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Alternaria species are mainly saprophytic fungi, but some are plant pathogens. Seven pathotypes of Alternaria alternata use sec-
ondary metabolites of host-specific toxins as pathogenicity factors. These toxins kill host cells prior to colonization. Genes asso-
ciated with toxin synthesis reside on conditionally dispensable chromosomes, supporting the notion that pathogenicity might
have been acquired several times by A. alternata. Alternaria brassicicola, however, seems to employ a different mechanism. Evi-
dence on the use of host-specific toxins as pathogenicity factors remains tenuous, even after a diligent search aided by full-ge-
nome sequencing and efficient reverse-genetics approaches. Similarly, no individual genes encoding lipases or cell wall-degrad-
ing enzymes have been identified as strong virulence factors, although these enzymes have been considered important for fungal
pathogenesis. This review describes our current understanding of toxins, lipases, and cell wall-degrading enzymes and their roles
in the pathogenesis of A. brassicicola compared to those of other pathogenic fungi. It also describes a set of genes that affect
pathogenesis in A. brassicicola. They are involved in various cellular functions that are likely important in most organisms and
probably indirectly associated with pathogenesis. Deletion or disruption of these genes results in weakly virulent strains that
appear to be sensitive to the defense mechanisms of host plants. Finally, this review discusses the implications of a recent discov-
ery of three important transcription factors associated with pathogenesis and the putative downstream genes that they regulate.

The bodies of plant-pathogenic fungi consist of growing hyphae
and reproductive structures, although they are barely visible to

the naked eye. Some fungi develop sexual spores during their life
cycles, but for others, the sexual stage is unknown (1). The
Dothideomycetes are a large and ecologically diverse class of fungi
and contain both sexual and asexual species (2). This group in-
cludes various plant pathogens, such as Cochliobolus, Pyreno-
phora, Parastagonospora, Leptosphaeria, Mycosphaerella, and Al-
ternaria. Sexual stages are not known for species of Alternaria (3).
Some of these species are saprophytes living on dead organic ma-
terials, and others are plant parasites (4). Alternaria brassicicola is
a destructive plant parasite that causes substantial damage to a
broad range of host plants. It causes black spot disease on virtually
all plant species in the Brassicaceae (5–7). These crop species in-
clude Brassica oleracea (vegetables), Brassica rapa (vegetables, oil-
seeds, and forages), Brassica juncea (vegetables and seed mustard),
and Brassica napus (oilseeds) (8). This disease is of worldwide
economic importance (5–7, 9, 10) and can result in 20 to 50%
yield reductions in crops such as canola and rape (10).

Alternaria brassicicola is a necrotrophic plant pathogen that
kills and absorbs nutrients from the aboveground tissues of its
hosts. This mechanism is in contrast to that of biotrophic plant
pathogens that feed on absolutely living host tissues. The patho-
genesis mechanisms of necrotrophic fungi are simplistically de-
scribed as a two-step process. The first step is the killing of host
cells or inducing programmed cell death with toxins (11–17). Sub-
sequently, the necrotrophic fungi break down the dead tissues
with various carbohydrate-active enzymes (CAZys) that are com-
monly known as cell wall-degrading enzymes (CWDEs) (18, 19).

Several physiological and morphological characteristics of var-
ious pathogenic fungi have been demonstrated, or hypothesized,
to be involved in necrotrophic pathogenesis (20). These charac-
teristics include specialized morphology (21), secretion of second-
ary metabolites and toxins (22), production of lipases (23),
CWDEs (18, 19), and proteases (24), and uninterrupted mycelial

growth. Pathogenesis mechanisms are also affected by a patho-
gen’s ability to cope with various environmental stresses, such as
reactive oxygen species, pH fluctuation, and host defense mole-
cules. Defects in development or in the organism’s metabolism
also affect pathogenesis. In this review, I describe recent progress
in our understanding of the pathogenesis mechanisms of A. bras-
sicicola.

RESEARCH BACKGROUND

Molecular research associated with A. brassicicola was focused pri-
marily on plant responses to infection (25–31) rather than the
interaction of the fungus with its host plants until its genome
sequence was determined. The main reason for a lack of research
on fungal genes is that conventional genetics has been difficult
with A. brassicicola. In comparison, the biochemical aspects of
pathogenesis have been actively investigated. They include the
production of toxic secondary metabolites and proteins during
saprophytic growth in axenic media, the parasitic colonization of
host plants (32, 33), and the effects of phytoalexins on the fungus
(34–36). Other research includes phenotypic characterization of
naturally occurring A. brassicicola mutants (37) and gene expres-
sion studies to discover candidate genes associated with pathogen-
esis (38–40).

