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Abstract Despite significant improvements in diagnosis,

understanding the pathophysiology and management of the

patients with acute decompensated heart failure (ADHF),

diuretic resistance, yet to be clearly defined, is a major

hurdle. Secondary hyperaldosteronism is a pivotal factor in

pathogenesis of sodium retention, refractory congestion in

heart failure (HF) as well as diuretic resistance. In patients

with decompensated cirrhosis who suffer from ascites,

similar pathophysiological complications have been rec-

ognized. Administration of natriuretic doses of mineralo-

corticoid receptor antagonists (MRAs) has been well

established in management of cirrhotic patients. However,

this strategy in patients with ADHF has not been well

studied. This article will discuss the potential use of

natriuretic doses of MRAs to overcome the secondary

hyperaldosteronism as an alternative diuretic regimen in

patients with HF.
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Introduction

Heart failure (HF) is a growing global health-care problem.

The prevalence of HF in the USA is 5.7 million with more

than 1 million admissions for HF each year [1, 2]. Analysis

of large clinical trials and data registries have shown that

the main cause of hospitalizations for acute decompensated

heart failure (ADHF) is due to signs and symptoms of

venous congestion rather than a low cardiac output [3–8].

Although decongestion, mainly with loop diuretics, is an

essential target of treatment in patients with ADHF,

approximately 50 % of patients do not lose body weight

during admission [3].This treatment failure has major

consequences. Refractory systemic congestion is a hemo-

dynamic predictor of worsening renal function, rehospi-

talization and post-discharge mortality in patients

hospitalized for ADHF [9–12]. On the other hand, higher

doses of loop diuretics in HF patients may increase the risk

of intravascular volume depletion, decline in cardiac pre-

load and cardiac index, which subsequently causes arterial

underfilling and further activation of neurohormonal axis

including renin–angiotensin–aldosterone system (RAAS).

Notably, despite administration of angiotensin-convert-

ing enzyme inhibitor (ACE-I), aldosterone levels remain

elevated in patients with ADHF [13]. Mineralocorticoid

receptor antagonists (MRAs) have shown to improve
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mortality in HF patients [14, 15]. This is mainly due to

blocking the non-genomic, non-natriuretic effects of aldo-

sterone with spironolactone equivalent dose of 25 mg/day.

In decompensated cirrhosis as complicated by ascites,

natriuretic doses of spironolactone up to 400 mg/day have

been recommended. However, despite pathophysiological

similarities of congestive HF and decompensated cirrhosis,

natriuretic doses of MRAs (i.e., C25 mg/day of spirono-

lactone or C50 mg of eplerenone) have not been evaluated

in HF.

This review will discuss the mechanism of action for

aldosterone, the pathophysiology of sodium and water

retention in decompensated cirrhosis and HF with a focus

on hyperaldosteronism. Also the diuretic properties of

high-dose MRAs in cirrhosis and HF, and their implica-

tions with respect to the new diuretic strategies for HF

patients will be discussed.

Aldosterone: mechanism of action

Genomic versus non-genomic pathways

As a consequence of persistent stimulation of RAAS,

plasma aldosterone level is elevated in patients with HF

and decompensated cirrhosis with various deleterious

effects, more specifically on cardiovascular and renal sys-

tem [16, 17]. It has been proposed that aldosterone exerts

its physiological effects via two major pathways, genomic

and non-genomic.

The genomic pathway requires binding of aldosterone to

the renal mineralocorticoid receptors (MRs) at the cyto-

plasmic level of collecting duct cells with transcriptional

stimulation and protein synthesis [18]. This pathway will

result in sodium retention and potassium loss. Considering

the need for gene expression and new protein synthesis, the

genomic regulations will take hours to days to process. In

normal subjects, excessive aldosterone will lead to an ini-

tial decrease in urinary sodium excretion. However, with

increased renal perfusion pressure, decreased proximal

tubule sodium reabsorption and subsequent increase in

sodium delivery to the distal nephron, the site of mineral-

ocorticoid action, the initial increase in mineralocorticoid-

induced sodium reabsorption is then negated. Further, with

volume expansion, excretion of natriuretic peptides

increases. This phenomenon is termed ‘‘aldosterone

escape.’’ This compensatory mechanism is impaired in HF

and decompensated cirrhosis [19].

