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In recent years, the emergence of fungal resistance has become frequent, partly due to the widespread clinical use of fluconazole,
which is minimally toxic and effective in the prevention and treatment of Candida albicans infections. The limited selection of
antifungal drugs for clinical fungal infection therapy has prompted us to search for new antifungal drug targets. Calcium, which
acts as the second messenger in both mammals and fungi, plays a direct role in controlling the expression patterns of its signal-
ing systems and has important roles in cell survival. In addition, calcium and some of the components, mainly calcineurin, in the
fungal calcium signaling pathway mediate fungal resistance to antifungal drugs. Therefore, an overview of the components of the
fungal calcium-calcineurin signaling network and their potential roles as antifungal targets is urgently needed. The calcium-
calcineurin signaling pathway consists of various channels, transporters, pumps, and other proteins or enzymes. Many tran-
scriptional profiles have indicated that mutant strains that lack some of these components are sensitized to fluconazole or other
antifungal drugs. In addition, many researchers have identified efficient compounds that exhibit antifungal activity by them-
selves or in combination with antifungal drugs by targeting some of the components in the fungal calcium-calcineurin signaling
pathway. This targeting disrupts Ca2� homeostasis, which suggests that this pathway contains potential targets for the develop-
ment of new antifungal drugs.

Invasive fungal infections have become frequent in severely im-
munocompromised individuals, such as transplant, cancer che-

motherapy, and HIV-infected patients (1, 2). Candida spp., Asper-
gillus spp., and Cryptococcus spp. are the most pervasive fungal
pathogens isolated in invasive fungal infections (3–8). In contrast
with bacterial infections, many of which can be treated with mul-
tiple classes of antibiotics, the therapeutic options for fungal in-
fections are exceedingly insufficient due to the limited number of
antifungal drugs available and their potential toxicity (9, 10).
Azoles, especially fluconazole, have frequently been used in clini-
cal practice due to their great efficacy in the prevention and treat-
ment of Candida albicans infections and their reduced toxicity,
but their use results in the emergence of drug resistance. More-
over, innately resistant species, such as non-albicans Candida spe-
cies, are increasingly being isolated, which is a serious problem in
the fight against fungal infections (11–13). Therefore, new anti-
fungal drugs or new approaches for coping with invasive fungal
infections are urgently needed (14). However, the development of
brand-new antifungal drugs is time consuming and costly. More-
over, fungal cells are eukaryotic, and they share the conserved
biochemical and molecular biological networks of all eukaryotes,
which complicates the identification of fungal-specific targets that
are essential for fungal cell growth (9). Thus, antifungal agents
with novel modes of action, such as targeting the virulence, fila-
mentation, and biofilm formation of pathogenic fungi, are ur-
gently needed (10).

In recent years, calcium signal transduction in fungi has been
the focus of extensive study due to its essential role in the survival
of fungi (15–17). One of the regulators of calcium homeostasis,
calcineurin (CN), has been identified as a virulence factor in fila-
mentous fungi, and some calcium channel proteins have been
found to be responsible for the filamentation of these pathogenic

fungi (18–21). Moreover, calcium-mediated and calcineurin-me-
diated azole resistance has frequently been documented (22–24).
Many findings indicate that various components of the calcium
signaling pathway play important roles in fungal physiological
processes, mediate stress responses, and promote virulence (22,
25). There are also many reports documenting that nonantifungal
compounds, such as amiodarone, cyclosporine (CsA), tacrolimus
(FK506), the estrogen receptor antagonists tamoxifen and
toremifene, and some calcium channel blockers, exhibit antifun-
gal activity alone or in combination with antifungal drugs through
interference with the functions of these components. Although
some of the components in fungal cells are similar to those of
mammalian cells, the subtle structural differences have made
them a hot area in the development of new antifungal agents or
research into new approaches to resisting invasive fungal infec-
tions (26). However, the calcium channels, exchangers, pumps,
and downstream signaling components involved in this complex
system of fungal cells are not fully understood. Therefore, review-
ing the calcium signaling pathway and its regulatory mechanisms
is important. The budding yeast Saccharomyces cerevisiae is among
the simplest eukaryotic organisms that are widely used as valuable
tools for the study of basic cellular processes and pathways. Fur-
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thermore, this yeast is an excellent organism for the identification
of molecular targets and elucidation of the molecular/cellular
mechanisms of sensitivity to various drugs because the major sig-
naling pathways and processes involved in the cellular response to
cytotoxic agents are conserved between yeasts and mammalian
cells (27). Here, we mainly describe the latest findings concerning
the genes, proteins, and enzymes involved in the calcium signaling
pathway of Saccharomyces cerevisiae, which is the main yeast
model (the calcium-calcineurin signaling pathway is depicted in
Fig. 1). The relationship between calcium signaling and fungal cell
survival is then analyzed, with the findings implicating a close
connection between calcium signaling and fungal resistance.
Next, we summarize the compounds that exhibit antifungal activ-
ity when used alone or in combination with antifungal drugs by
interfering with components in the calcium signaling pathway
(Fig. 2). Although some compounds with antifungal activity also
show defined effects on mammalian cells, e.g., calcium channel
blockers, they have safely been used in the clinic, and the study of
their antifungal mechanisms could provide new clues for the iden-
tification of drugs with greater fungal specificity or new antifungal
targets.