Molecular research on pathogenesis mechanisms used by A.
brassicicola has been encouraged since the Lawrence group at Vir-
ginia Bioinformatics Institute and the Genome Center at Wash-
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ington University initiated their genome project. Ab initio, ma-
chine-annotated information from this group has been available
at the Web portal of Joint Genome Initiatives (JGI; http://genome
.jgi-psf.org/Altbr1/) for many years (41). Its genome was subse-
quently analyzed in the context of comparative genomics among
18 species of Dothideomycetes (4).

CANDIDATE GENES ASSOCIATED WITH PATHOGENESIS

There are 10,688 predicted genes in the genome of A. brassicicola
(4). Secondary metabolites are required for the pathogenicity or
virulence of several pathogenic fungi, and small secreted proteins
play important roles in plant-fungus interactions. Genes encoding
enzymes for secondary metabolite synthesis include those for
nonribosomal peptide synthases (NPS), polyketide synthases
(PKS), and terpene synthases (TPS). There are only 22 members
in these three families in the genome of A. brassicicola compared to
over 54 to 77 genes in closely related necrotrophs, such as three
Cochliobolus species and Pyrenophora teres (Table 1). There are
139 genes encoding small secretion proteins in A. brassicicola,
compared to an average of 157.8 genes in 16 Dothideomycetes.
The genes that produce either unique secondary metabolites or
unique small secretion proteins are putatively associated with the
production of general phytotoxins or host-specific toxins.

Some CAZys abundant in the A. brassicicola genome might also
be important for pathogenesis. There are 83 glycosyl transferases
that are probably involved in the assembly of polysaccharides in
fungal cell walls. The numbers are similar among other Dothideo-
mycetes, regardless of their lifestyles. These genes may be impor-
tant in the fungal life cycle and indirectly associated with patho-
genesis but not specific to necrotrophy. Genes that are important
for A. brassicicola’s necrotrophic lifestyle are speculated to be ex-
panded. Several gene families encoding hydrolytic enzymes are
increased in the genome of A. brassicicola. There are 76 genes
encoding secreted lipases in A. brassicicola compared to an average

of 46.7 genes among 18 Dothideomycetes. Nine of the 76 secreted
lipases are cutinases in A. brassicicola, compared to fewer than 3
cutinases in saprophytes. Two families of CAZys are also ex-
panded. In A. brassicicola, there are 249 glycosyl hydrolases that
are involved in the digestion of polysaccharides. Among the gly-
cosyl hydrolase genes, 22 and 53 genes, respectively, belong to
GH61 and CBM1, which cleave cellulose. Compared with the
Capnodiales, there are more hydrolases in A. brassicicola and other
fungi in the Pleosporales. Notably, there are 19 pectate lyases and
7 pectin esterases in A. brassicicola, twice as many as in their ho-
mologs in other fungi. The genes whose numbers are expanded
may be involved in the pathogenesis (including the initial pene-
tration) of the host or the early colonization (by digestion) of the
cuticle layer and cell wall components of host plants.

EASY REVERSE-GENETICS APPROACHES

Sexual stages are not known for this fungus, and there is no record
of forward-genetics studies. In contrast to the forward-genetics
approach, the reverse-genetics approach of disrupting, deleting,
or labeling targeted genes with exogenous DNA fragments is sim-
ple and efficient (42, 43). It is sufficient to transfer a short linear
construct into fungal protoplasts to produce disruption muta-
tions in targeted genes. A targeted gene disruption construct can
be made with a partial 250- to 600-bp-long targeted gene on one
end and a selectable marker gene cassette (44) on the other end.
The efficiency of targeted gene disruption is �75% when the
flanking fragment is �1 kb long (42, 45). Linear constructs can
also be used to make mutants with deletions of any targeted gene
(46, 47). All constructs with either a disruption or a deletion of a
target gene can be produced with just two rounds of PCR, as
described for other fungal systems (48, 49). The publically avail-
able genome sequence of A. brassicicola (http://genome.jgi-psf.org
/Altbr1/Altbr1.home.html) has been resourceful in the design of
genetic constructs for the creation of mutants and subsequently in

TABLE 1 Numbers of genes encoding 12 selected proteins in 16 dothideomycete fungia

Organism Lifestyle Order

No. of genes encoding:

NPS PKS TPS SSP Cut Lip GH PSL CHE GT PL PE Xylan XE

Cochliobolus heterostrophus C4 Necro Pleosporales 14 23 17 239 11 70 276 15 48 96 11 3 10 13
Cochliobolus heterostrophus C5 Necro Pleosporales 14 25 17 251 13 70 292 15 51 103 11 3 10 13
Cochliobolus sativus Hemi Pleosporales 19 18 14 210 13 69 272 15 48 99 11 3 10 12
Setosphaeria turcica Hemi Pleosporales 15 27 7 201 9 60 254 14 42 94 10 3 10 9
Alternaria brassicicola Necro Pleosporales 7 7 8 139 9 76 249 23 41 83 19 7 9 9
Pyrenophora teres Necro Pleosporales 44 22 11 111 7 57 254 10 40 98 6 2 8 8
Leptosphaeria maculans Hemi Pleosporales 8 13 7 188 6 49 231 19 34 94 15 3 5 5
Parastagonospora nodorum Necro Pleosporales 10 19 7 209 7 77 273 10 50 89 6 6 14 14
Rhytidhysteron rufulum Sapro Pleosporales 15 34 10 205 0 73 283 17 46 89 11 4 6 26
Hysterium pulicare Sapro Hysteriales 10 28 5 141 2 59 271 4 38 98 2 7 7 11
Mycosphaerella fijiensis Hemi Hysteriales 11 8 6 143 6 28 228 5 27 97 3 3 1 8
Mycosphaerella graminicola Hemi Capnodiales 9 11 5 212 4 43 191 3 18 99 3 1 3 5
Mycosphaerella populicola Hemi Capnodiales 9 10 7 123 4 20 156 5 14 95 3 0 1 5
Mycosphaerella populorum Hemi Capnodiales 10 11 7 223 6 23 169 6 19 95 4 0 1 6
Dothistroma septosporum Hemi Capnodiales 7 6 7 133 1 28 201 4 23 110 1 3 3 4
Baudoinia compniacensis Sapro Capnodiales 2 2 8 67 3 36 164 0 17 85 0 1 6 3

Median 9.5 11 7 142 5 46 229.5 5.5 30.5 95 3.5 3 5.5 7
Mean 11.8 14.3 7.3 157.8 4.6 46.7 222.5 8.8 30.6 94.3 5.3 3.1 5.3 8.7
a Abbreviations: NPS, nonribosomal protein synthase; PKS, polyketide synthase; TPS, terpene synthase; SSP, small secretion protein; Cut, secreted cutinase; Lip, secreted lipase
(excluding cutinase); GH, glycoside hydrolase; PSL, polysaccharide lyase; CHE, carbohydrate esterase; GT, glycosyltransferase; PL, pectate lyase; PE, pectin esterase; XE, xylan
esterase; Sapro, saprophyte; Hemi, hemibiotroph; Necro, necrotroph.

Minireview

336 ec.asm.org April 2015 Volume 14 Number 4Eukaryotic Cell

http://genome.jgi-psf.org/Altbr1/
http://genome.jgi-psf.org/Altbr1/
http://genome.jgi-psf.org/Altbr1/Altbr1.home.html
http://genome.jgi-psf.org/Altbr1/Altbr1.home.html
http://ec.asm.org


identifying pathogenesis-associated genes and in inferring patho-
genesis mechanisms.

TENUOUS EVIDENCE ON THE IMPORTANCE OF TOXINS

The importance of toxins in pathogenesis has been demonstrated
for several necrotrophic fungi. For example, the toxin-producing
pathogenic fungi Cochliobolus victoriae, A. alternata, and Myco-
sphaerella zeae-maydis are nonpathogenic when the toxin gene is
nonfunctional (50–52). Another piece of direct evidence on the
importance of toxins in pathogenesis is that toxin-deficient strains
of Pyrenophora tritici-repentis and Ophiostoma quercus become
pathogenic when transformed with toxin genes from the same
species (53, 54). Seven A. alternata pathotypes produce secondary
metabolites that are host-specific toxins and pathogenicity factors
(51, 55–61). Gene clusters for Alternaria toxins are encoded on
supernumerary chromosomes that are conditionally dispensable
(3, 61). The apple pathotype of A. alternata, for example, has a
toxin gene cluster on a dispensable chromosome, and the patho-
type becomes nonpathogenic if the chromosome is lost (62, 63).
Furthermore, the hybrid strains of two pathotypes, tomato and
apple and tomato and strawberry, made by protoplast fusion pro-
duce the two toxins from the parental strains and are pathogenic
to both plants affected by the parents (64, 65). These toxins are
released from germinating conidia and suppress host defense re-
actions. Further information regarding the discovery of these tox-
ins, the target organs of each toxin, and evolutionary implications
of the toxins is comprehensively provided by Tsuge et al. (61).