On the other hand, the non-genomic effects are fast

acting and occur within minutes presumably via the plasma

membrane receptors [20]. These non-genomic effects of

aldosterone may involve several organs such as cardio-

vascular, renal and hepatic system independent of the

genomic mechanisms. For example, it has been shown that

in patients with ESRD, spironolactone has beneficial effect

on blood pressure management in the absence of any effect

on sodium excretion [21]. The significant impact of non-

genomic dosage of MRAs on cardiovascular morbidity and

mortality of patients with HF has been well documented

[14, 15, 22]. These mechanisms involve inhibitory effects

of MRAs, resulting in reversal of aldosterone-induced

coronary vasoconstriction, negative inotropic effects, oxi-

dative stressor formations and fibrotic processes [23].

Pathophysiology of sodium and fluid retention

in decompensated cirrhosis and heart failure

Cirrhosis

Primary systemic arterial vasodilation hypothesis has been

the core explanation for neurohormonal activation and

subsequent hyperaldosteronism in decompensated cirrhosis

[24]. As a consequence of increased circulatory prosta-

cyclins and nitric oxide (NO) production, severe peripheral

vasodilatation (i.e., mainly due to splanchnic vasodilata-

tion) causes severe decrease in effective arterial blood

volume (EABV) and arterial underfilling (Fig. 1). In an

attempt to normalize EABV, plasma levels of renin, aldo-

sterone, angiotensin II, norepinephrine and vasopressin will

be elevated, resulting in an increase in cardiac output [25–

27]. These hemodynamic alterations will lead to renal

sodium and water retention and ultimate critical plasma

volume expansion and edema formation [24].

In a study by La Villa et al. [28], the crucial role of

systemic vascular resistance has been illustrated. In their

study among patients with compensated cirrhosis (no

ascites) after administration of large doses of mineralo-

corticoid hormones, the patients with lower systemic vas-

cular resistance developed ascites and exhibited impaired

‘‘aldosterone escape.’’ The severity of sodium retention in

cirrhotic patients directly correlates with the severity of the

decompensated status and ascites formation. In patients

with large ascites, usually, the sodium excretion is

\10 mEq/day and in mild to moderate cases above

10 mEq/day [29].

Sodium retention is more pronounced in patients with

concurrent ascites and renal failure. It has been suggested

that both proximal and distal tubules are involved in the

increased sodium reabsorption in decompensated cirrhosis

[30]. Activation of RAAS both at systemic and intrarenal

level as well as sympathetic nervous system (SNS) has

been shown in several experimental and clinical studies

[31, 32]. Patients with decompensated cirrhosis have ele-

vated plasma levels of aldosterone and an increased rate of

urinary aldosterone [33]. Additionally, activation of SNS
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indirectly enhances the rate of sodium reabsorption by an

elevation of b-adrenergic receptor stimulation and sub-

sequent increase in renin secretion. Moreover, an increase

in a-adrenergic activity will increase the rate of sodium

reabsorption in proximal tubules [34, 35]. Elevated levels

of arginine vasopressin (AVP) are the major contributing

factor in the pathogenesis of solute-free water retention in

decompensated cirrhosis. The arterial vasodilatation in

cirrhosis unloads high-pressure baroreceptors which results

in non-osmotic release of AVP and increase water retention

in these patients.

Heart failure

It is hypothesized that atrial–renal reflexes are the main

regulators of fluid balance in HF [36]. An increase in atrial

pressure exerts inhibitory effects on both the non-osmotic

AVP release and renal sympathetic tone. In addition, the

secretion of atrial natriuretic peptide will be increased

secondary to arterial stretch and dilatation. As a result,

increase urinary sodium and water excretion will occur and

prevent edema formation [37–39].

However, in advanced HF, additional pathophysiologi-

cal events will contribute to edema formation (Fig. 1).

Underfilling of the arterial circulation due to reduced car-

diac output results in unloading of the arterial barorecep-

tors, which will increase the non-osmotic vasopressin

release and activate SNS and RAAS. This adrenergic surge

promotes additional stimulation of the RAAS, resulting in

increased renal sodium and water retention. This volume

expansion in conjunction with increased systemic vascular

resistance via both sympathetic and RAAS stimulation tend

to restore EABV [40–43]. Persistent hyperaldosteronism

due to RAAS stimulation and failure of aldosterone escape

leads to edema formation.

Increased sodium and water retention will also increase

the cardiac preload and subsequently ventricular filling

pressures, even before any clinical manifestations of HF

occurs [6]. These early effects may be termed hemody-

namic congestion. The elevated filling pressures result in

increased ventricular wall stress and impaired cardiac

venous drainage. On the other hand, considerable amount

of volume expansion occurs on the venous side of the

circulation and will cause leftward deviation of the inter-

ventricular septum. This vicious cycle ultimately may

contribute to diastolic dysfunction, which is more promi-

nent in patients with preserved ejection fraction (HFpEF)

[36].

