational cost further increases when docking experi-
ments are used for the fast screening of large virtual libraries
against an entire MD ensemble which is applied to exploit all
conformations of the protein receptor [3].

In this paper, an MD ensemble is called a fully flexible
receptor (FFR) model [5], which typically has over 10* MD
structures. For this reason, recent studies on combining
docking and MD simulations have created novel techniques
to systematically reduce the number of MD structures with-
out losing essential structural/dynamical information [6-
8]. Therefore, we focus our efforts on performing cluster
analysis for grouping MD conformations with high affinity
in their substrate-binding cavities in order to extract the
most relevant information during the molecular docking
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simulations, reducing its overall computational cost. Even
though clustering is the computational intelligence approach
employed in this work, we note that several papers employ
learning approaches for the domain of molecular dynamics,
with goals such as predicting bioactivities of ligands to target
proteins [9], drug classification [10, 11], and free energy of
binding prediction [5, 12, 13].

Clustering is the most suitable computational intelligence
technique for dividing MD conformations into structurally
homogeneous groups and for quickly understanding the
resulting sets [14]. In this approach, every MD conforma-
tion is divided into several groups by using a measure of
similarity/dissimilarity. Clustering of MD conformations is
especially useful for molecular docking simulations since it
provides groups of similar receptor structures. MD confor-
mations that are placed in the same group are, according
to some criterion, similar to each other and dissimilar
from the conformations of other groups [15]. Hence, if a
receptor conformation belongs to a cluster that interacts
favorably with a specific ligand, one could assume that other
conformations within the same cluster will behave similarly.
Otherwise, the conformations belonging to this cluster are
considered unpromising and consequently may be discarded
in order to reduce the number of docking experiments on
the FFR model. This smaller model is called the reduced
tully flexible receptor (RFFR) model [8]. wFReDoW [8] is a
cloud-based web environment that efficiently generates RFFR
models. It reduces the dimensionality of FFR models by
performing the selection of the most promising clusters of
structures during docking experiments. However, wFReDoW
requires as input a clustering partition of MD structures and
the better the partition, the better the final performance of
wEFReDoW.

The Root mean square deviation (RMSD) values obtained
by pairwise or matrix error distances are the most traditional
and popular measure of similarity used for partitioning
MD trajectories. For instance, Lyman and Zuckerman [16]
generated a set of reference structures by enforcing a cutoft
radius in RMSD for cluster assignment from biomolecular
simulation trajectories of metenkephalin, a pentapeptide
neurotransmitter. Shao et al. [17] make use of several clus-
tering algorithms and two validity metrics to find the best
clustering partition based on the pairwise RMSD values
of small samples from an MD trajectory. Even though the
meaningful trajectories cover very different portions of the
conformation space, they limited the structural metrics by
using only a portion of the data, and then the remaining data
were added to existing clusters. Torda and van Gunsteren
[18] were interested in algorithms which did not require
previous selection of cutoffs for cluster size or the number of
clusters, with the goal of naturally creating clusters based on
the DME (D,,,) over all pairs of atoms being considered in the
structural configuration.

In this paper, we aim to identify relevant conformational
changes that occur into the substrate-binding cavity along
an MD simulation trajectory for reducing the dimension
of the FFR model during docking experiments. For this
reason, we are interested in investigating the (dis)similarities
in a specific site or cavity, rather than taking into account
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the motions that occur within the entire MD structure as
it is the case when using the RMSD deviation. For such
case, we generate and analyze partitions based on features
from the binding cavity of an MD simulation regarding the
InhA-NADH complex [19] through the well-known k-means
algorithm [20]. To the best of our knowledge, this is the
first approach that employs properties from the substrate-
binding cavity of every MD structure in order to measure
similarity among trajectories. The quality of the resulting
data partitions were evaluated according to three clustering
validity criteria, namely, the Davies-Bouldin (DB) index [21],
Dunn’s index [22], and the gap statistic [23]. To validate
whether the selected partition generated groups of structures
that share similar conformation features, we analyzed the
distribution of the free energy of binding (FEB) values that are
generated after performing exhaustive docking experiments
between the 20,000 conformations of the FFR model and
20 different ligands on AutoDock4.2 [24]. The best selected
partition is used as input to the wFReDoW environment
[8] in order to considerably reduce the time taken for the
drug discovery process, as well as providing a more accurate
ranking of potential drugs for the FFR model under study.