Unlike with the many pathotypes of A. alternata, no toxins
have been identified as pathogenicity factors thus far in the bras-
sica pathogen A. brassicicola. Instead, several weak toxins and
toxin candidates whose absence causes a slight decrease in viru-
lence have been discovered. The histone deacetylation inhibitor
depudecin is a secondary metabolite synthesized by a cluster of
five genes, including a polyketide synthase (AbPks9) in the A. bras-
sicicola genome (66). Mutation of the five genes abolishes depu-
decin synthesis and causes a 10% reduction in virulence compared
to that of wild-type A. brassicicola. Diterpenoid toxins called bras-
sicicenes are produced by this fungus and linked to gene clusters in
the A. brassicicola genome (67). In addition, brassicicolin A re-
cently emerged as the most selective phytotoxic metabolite pro-
duced in liquid cultures of A. brassicicola (32), while a weak pro-
tein toxin was previously reported (33, 68). However, the genes
responsible for the production of brassicicolin A and the protein
toxin have yet to be found, and their importance in pathogenesis
needs to be characterized by targeted gene mutagenesis. Among 7
NPS genes, mutation of AbNPS6 or AbNPS2 results in a moderate-
to-severe reduction in virulence, but their association with the
production of phytotoxins is unknown (69). Currently, the evi-
dence of host-specific toxins as pathogenicity factors remains ten-
uous. The presence and absence of host-specific toxins and the
importance of general toxins in pathogenesis will be clarified as
further studies progress on PKS, NPS, or TPS genes that are in-
volved in the synthesis of secondary metabolites. In addition, 139
genes encoding small secretion proteins also warrant further stud-
ies as candidates of host-specific toxins.

MINOR ROLES OF INDIVIDUAL CUTINASES AND LIPASES

Plant pathogens encounter physical barriers presented by their
host plants. Cutin is the main component of the cuticle of terres-
trial plants and the first layer of defense against loss of or satura-

tion by water. This layer also provides a defense against foliar
pathogens. The role of a secreted cutin-digesting enzyme, cutinase
(Pbc1), in fungal pathogenesis has been extensively studied and
compared to those of other hydrolytic enzyme genes (70–74). The
expression of cutinase genes in some fungal pathogens is regulated
by contact with the host plant surface (73). The importance of the
enzyme in pathogenicity has been demonstrated by using anti-
bodies, inhibitors, or cutinase-deficient fungal mutants of both
Nectria haematococca and Colletotrichum spp. (70–75). Disrup-
tion of a cutinase gene results in a loss of pathogenicity in Pyreno-
peziza brassicae (76). The Pbc1 homolog in A. brassicicola (CutAb1
gene; gene ID AB01674.1, available at the Web portal of JGI) is
expressed at high levels during saprophytic growth (77) and
pathogenesis (78). However, a loss-of-function mutation of the
homologous gene CutAb1 in A. brassicicola as well as homologous
genes in N. haematococca, Magnaporthe grisea, or Botrytis cinerea,
does not affect the virulence of these fungi (77, 79–81). Another
secreted lipase, Fgl1 (GenBank accession number AY292529) is
involved in the infection process in Fusarium graminearum, and
disruption of the gene results in the reduction of its virulence to
wheat spikes and corn kernels (23). However, deletions of four
individual lipase genes, including its homologs AB10342.1 and
AB09630.1, do not affect pathogenesis in A. brassicicola (42, 82).

The cutinase Pbc1 in P. brassicae and the lipase Fgl1 in F.
graminearum are obviously important virulence factors, but their
orthologs are dispensable for pathogenesis in A. brassicicola. It is
possible that the functions of these genes were compensated for by
other paralogs in the mutant. It is of note that there are 9 putative
cutinases and 76 lipases with secretion signal sequences in the
genome of A. brassicicola (Table 1) (4). The number of these two
protein families is greater in A. brassicicola than the average num-
ber among other Dothideomycetes (Table 1). Although their role
in pathogenesis has yet to be explored, they may be important for
initial penetration and virulence. Disruption or deletion of indi-
vidual genes, however, does not result in reduced virulence for
reasons discussed in the following section.