Mineralocorticoid receptor antagonism as diuretics

Cirrhosis

As discussed above, inappropriate sodium retention is the

underlying pathogenesis of ascites; therefore, pharmaco-

logical management should aim to improve the renal

sodium excretion with dietary sodium restriction and

diuretic administration.

The most efficient and accepted diuretic regimen in

cirrhotic ascites consists of loop and distal diuretics in

combination. Fogel et al. [44] reported combination ther-

apy, with spironolactone and furosemide with daily doses

of 100 and 40 mg, respectively, to be the most potent

regimen resulting in prompt weight loss (17 % in combi-

nation group vs. 12 % in furosemide only group) and no

recurrence of ascites. In this study, the group treated with

only furosemide required frequent dose escalation to

maintain an appropriate diuresis. Although, in healthy

subjects, it has been shown that loop diuretics are more

potent natriuretic agents than distal tubule diuretics, in

Fig. 1 Clinical conditions in which a decrease in cardiac output

(a) and systemic arterial vasodilation (b) cause arterial underfilling

with resultant neurohumoral activation and renal sodium and water

retention. Adapted from ref. [73]
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cirrhotic patients, furosemide was less effective than spi-

ronolactone [45]. This finding is mainly due to altered

furosemide pharmacokinetics in cirrhosis, which involves

(1) decreased intraluminal secretion of furosemide [46], (2)

exaggerated sodium uptake in proximal tubule with less

distal delivery to the loop of Henle and, most importantly,

(3) secondary hyperaldosteronism. Elevated plasma aldo-

sterone levels not only cause an increase in distal sodium

reabsorption but also induce an upregulation of aldosterone

sensitive sodium transporters in the distal tubule leading to

plasma volume expansion and edema formation [47].

With hyperaldosteronism as the cornerstone of decom-

pensated cirrhosis, major guidelines in management of

ascites recommend natriuretic doses of MRAs in con-

junction with loop diuretics. The recommended regimen is

spironolactone plus furosemide with starting dose of 100

and 40 mg/day, respectively [48]. The International Club

of Ascites guidelines define diuretic resistance as an

inadequate response to 400 mg of spironolactone and

160 mg of furosemide in cirrhotic patients with ascites

[49]. Of note, to date, there are no clinical data on efficacy

of eplerenone in the management of ascites.

Heart failure

Several studies have shown that despite maximal RAAS

blockage, plasma aldosterone levels remain elevated in HF

patients [18, 50, 51]. Also it has been shown that the

aldosterone level will increase even more when diuretic

therapy is intensified during decompensation [13]. In a

study of stable chronic HF patients with reduced EF

(\40 %) and standard medical therapy, Vittorio et al. [52]

demonstrated no changes in plasma aldosterone levels after

optimal ACE-I administration. The Randomized Aldoste-

rone Evaluation Study (RALES) was the first large ran-

domized trial to show a mortality benefit of spironolactone

in patients with systolic HF and NYHA functional class

III–IV [14]. Mineralocorticoid receptor antagonism in the

Eplerenone Post-Acute Myocardial Infarction Heart Failure

Efficacy and Survival Study (EPHESUS) improved sur-

vival in patients with systolic HF due to acute myocardial

infarction [53]. This benefit was confirmed by the results of

the Eplerenone in Mild Patients Hospitalization and Sur-

vival Study in Heart Failure (EMPHASIS-HF) trial in

patients with mild symptoms of HF [54]. In both studies, a

remarkable reduction in all-cause mortality was docu-

mented (30 and 15 % in RALES and EPHESUS trial,

respectively). On the other hand, MRA treatment in

patients with HFpEF did not show similar beneficiary

impact as described in the treatment of preserved cardiac

function heart failure with an aldosterone antagonist

(TOPCAT) trial [55]. In this international study of patients

with HFpEF (LVEF C45 %), addition of spironolactone to

current HF medical regimen (average dose of 25 mg/day)

failed to have a beneficial impact on primary composite

outcome of death from cardiovascular causes, aborted

cardiac arrest or hospitalization for HF [55]. However, the

spironolactone group had a nominally significant reduction

in hospitalization rate (number of events in treated vs.

placebo group were 206 versus 245, respectively).