This paper is organized as follows. Section 2 shows the
structural features extracted from the substrate cavity for
clustering the MD simulation trajectory, as well as the
clustering validity criteria and the 20 compounds used to
conduct the experimental evaluation. The cluster analysis and
validation are presented in Section 3 along with a discussion
on our findings. Finally, Section 4 presents our conclusions
and opportunities for future work.

2. Materials and Methods

2.1. Data Set for Clustering the MD Trajectory. To gener-
ate an RFFR model to be used as input to wFReDoW,
conformational features from the substrate-binding cavity
were employed during the clustering process, which was
performed by the well-known k-means algorithm [20]. k-
means is a widely used clustering algorithm that has been
recently applied on MD trajectory studies [17, 25, 26]. It is
a hard-partitioning-based strategy that attempts to find a
user-defined number of clusters (k) by locally optimizing the
average squared distance of objects from their nearest cluster
center (centroid). Briefly, the k-means algorithm randomly
generates k centroids and refines them through several
expectation-maximization iterations, in which the cluster
memberships are determined by computing the distance of
every object to each of the k centroids [15].

In this work, we make use of a 20 ns MD simulation tra-
jectory of the InhA-NADH enzyme complex from Mycobac-
terium tuberculosis (PDB ID: 1ENY) as described in [19]. Data
for the MD ensemble were collected at every 1ps, resulting
in a set of 20,000 instantaneous receptor conformations. The
20 ns MD trajectory constitutes the FFR model employed as
a case study to guide our research. The structural properties
that were extracted from the substrate-binding cavity of every
MD conformation are

(1) the accessible surface area (in Az),
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(2) the volume (in A”),

(3) the number of heavy atoms in the substrate-binding
cavity of the enzyme (PDB ID: 1BVR) [27],

(4) the pairwise RMSD distances between binding cavity
atoms (in A).

The first three properties were collected using the CASTp
software (Computed Atlas of Surface Topography of pro-
teins) [28]. CASTp provides an online resource for locating,
delineating, and measuring concave surface regions on three-
dimensional structures of proteins based on the solvent-
accessible surface area model [29] and the molecular surface
model [30]. The measurement of surface area and volume
for every MD conformation was obtained by considering the
residues that enclose the cavity of the InhA substrate analog
from the IBVR structure [27], which contains the largest
number of atoms.

Figure 1 shows the substrate-binding cavity of the 1IBVR
enzyme collected by the CASTp software. The pairwise
RMSD distances were evaluated by monitoring the differ-
ences between the backbone atoms (N, Ca, C, and O) within
the substrate-binding cavity from the first structure against
the conformation under comparison. The RMSD values were
calculated using the ptraj module from AmberTools12 [31].

With this dataset, we seek to cluster different behaviors
found within the substrate-binding cavity along an MD
simulation, which in turn may help identifying which of
the clusters contain snapshots that interact more favorably
with a specific compound during the wFReDoW docking
experiments. It is worth mentioning that this methodology
is not specific to a single protein; it may also be used for
other enzymes, as long as their binding pockets are known
in advance.

2.2. Clustering Validity Criteria. The criteria employed to
evaluate the quality of the generated partitions are the Davies-
Bouldin index [21], Dunn’s index [22], and the gap statistic
[23]. These measures have been shown to be interesting
strategies for evaluating the quality of clustering partitions,
especially when using them together with a further manual
examination of the generated clusters [17].