CELL WALL-DEGRADING ENZYME GENES

Pectins and xylans are structural heteropolysaccharides and key
components of primary and secondary cell walls of terrestrial
plants. In addition, pectins are major components of the middle
lamella and help bind cells together. Xylans are generally found at
the interface between lignin and cellulose and are speculated to be
important for fiber cohesion and plant cell wall integrity (83).
Both pectins and xylans strengthen cell walls and assist in cell-to-
cell adhesion in plant tissues. They also play important roles in
protecting plants from pathogen invasion. These two heteropoly-
saccharides are rich reservoirs of sugars that are unlocked by hy-
drolytic enzymes produced by microbial pathogens. These sugars
are used as the basic building blocks of the microbial biomass. It
has been suggested that pectin-digesting enzymes play important
roles in the virulence of various phytopathogenic fungi (84, 85).
Subsequently, it was shown that loss-of-function mutation of
genes encoding pectinolytic enzymes resulted in a reduction of
virulence in Aspergillus flavus (86), B. cinerea (87), and Claviceps
purpurea (88). In A. brassicicola, many genes encode pectin-di-
gesting enzymes, which suggests their importance in a parasitic
lifestyle. However, none of the pectin-degrading enzyme genes
evaluated were found to be important for pathogenesis in A. bras-
sicicola (42). For example, virulence was not reduced even after the
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removal of the pectate lyase AB10322.1 gene (42), which was
abundantly expressed during the late stage of plant infection (78).
Further, disruption of a gene encoding xylanase, the AB03077.1
gene, or a regulator of a xylanase-coding gene, the AB04096.1
gene, did not affect the virulence of A. brassicicola (46).

Cellulose is another physical barrier to the fungus and the most
abundant structural component of the primary cell wall of green
plants. Cellulose is a polysaccharide consisting of a linear chain of
hundreds of �-1,4-linked D-glucose units (89). Cellobiohydro-
lases and �-1,4-endoglucanase are specific enzymes that catalyze
the hydrolysis of cellulose. A cellobiohydrolase, CBH7, in Co-
chliobolus heterostrophus (90) and its homolog in A. brassicicola,
AbCBH7 (AB06252.1), are also expressed at high levels during
pathogenesis, but disruption of AbCbh7 does not affect pathogen-
esis (42). In addition to AbCBH7 (AB06252.1) in A. brassicicola,
other hydrolytic enzyme-coding genes, such as those for chymo-
trypsin (AB01734.1), N-acetylglucosaminidase (AB02307.1), gly-
cosyl hydrolase (AB08726.1), and serine protease (AB10439.1),
are expressed at high-to-moderate levels, but mutants with dis-
ruption in these genes did not show a reduction in virulence (42).
It is not unusual for mutation of an individual gene or several
genes encoding hydrolases to have little or no effect on pathoge-
nicity. This may be due to either functional redundancy (91–94)
or extreme functional specialization (95–97) among gene families
and individual CWDE genes. Cell wall-degrading enzymes can be
grouped in families of multiple members with interconnected ac-
tivities. Because of this redundancy or functional specialization,
the disruption of one or several genes that encode hydrolytic en-
zymes can decrease their corresponding activity with no reduction
in virulence (91, 92).

GENES ASSOCIATED WITH VIRULENCE AND IMPORTANT
CELLULAR FUNCTIONS

Several genes whose mutation affects pathogenesis have been
linked to important cellular functions in A. brassicicola. Mutants
with these mutated genes show various phenotypes in addition to
a reduction in virulence. For example, the TmpL gene is responsi-
ble for intracellular redox homeostasis, and its mutation causes
defects in cell wall integrity, abnormal conidium development, an
enhanced oxidative burst during conidiation, and hypersensitivity
to oxidative stress, in addition to reduced virulence (98). Another
universally important cellular function affecting pathogenesis is
associated with the unfolded protein response pathway (UPRP).
The UPRP is involved in a protein secretory pathway, broad as-
pects of cell fate, and the metabolism of proteins, amino acids, and
lipids in eukaryotic cells (99). The UPRP is also an important
stress-signaling pathway involved in cellular development and the
adaptation of fungi to the environment. Deletion of a key regula-
tor gene, AbHacA, in the UPRP causes a cell wall defect, reduced
capacity for secretion of hydrolytic enzymes, slow growth on pep-
tone-dextrose agar (PDA) or malt agar, and the complete loss of
virulence (100). Cell wall integrity is affected by three other genes:
AbHog1, AbNPS2, and AbSlt2 (69, 100, 101). As in other patho-
genic fungi, mutants with mutations in any of these three genes are
less virulent than the wild type (102). It is reasonable to speculate
that weakened cell walls make these mutants more susceptible to
diverse chemicals, such as various host metabolites and reactive
oxygen species. As suspected, AbHog1 and AbSlt2 mutants are
more sensitive than the wild type to the phytoalexins brassinin and
camalexin (101). The reduced virulence of these mutants is likely