The average dose of spironolactone in the RALES trial

was 26 mg/day. A similar spironolactone equivalent dose

of eplerenone (43.5 mg/day) was administered in the

EPHESUS trial. The beneficiary impact of MRA in patients

with systolic HF is considered to be due to non-genomic,

non-natriuretic effects of aldosterone as the average daily

dose of 25 mg in RALES did not increase urinary sodium

excretion [15].

However, a few studies have shown higher doses of

MRAs to promote substantial natriuresis in HF patients.

Braunwald et al. [56] demonstrated the natriuretic effect of

100 mg spironolactone in three patients with HF with a

significant increase in urinary sodium excretion (from 6 to

452, from 39 to 461 and from 435 to 676 mEq, respectively).

In another non-randomized short-term study, administration

of spironolactone 200 mg twice daily completely reversed

sodium retention in advanced HF patients. There was no

clinically significant hyperkalemia and mean body weight

decreased by 2 kg over a 4-day period (Fig. 2) [57]. In a third

study, 100 mg daily of spironolactone for seven consecutive

days resulted in significant natriuresis with a 64 % decline in

body overweight and symptomatic improvement in patients

with decompensated HF and diuretic resistance [58].

Finally, a recent prospective single-center, single-blinded

study of 100 patients with ADHF compared higher doses of

spironolactone (50–100 mg daily) to standard acute HF

regimen. There was no difference in use or dose of furose-

mide or ACE-I between the standard and treatment group.

However, there was a significant improvement in sign and

symptoms of congestion in spironolactone group. Moreover,

a larger number of patients in the spironolactone group were

transitioned to oral furosemide at day 3 (44 vs. 82 %;

p \ 0.001). Also, a significant decrease in NT-proBNP as a

surrogate of cardiac filling pressures occurred in the spiro-

nolactone group (Fig. 3). There was no incidence of hyper-

kalemia in treatment group. Of note, patients with serum

creatinine of[1.5 mg/dL or serum potassium[5.0 mmol/L

were excluded from this study [59].

Adverse effects of mineralocorticoid antagonists

Hyperkalemia

Safety and tolerability of natriuretic doses of MRAs

([25 mg/day) have not been adequately studied. One major
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concern is the risk of hyperkalemia, which has led probably

to underutilization of MRAs in even patients who are eligible

to MRA treatment as per current HF guidelines [60]. In both

RALES and EPHESUS trial, the incidence of clinically

significant severe hyperkalemia (serum potassium[6 mEq/

L) was low. In the RALES trial, despite the fact that 95 % of

patients were treated with an ACE-I or an angiotensin

receptor blocker (ARB), the incidence of hyperkalemia was

only 2 %. In EPHESUS trial, while 86 % of patients were on

ACE-I or ARB, this incidence was 5.5 % in eplerenone

group versus 3.9 % in placebo arm [14, 15] (Table 1).

After the RALES was published, Juurlink et al. [61]

reported an increase in spironolactone prescription as well

as an increase rate of hospitalization and death associated

with hyperkalemia (hyperkalemia defined as serum potas-

sium [5.0 mEq/L). However, the authors considered all

hospital admissions including a diagnosis of hyperkalemia.

Fig. 2 Reversal of sodium

retention with aldosterone

antagonism in patients with

heart failure. Left positive

sodium balance without

spironolactone. Right negative

sodium balance with

spironolactone. Adapted from

ref. [74]

Fig. 3 Changes in congestive

sign and symptoms in control

versus treated group at day 3.

Adapted from ref. [59]

Table 1 Comparison of mineralocorticoid dose in major clinical

trials in conjunction with ACE-I and b-blockers

RALES EPHESUS EMPHASIS-HF

Mean LVEF (%) 25 33 26

RF exclusion sCr [2.5

mg/dL

sCr [2.5

mg/dL

eGFR \30 mL/min

per 1.73 m2

ACE-I/ARB (%) 95 86 94

b-Blocker (%) 11 75 87

Mean MRA

dose (mg/day)

26 43.5 39

Serum K

[6 meq/L

(%)

2 5.5 2.5

ACE-I angiotensin-converting enzyme inhibitor, ARB angiotensin

receptor blocker, LVEF left ventricular ejection fraction, RF renal

function, sCr serum creatinine, eGFR estimated glomerular filtration

rate, MRA mineralocorticoid receptor blocker, serum K serum

potassium
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Therefore, it is unclear whether hyperkalemia was the

primary reason for admission. Moreover, in this report,

there was no indication of the renal function, which plays

an important role in the incidence of adverse effects in

MRA administration. On the other hand, a retrospective

European study was unable to show a direct association

between spironolactone administration and hospitalization

due to MRA-induced hyperkalemia [62]. In this non-ran-

domized cohort, the incidence of severe hyperkalemia

(serum potassium [6 mEq/L) was 2.9 %, being patients

with higher baseline serum creatinine or potassium at a

higher risk for this complication.