The Davies-Bouldin (DB) criterion is based on the ratio
of within-to-between cluster distances. It is defined as
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Hj are the average distance between each object in the cluster
with the respective centroid, and d; ; is the distance between
centroids of the ith and jth clusters.

Similarly to DB, Dunn’s index [32] also indicates the best
partitions based on geometrical considerations regarding
large distances between clusters and compactness within
cluster. Partitions that comprise compact and well-separated

clusters are assigned large values of Dunn’s index, as indicated
in the following equation:
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where §(C;,C j) is the set of the intercluster distance between
clusters C; and C;, and diam(Cy) is the intracluster diameter
of the kth cluster.

The gap statistic [23] is based on a comparison of the
within-cluster sum of squared distances of the given partition
with a partition obtained from random data. It is a powerful
procedure for estimating the number of cluster for a dataset,
which compares the changes in the within-cluster dispersion
with that expected under an appropriate null distribution
used as reference, as follows:
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where 7 is the sample size, k is the number of clusters being
evaluated, W is the pooled within-cluster dispersion, #, is the
number of data objects in cluster 7, and D, is the sum of the
pairwise distances for all objects in cluster #. The gap statistic
is calculated for partitions with varying k, and the highest
value within a tolerance range is considered the optimal k.

Whereas DB and Dunn’s index aim at identifying parti-
tions that are compact and well-separated, the gap statistic
tends to estimate the optimal number of clusters based on
the dispersion of the clusters. An optimal partition should
provide a high value for Dunn’s index and the gap statistic
and a small value for DB.

2.3. Clustering Validation Methodology. After defining the
optimal partition through the clustering validity criteria, we
perform exhaustive docking experiments on AutoDock4.2
with the intention of searching for evidence that validates the
quality of such a partition. These experiments are conducted
between 20,000 snapshots (FFR model) and 20 different
compounds, which are extracted from 20 InhA structures
deposited at PDB [33]. Figure 2 shows the 3D structures of the
20 compounds and the rotatable bonds defined in the docking
experiments.

We build the FFR model in this study from a 20 ns MD
simulation of the InhA-NADH complex from Mycobacterium
tuberculosis (PDB ID: 1ENY) [19]. In order to preserve the
reaction mechanism between ligands and the target protein,
NADH should be treated as a coenzyme. Hence, for experi-
ments with ligands, the coenzyme was considered as part of
the protein receptor structure. Conversely, we removed the
NADH coenzyme from all snapshots of the FFR model when
we performed the experiments with adducts (INH-NAD and
PTH-NAD), since they already have the coenzyme as part of
their structures.

The experiments were divided into two steps. In the first
step, we identify the best k value for k-means clustering based
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FIGURE 1: Substrate-binding cavity of the InhA enzyme from Mycobacterium tuberculosis (PDB ID: 1BVR) identified by the CASTp software.
The stick representation is colored by atom type (carbon and hydrogen: light grey; nitrogen: blue; oxygen: red; sulphur: yellow). (a) Chain
A of the IBVR crystal structure submitted to CASTp. (b) In green the substrate-binding cavity of the 1IBVR enzyme represented by van der

Waals spheres.

on Dunn’s index, DB, and the gap statistic. In the second
step, we perform exhaustive docking experiments on the
FFR model and 20 different compounds to validate the best
clustering solution. Additionally, we analyze the accuracy,
comprehensibility, and biological significance of the docking
results.

3. Results and Discussion

As previously discussed, employing FFR models and data-
bases of small compounds, such as GDB-17 [34], which
holds more than 166 billion of compounds to perform prac-
tical virtual screening, often becomes an unfeasible task. The
limiting factor that is present in this approach is the computa-
tional capacity of generating FFR models that sample longer
time scales [35, 36].