caused by the defective structure of their cell walls. It is also pos-
sible, however, that weakened cell walls augment the effects of
uncharacterized virulence factors.

The functions of a mitogen-activated protein (MAP) kinase
gene, Amk1, and its downstream transcription factor-coding gene,
AbSte12, and their association with pathogenesis are mysterious.
Disruption or deletion of either gene are nonpathogenic, with
slow vegetative growth, a failure to form appressoria, and im-
paired conidium development (46, 103). In addition, amk1 dis-
ruption mutants express putative CWDEs at lower levels than
wild-type A. brassicicola and fail to undergo self-fusion of hyphae.
The reason for the loss of pathogenicity in amk1 mutants may be
either the reduced expression of CWDE genes, slow hyphal
growth, developmental defects, the inability of self-fusion, or the
combined effects of all of these factors. There may be multiple
cofactors or downstream genes associated with each phenotype.
This hypothesis has yet to be tested. Other genes seem to have
simpler functions but are still associated with pathogenesis. Mu-
tation of the Aso1 gene causes the loss of self-fusion and pathoge-
nicity, although the cause-and-effect relationship between the two
phenotypes is unclear (104). NPS6 is responsible for the biosyn-
thesis of extracellular siderophores in three phytopathogens, in-
cluding A. brassicicola (43). Mutation of this gene results in a hy-
persensitivity to H2O2 and a reduction in virulence. The proposed
role of extracellular siderophores in fungal virulence is not to sup-
ply an essential nutrient, iron, to host plant tissues (43). For most
genes described above and other pathogenesis-associated genes,
however, the cause-and-effect relationship between their func-
tions and the deficiencies of their mutants in pathogenesis is spec-
ulative.

REGULATOR OF CELL WALL-DEGRADING ENZYME GENES

Microbes adapt quickly and metabolize preferred carbon and en-
ergy sources, such as structurally simple glucose, rather than com-
plex carbohydrates, such as pectin, xylan, and cellulose. This ad-
aptation is made through the catabolite repression pathway. The
repression is achieved by inhibiting synthesis of enzymes involved
in catabolism of complex carbon sources other than the preferred
one. This pathway is probably derepressed when complex car-
bons, such as pectins and celluloses, are major energy sources.
Therefore, these enzymes are likely important in pathogenesis.
For example, the expression levels of about half of the cellobiohy-
drolases and glucanases in the Magnaporthe oryzae genome are
induced during pathogenesis (105). Knocking out a few of these
genes, however, does not significantly affect virulence in Co-
chliobolus carbonum (91, 92, 106). In contrast, reducing the ex-
pression levels of many cellulases in M. oryzae using an RNA in-
terference (RNAi) approach resulted in defects in penetration of
the host epidermis and inhibited colonization of tissues, causing a
reduction in virulence (105).

A gene encoding sucrose nonfermenting 1, SNF1, has a central
role in carbon catabolite repression in Saccharomyces cerevisiae
(107). Loss-of-function mutation of its homolog causes a reduced
expression of multiple CWDE genes under derepressive condi-
tions in C. carbonum and Fusarium oxysporum (106, 108). Mu-
tants of the former exhibited an 80% decrease in virulence, while
mutants of the latter show a significant delay in the development
of wilt symptoms compared to their wild types. In contrast, dele-
tion of either SNF1’s single-copy homolog in A. brassicicola,
AbSNF1, or its downstream transcription factor AbCre1 causes
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almost no reduction in virulence (46). It is possible that the func-
tions of AbSNF1 and AbCre1 are redundant to those of other un-
known genes. Discovery of AbVf19, however, implies that the
pathway is regulated by other genes in A. brassicicola.