In two recent subanalysis of EMPHASIS-HF trial, there

was a statistically significant increased incidence of

hyperkalemia with serum potassium [5.5 mEq/L in epl-

erenone group (11 vs. 6.8 %). Also worsening renal func-

tion (decline in eGFR [20 %) was higher in this group

(30.1 vs. 24.4 %). However, the analysis did not report any

significant severe hyperkalemia (serum potassium

[6.0 mEq/L) or worsening renal function that was related

to hospitalization or death. Moreover, eplerenone remained

clinically beneficial on HF hospitalizations, cardiovascular

death and all-cause mortality. These mortality benefits

were independent of hyperkalemia (serum potassium

[5.5 mEq/L) or worsening renal function (20–30 %

decline in eGFR), even among patients at higher risk of

developing hyperkalemia (i.e., age[75, baseline GFR\60,

plasma potassium[4.5 mEq/L, hypertension, diabetes and

antiarrhythmics drugs use) [63, 64].

The importance of close monitoring of renal function

and electrolytes after initiation of MRAs especially in older

patients with underlying comorbidities, i.e., diabetes, renal

dysfunction, is important. A large clinical data registry

analysis of elderly patients with HF (average age

77.6 years) and reduced ejection fraction (HFrEF) who

were treated with aldosterone antagonists at the time of

hospital discharge shows significant reduction in HF-

associated readmission rate among patients who received

MRAs (HR 0.87; 95 % CI 0.77, 0.98; p = 0.02). Although

readmission due to hyperkalemia was higher in aldosterone

antagonist group at 30 days and 1 year, the rate of hyper-

kalemia as the primary diagnosis for readmission was small

[65].

Strategies to avoid hyperkalemia are discussed in 2013

ACCF/AHA Guideline for the management of HF and

include close monitoring of serum potassium and creati-

nine: Potassium levels and renal function are most typically

checked in 2–3 days and at 1 week after initiating therapy

and at least monthly for the first 3 months [66].

In this regard, cautious initiation and titration of MRAs

to natriuretic doses should be considered particularly in

patients with eGFR of 30–49 mL/min/1.73 m2 and baseline

serum potassium [4.5 mEq/L [67]. The ACCF/AHA

Guideline recommends against administrations of MRAs in

patients with eGFR \30 mL/min/1.73 m2 and/or baseline

serum potassium [5.0 mEq/L.

Hyperkalemia appears to be less frequent in cirrhotic

patients treated with spironolactone in comparison with HF

population, while both groups routinely receive potassium-

losing loop diuretics. The underlying mechanism of this

observation is not adequately studied. This could be

explained partially by more prevalent risk factors of renal

dysfunction in HF patients, including: older age, underly-

ing diabetes, history of prolonged hypertension and fre-

quent incidences of acute kidney injury in the setting of

decompensation episodes. The lower frequency of ACEI

administration in cirrhotic patients should be also consid-

ered. On the contrary, cirrhotic patients may receive non-

selective b-blockers that can induce hyperkalemia, espe-

cially in light of RAAS suppression.

Gynecomastia

Gynecomastia is an uncommon adverse effect of spirono-

lactone with an incidence of 4 % in clinical trials [68].

Spironolactone may also cause sexual dysfunction [69].

Since eplerenone is a selective inhibitor of aldosterone

receptor, there are significantly lower androgenic side

effects [53, 70, 71].

Conclusions

In summary, persistent neurohormonal activation in

decompensated cirrhosis and HF increases plasma aldo-

sterone level with detrimental genomic and non-genomic

effects. In a setting of congestion, escalating doses of loop

diuretics may further promote neurohormonal activation as

well as renal tubular hypertrophy and, ultimately, diuretic

resistance. Addition of natriuretic doses of MRAs, which is

currently recommended in decompensated cirrhosis, may

offer an alternative to intensification of loop diuretic reg-

imen in treating congestion in HF patients, specifically in

hyper- and normotensive profile [72]. However, this

hypothesis needs to be tested in prospective randomized

studies with cautious patient selection with respect to

subgroups at high risk of developing hyperkalemia and

renal failure.
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