Hence, the hypothesis we attempt to validate in this
paper is that the proposed methodology for clustering the
MD trajectory is capable of effectively identifying clusters of
promising snapshots for specific ligands. More specifically,
we investigate the problem of using FFR models to perform
docking experiments for a set of compounds. One way to
address this issue is to reduce the dimension of FFR models
by selecting a representative sample of promising snapshots
for each compound, preserving the essential structural prop-
erties of the model. With this in mind, we evaluate whether
making use of clustering algorithms can help us to find
out relationships between the interactions of FFR models
and compounds. We concentrate efforts on using the k-
means algorithm and analyze the result partition to verify our
working hypothesis.

3.1. Cluster Analysis of the FFR Model. This section focuses on
the execution of the k-means algorithm for clustering the MD
trajectory in different numbers of clusters and then identify-
ing the optimal partition according to the clustering validity
criteria. This procedure is divided into three steps. First, we
created the input dataset for the clustering algorithm. Then,
we executed the k-means algorithm, with k ranging from 2 to
15 centroids. Finally, we identified the suitable MD clustering
by using DB [21], Dunn’s index [22], and the gap statistic [23].

As described in Section 2.1, we extracted the structural
properties from the substrate-cavity binding of each receptor
conformation that makes up the FFR model. The area,
volume, RMSD, and the score of heavy atoms for the 20,000
conformations were placed in a CSV file. As our dataset
comprises attributes with different units and scales, we nor-
malized all values before executing the k-means algorithm.
The numeric values were normalized to lie in a scale within
the interval [0, 1]. The CSV file with the normalized data was
submitted to the k-means algorithm and it was executed with
k ranging from 2 to 15 clusters (Figure 3). This range of values
was defined based on the wFReDoW environment, which
creates balanced queues of tasks taking into account the
number of clusters and HPC workstations allocated for the
docking experiments. De Paris et al. [8] concluded that the
best wFReDoW performance is obtained when only 30% of
the snapshots have been docked. For that reason, we decided
that a potential solution is to insert at least two receptor
structures of each cluster in the queues of tasks created by the
wFReDoW environment.

In order to evaluate the quality of the k-means partitions
and to identify the best solution, we calculated the gap, DB,
and Dunn’s values for the partitions with distinct numbers
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TCL (pdb_id: 1P45) TCL (pdb_id: 2B35) GEQ (pdb_id: 1P44) 4PT (pdb_id: 2NSD)

5PP (pdb_id: 2B36) 8PS (pdb_id: 2B37) TCU (pdb_id: 2X22) 566 (pdb_id: 2H71)

665 (pdb_id: 2H7L) 641 (pdb_id: 2H7M) 744 (pdb_id: 2H7N) 468 (pdb_id: 2H7P)

8PC (pdb_id: 3FNE) JPJ (pdb_id: 3FNH) JPM (pdb_id: 3FNF) THT (pdb_id: 1BVR)

JPL (pdb_id: 3FNG) INH-NAD (pdb_id: 2IDZ)

INH-NAD (pdb_id: 1ZID) PTH-NAD (pdb_id: 2NTJ)

FIGURE 2: Stick representation of the 3D structures of the 20 ligands used in docking experiments. Each ligand, with its structures colored by
atom type, is identified by their name and their corresponding PDB identification (PDB ID). The dashed circle represents the rotatable bonds
selected by AutoDockTools 1.5.6.
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FIGURE 3: Clustering validity criteria for the MD trajectory of the InhA enzyme as a function of the number of clusters. (a) Gap statistic. (b)
Dunn’s index. (¢) DB index. Black circles identify the best number of clusters for each criterion. The best gap result was used as the decisive
criterion for selecting between k = 10 and k = 11, as suggested by Dunn’s index and DB, respectively.
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FIGURE 4: Cluster distribution along the InhA enzyme MD trajectory from the optimal k-means partition. Each object represents different
backbone (N, Ca, C, and O) RMSD values as a function of time over the trajectory which are colored based on their cluster memberships.

of clusters. Partitions that provide a low value for DB and
high value for gap and Dunn’s values suggest better clustering.
Note by observing Figures 3(a) and 3(b) that k-means
generates a partition that shows a clear maximum value for
gap and Dunn’s values when clustering data into 10 clusters.
Nevertheless, DB (Figure 3(c)) shows a slight preference for
11 clusters instead of 10.