The transcription factor AbVf19 is responsible for the induc-
tion of 28 hydrolytic enzyme-coding genes during the late stage of
pathogenesis (78). AbVf19 positively regulates the expression of
15 glycoside hydrolases, 6 pectate lyases, 6 peptidases, and 1 cuti-
nase. Only a small portion of the genes within each family encode
249 glycoside hydrolases, 19 pectate lyases, 164 peptidases, and 76
secreted lipases (4). The cutinase regulated by AbVf19 is CutAb1
(AB01674.1), whose expression level during plant infection was
73-fold higher in wild-type A. brassicicola than in the �Abvf19
mutant. Other induced genes include homologous genes encod-
ing a cellobiohydrolase, AbCbh7 (AB06252.1, whose expression is
21-fold higher in the wild type), a peptidase (AB01734.1, whose
expression is 3-fold higher in the wild type), chymotrypsin
(AB01734.1, whose expression is 3-fold higher in the wild type),
and pectate lyase (AB10322.1, whose expression is 3-fold higher in
the wild type). Single-gene mutation of these genes did not affect
the virulence of A. brassicicola (42, 77, 78). Most of these 28 genes
are downregulated by a transcription factor, Amr1, which is re-
sponsible for the accumulation of melanin during conidiogenesis
(45). Clearly, multiple enzyme-coding genes involved in patho-
genesis are coordinately regulated by the transcription factor
genes AbVf19 and Amr1 during the late stage of infection. It is
likely that AbVf19 induces expression of the 28 putative hydrolytic
enzyme genes when the fungus needs biomolecules for energy and
vegetative growth. Amr1 suppresses these enzyme genes, however,
when the fungus uses the energy to produce conidia.

PATHOGENESIS REGULATORS

There are two transcription factors that are very important for
pathogenesis but probably dispensable for other cellular func-
tions. Deletion of either gene resulted in impairment in pathogen-
esis without affecting other phenotypes. The transcription factor
Bdtf1 is important for the detoxification of brassinin produced by
Brassica species during pathogen infection and other stressful con-
ditions (32, 109). Brassinin has antifungal activities against A.
brassicicola in vitro (35). It is quickly modified and neutralized
during plant infection by wild-type A. brassicicola, however, pro-
ducing the intermediate metabolites N=-indolylmethanamine and
N=-acetyl-3-indolylmethanamine (110). Genes encoding enzymes
responsible for the detoxification of brassinin are yet to be identi-
fied. Studies on a transcription factor gene, the Bdtf1 gene, using
gene deletion mutants that are unable to detoxify brassinin and
are �70% less virulent than wild-type A. brassicicola (111), pro-
vide a path to the identification of the responsible enzymes. Com-
parison of gene expression profiles between the transcription fac-
tor gene mutants and wild-type A. brassicicola uncovered three
candidate genes (112). We are in the process of characterizing
their functions in pathogenesis and brassinin detoxification.

Another transcription factor, AbPf2, is involved in the early
stage of pathogenesis. The AbPf2 deletion mutant is nonpatho-
genic, but it lacks any other phenotypes in saprophytic growth,
both in the presence and in the absence of stress-inducing chem-
icals (113). Changes in the gene expression profiles of the mutant
during pathogenesis provide a clue to its loss of pathogenicity.
About 1% of the genes in the genome are expressed at lower levels
in the �abpf2 mutant than in the wild type during the early pen-

etration stage. Notably, the two pectate lyase AB04813.1 and
AB01332.1 genes are induced by AbPf2 as early as 4 h postinocu-
lation. However, six other pectate lyase genes (AB05514.1,
AB00904.1, AB10322, AB06838.1, AB03608, AB10575.1) regu-
lated by AbVf19 (78) are not induced by AbPf2. A total of 106
genes, including 13 putative CWDE genes, appear to be regulated
by the transcription factor. Interestingly, knockout mutants of the
pectate lyase AB01332.1 gene showed an �30% reduction in vir-
ulence (Y. Cho, unpublished data). It is notable that 6 of 139 genes
encoding small secretion proteins are also regulated by the tran-
scription factor. They may act as effector proteins. The loss of
pathogenicity in the �abpf2 mutant may be either the cumulative
effects of 106 downstream genes or caused by a few important
pathogenicity factors.

PERSPECTIVES

Genes encoding cutinases, lipases, CWDEs, and proteases appear
to be important for successful pathogenesis in A. brassicicola. A
small subset of these genes is coordinately induced during the late
stage and another subset during the early stage of pathogenesis by
AbVf19 and AbPf2, respectively (78, 113). Mutation of either reg-
ulatory gene causes a severe reduction in virulence; however, no
knockout mutants of any individual genes among lipases and
CWDEs has shown a significant reduction in virulence so far.
These observations raise a question as to whether all lipases and
CWDEs are important or whether mainly the small subset of the
genes regulated by AbVf19 and AbPf2 are important for pathogen-
esis. If the second scenario is incorrect, these subsets of genes
coincidentally show regulation patterns similar to those of un-
known virulence-associated genes during pathogenesis. This
question can be tested by knocking down their expression in A.
brassicicola using appropriately designed RNAi constructs. In
principle, the functional importance of lipases and diverse fami-
lies of CWDEs in pathogenesis can be tested by knocking down a
set of genes within each family beyond individual genes. Con-
served regions can be targeted to reduce the expression levels of
multiple genes using an RNAi approach (114). The number of
targeted genes can be decided based on conserved regions of nu-
cleotide sequence in the transcribed region among targeted genes.
The extent of knockdown efficiency can be empirically deter-
mined. If the expression of most genes encoding either lipases or
CWDEs is knocked down by RNAi, the corresponding mutants
would use substrates less efficiently, grow more slowly, and be
less virulent than the wild type when the substrates are used as
major sources of nutrients. The use of RNAi in tandem with
comprehensive studies on gene expression profiles would iden-
tify candidates of lipases and cutinases specialized and impor-
tant for pathogenesis.

The pathogenicity of Alternaria species was probably acquired
multiple times during their evolution. Production of similar phy-
totoxic secondary metabolites in several pathovars of A. alternata
provides a clue as to how a weak pathogen becomes stronger or
how a pathogen increases its host range by acquiring host-specific
toxins. Unlike with A. alternata, however, the importance of toxic
secondary metabolites in the pathogenesis of A. brassicicola is thus
far tenuous and yet to be tested. A study of the transcription factor
AbPf2 opens another possibility that a few proteins may act as
important toxins in the pathogenesis of A. brassicicola. It is of note
that AbPf2 regulates 6 of 139 genes encoding small secretion pro-
teins (113), which may act as effectors. The importance of effec-
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tors in the interactions between various host plants and their fungi
and fungus-like oomycete pathogens has been established (115,
116). In compatible interactions, many effector proteins reengi-
neer host gene expression, causing a suppression of the plant’s
defenses (117, 118). P. tritici-repentis ToxA and ToxB are good
examples of proteinaceous toxins that manipulate host suscepti-
bility (119). All or a few of the six effectors may have crucial roles
in pathogenesis and manipulate host plants through gene-for-
gene interactions between effectors and unknown plant proteins.

It is still a mystery how A. brassicicola kills host plant tissue
before extensive colonization. A subset of CWDE genes regulated
by AbPf2 may digest cellulose and pectin in the cell wall and mid-
dle lamella, causing the eventual collapse of plant tissues. This
mechanism is simple and requires only a one-sided action by the
pathogen to kill the tissues of its host. It is also possible that the
mechanism of pathogenesis is more complicated and that the or-
ganism may use effectors or secondary metabolites to manipulate
host plants. Regardless of its mode of action, I speculate that it is
most practical to study two genes that encode putative pectate
lyases and six genes that encode putative effector proteins. Their
explosive transient induction during early pathogenesis raises
questions about how their functions in pathogenesis are associ-
ated with their mode of secretion, their final destinations in the
host tissues, and interactions with host macromolecules. Gene
tagging with fluorescent-protein-coding genes is a useful method
to trace their movement from the moment of expression in fungal
cells to their final destination in host tissues. In addition, proteins
expressed in Escherichia coli or Pichia species may provide tools to
clarify their functions in pathogenesis, especially the host proteins
that interact with and the host responses to these proteins. Some
of these proteins may turn out to be long-anticipated host-specific
toxins, acting as avirulence genes or necrotrophic factors.

One reason to study molecular interactions between parasites
and their host plants is to find logical methods to efficiently man-
age plant diseases. I suspect that key transcription factors for
pathogenesis are good targets for a new class of agrochemicals.
Although currently beyond our capabilities, blocking the function
of AbVf19, Bdtf1, or Abpf2 would render wild-type A. brassicicola
nonpathogenic or weakly virulent. Further, it is technically possi-
ble to discover natural or synthetic compounds that bind and
ultimately inhibit the functions of target proteins. It is time to
screen chemicals targeting transcription factors in an effort to dis-
cover agrochemicals to manage plant diseases caused by A. bras-
sicicola.
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