Note that Dunn’s index also indicates that the partition
with two clusters is a good solution. However, this same
partition is poorly evaluated by DB and the gap statistic. The
latter was used as the decisive criterion for the two partitions

suggested as optimal by DB, that is, the partitions with 10 and
11 clusters. Following this strategy, we selected the partition
with 10 clusters considering that its gap and Dunn’s values are
higher than the partition with 11 clusters.

To illustrate the optimal k-means partition, we present in
Figure 4 the effects of clustering different timescales in the
MD trajectory based on its structural features. As we might
have expected, the clustering outcome is strongly influenced
by the structural changes on the substrate-binding cavity
to determine the similarity/dissimilarity of the different
molecular configuration. In particular, contrary to those
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FIGURE 5: Evaluation of median FEB values of clusters as a function of compounds. The red circle represents the cluster with best median
FEB values for each experiment. The red line highlights the clusters with the best median FEB values at the top.

methods based only on RMSD data where the clustering
tends to show strips along the MD trajectory [17, 18], the
proposed methodology shows a heterogeneous distribution
of the clusters.

We have also performed several attempts to discover
relationships between pairwise RMSD distances and FEB
values from the MD structures under study. However, no sat-
isfactory relationship was noticeable between them, probably
due to the fact that RMSD abstracts all important features that
greatly influence the FEB value. The distribution in Figure 4
depicts the identification of similar cavities in different
timescales along the MD simulation. In the next section, we
perform a case study that provides several insights regarding
the relationship between the MD clustering distribution and
the FEB values.

3.2. Validating the Optimal Data Partition. The purpose
of performing this last set of experiments is to examine
similarity patterns among the clusters of MD structures when
they are submitted to molecular docking simulations with a
set of different ligands. With this case study, we expect to
identify behaviors that are directly related to the attributes
used to cluster the FFR model. Since attributes are based
on structural features of the substrate-binding cavity of each
snapshot that makes up the FFR model, we intend to seek the
snapshots belonging to a cluster that interacts

(1) favorably with a specific ligand, but adversely with
other ligands,

(2) adversely with a specific ligand, but favorably with
other ligands,

(3) favorably with a set of ligands,
(4) adversely with a set of ligands.

Unlike other studies, which select a set of representative
snapshots with dissimilar RMSD distances in MD trajecto-
ries, we concentrate efforts on partitioning snapshots accord-
ing to a level of affinity in their binding cavity, aiming at
identifying promising snapshots during the virtual screening
ofligands. We focus on providing evidences that the proposed
partition is capable of covering a set of compounds exper-
imentally tested through analyses on the docking results.
For such case, we performed molecular docking simulations
between the FFR model and 20 compounds (Figure 2) using
FReMI (Flexible Receptor Middleware) [8]. FReMI, which
is part of the wFReDoW environment, is a middleware
developed to execute exhaustive docking experiments of FFR
models with maximum efficiency through multiprocessing
machines with AutoDock4.2 [24].

For this experiment, the Lamarckian genetic algorithm
(LGA) from AutoDock4.2.5.1 was used to execute the molec-
ular docking experiments. The maximum number of energy
evaluations and the number of runs were set to 300,000
and 25, respectively. The grid box dimensions were tailored
according to each ligand type. We also defined the atom types
of AutoDock4.2, added the Gasteiger charges, and merged
the nonpolar atoms for each snapshot of the FFR model. The
rotatable bonds highlighted for each ligand in Figure 2 were
applied to execute the docking experiments.

In order to validate the optimal clustering solution from
the docking results, we analyzed the variance among FEB
values obtained in the clusters for each ligand, separately. We
first extracted all FEB values from the docking experiments.
Then, we linked the snapshots with their respective clusters.
Finally, we calculated the median FEB values of the clusters
independently for each compound. To illustrate this assess-
ment, Figure 5 shows the variation in the median FEB values
of the 10 clusters as a function of ligands. From the docking



results it is possible to see potential behaviors, which in
turn validate the proposed methodology of reducing the FFR
model. For instance, the red line indicates the best median
FEB values in the same cluster for all ligands tested. This
confirms that the selected partition is capable of detecting a
similarity pattern for representing the best results of these set
of ligands.

An important finding shown in Figure 5 is that all ligands
present their best median FEB values in the same cluster (see
the red line). Further, this best cluster appears to be well-
separated compared to the remaining clusters. This is useful
if one desires to considerably reduce the time to perform
docking experiments on the FFR model. However, it is unsafe
to generalize that one cluster will obtain equal behavior for
libraries of small molecules merely based on the docking
results of 20 ligands. An optional strategy to reduce the
time for virtual screening of large libraries is to dynamically
perform a selection of those clusters that contain the most
promising interactions during the molecular docking simu-
lations, as it is deployed on wFReDoW. Thus, the structural
changes of different ligands may be detected more accurately
for the induced-fit effects and for ensembles of reduced and
representative MD structures; that is, the RFFR models will
be tailored to a specific ligand.

Comparing the FEB values, Figure 5 indicates that the
clusters contain a similar sort of sequence with respect to
the median FEB values for all ligands. We observed that
the similar structures presented in Figure 2 also have similar
median FEB values in the docking experiments with the
FFR model. For instance, Figure 5 shows equal behavior for
compounds JPJ (3FNH), JPM (3FNF), and 8PC (3FNE) since
they only vary in their spatial arrangements. This is surprising
because it was expected that the clusters should vary from
one compound to another as we described at the beginning of
this section. Although this was not expected, it is considered
a positive indicator to validate our approach. The proposed
methodology is capable of preserving a standard behavior
for all compounds tested by clustering snapshots that contain
high structural similarity in their substrate-binding cavity.

4. Conclusions and Future Work

This work proposes a computational intelligence-based
methodology that employs a clustering algorithm to ana-
lyze an MD trajectory of the InhA enzyme. The proposed
approach employs clustering validity criteria to find out the
optimal data partition for reducing the computational cost of
molecular docking experiments.

Docking experiments on the FFR model were performed
for 20 different ligands with the intention of validating the
proposed methodology. Based on the docking results, we
conclude that the generated data partition appears to suc-
cessfully separate conformations regarding their FEB values,
and a standard behavior is verified over all the ligands that
were tested. The case study also shows that to consider the
structural properties in the substrate-binding cavity as input
for the clustering algorithm is a promising approach for
clustering an MD trajectory of the InhA enzyme.
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In comparison with other studies that propose to cluster
MD trajectories, the methodology proposed in this paper has
some essential advantages: it separates the clusters based on a
set of structural properties from the substrate-binding cavity
and it effectively identifies the protein structural changes in
the target cavity. Besides using clustering validity criteria
to select the optimal data partition, we further validate the
proposed methodology to verify our hypotheses with regard
to clustering MD trajectories. The limitation of the proposed
methodology is that it is highly dependent on the prior
knowledge on the target cavity for the protein under study.

The increasing availability of computing power is allow-
ing longer timescales simulations [36]. Due to this progress,
novel and promising computational techniques that address
the problem of efficiently sampling receptor MD conforma-
tions should be investigated and tested. Our research shows
the advantages of clustering MD trajectories for receptor
proteins with a well-defined target cavity. As for future work,
we intend to empirically analyze the performance of other
clustering algorithms, such as hierarchical and SOM algo-
rithms, to assess if there are significant differences with the
findings reported in this study. Moreover, we intend to make
use of even larger MD trajectories towards experimentally
validating the methodology proposed in this paper.
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