CALCIUM SIGNALING PATHWAY IN FUNGAL CELLS

Intracellular calcium ions (Ca2�) are important second messen-
gers in all organisms. The concentrations of cytosolic Ca2� are

very low at resting states, ranging from 50 to 200 nM in fungal cells
when the environmental Ca2� concentrations range from �1 �M
to �100 mM (26, 28, 29). The calcium homeostasis system, which
consists of various calcium channels and pumps, as well as many
related proteins and enzymes, plays an important role in main-
taining the optimal Ca2� concentrations in the cytosol and intra-
cellular compartments, such as the vacuole, endoplasmic reticu-
lum (ER), and Golgi apparatus (29–31). In general, the plasma
membrane Ca2� influx system is activated to result in a rapid
influx of Ca2� ions in response to various external stresses, such as
store-operated stress, hyperosmotic stress, alkaline stress, cold
stress, thermal stress, oxidative stress, and ethanol stress (32–37).
The transient increases in the intracellular Ca2� concentrations
may also be elevated by secreting Ca2� from internal compart-
ments (38). An increased Ca2� concentration in yeast and fila-
mentous fungal cells affects a wide range of cellular processes, such
as cell cycle progression, sporulation, spore germination, oriented
hyphal tip growth, hyphal branching, gene expression, and circa-
dian rhythms. This increased concentration also modulates sig-
naling cascades and activates the calcineurin pathway to reduce
the Ca2� concentration to the basal level (36, 39). However, the
decrease of the intracellular Ca2� concentration due to the inhi-
bition of the Ca2� influx system or efflux of Ca2� from intracel-
lular compartments to the extracellular space is less well docu-
mented. Therefore, we mainly discuss the Ca2� influx system, the

FIG 1 Description of the calcium-calcineurin signaling pathway in fungal cells. When external stresses are encountered, the plasma membrane Ca2� influx
system (HACS and LACS) is activated, resulting in a rapid influx of Ca2�. Transient increases in intracellular Ca2� concentrations may also be due to secretion
from internal compartments. The increased Ca2� concentrations are sensed by CaM, and three calcium ions bind to CaM; then, Ca2�-calmodulin specifically
binds to subunit A of CN and, simultaneously, Ca2� binds to the high-affinity Ca2�-binding sites on the B subunit of CN, leading to its activation. Activated CN
acts on its downstream targets CRZ1 and PRZ1, inducing their dephosphorylation and translocation from cytoplasm to nucleus. Calcineurin-PRZ1/CRZ1
signaling induces the expression of a set of Ca2�/CN-dependent target genes, including PMC1, PMR1, and PMR2. Subsequently, the intracellular Ca2�

concentration is reduced to basal levels, attributed to the uptake of Ca2� by organelles. CaM, calmodulin; CN, calcineurin; ER, endoplasmic reticulum; LACS,
low-affinity Ca2� influx system; HACS, high-affinity Ca2� influx system.
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secretory Ca2� system, and the calcineurin cascades of calcium
signaling transduction to characterize the calcium signaling
pathway.

CALCIUM INFLUX SYSTEM ON CELL MEMBRANE

Most fungal plasma membranes contain at least two different
Ca2� influx systems, the high-affinity Ca2� influx system (HACS)
and the low-affinity Ca2� influx system (LACS) (40). The HACS
consists of two putative proteins, Cch1p and Mid1p, which are
expressed and colocalize to the plasma membrane in a variety of
fungi, such as the saprophytes Schizosaccharomyces pombe and
Neurospora crassa (41, 42), the animal-pathogenic fungi Candida
albicans and Cryptococcus neoformans (43–45), and the plant-
pathogenic fungi Gibberella zeae, Claviceps purpurea, and Uromy-
ces appendiculatus (46–49). Notably, Aspergillus species (50, 51)
express the putative Ca2� channel homologs of CCH1 and MID1,
namely, cchA and midA, whose topology is similar to the overall
topology of Ca2� voltage-gated channels in higher eukaryotes.
These channels play unique and complex roles in low-calcium
environments. In Saccharomyces cerevisiae, the sequence and to-
pological structure of Cch1p are similar to those of the pore-form-

ing a1 subunit of mammalian L-type voltage-gated Ca2� channels
(VGCCs) (52), and Mid1p was suggested to be analogous to the
a2� subunit of animal VGCCs because of structural features like N
glycosylation, a cysteine-rich domain, and a putative N-terminal
signal peptide (53). These two essential subunits form a stable
complex that is activated in response to sudden stimulation, al-
lowing the influx of Ca2� from the extracellular space (20). More
importantly, both proteins have been shown to be indispensable
for the uptake of extracellular Ca2� in cells that respond to mating
pheromones (54, 55). HACS was found to be regulated by Ecm7p,
a member of the PMP-22/EMP/MP20/Claudin superfamily of
transmembrane proteins that includes the � subunits of VGCCs
(53). ECM7 is stabilized by MID1, and MID1 is stabilized by CCH1
in nonsignaling conditions, suggesting that all of these proteins
interact. Moreover, the ecm7�/� mutants of Candida albicans
were shown to be sensitive to oxidative stress, which resulted in a
defect in hyphal development and attenuated the ability of yeast
cells to invade and diffuse in mouse kidneys compared with the
phenotype of the wild-type strain (20). LACS, whose main impor-
tant component or regulator is Fig1p (22), displays a 16-fold-
lower affinity for Ca2� than HACS does (40). Many other factors

FIG 2 Potential targets in the calcium-calcineurin signaling pathway and some compounds that exhibit antifungal activity by themselves or in combination with
antifungal drugs through interference with these potential targets. CaM, calmodulin; CN, calcineurin; ER, endoplasmic reticulum; *, compound is in clinical
therapeutic use.
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related to polarized morphogenesis and cell fusion, such as Fus1p,
Fus2p, Rvs161p, Bni1p, Spa2p, and Pea2p, were also found to be
necessary for LACS activity (22). LACS can reportedly produce
robust calcium signals in response to pheromones via cch1 and
mid1 double mutants that lack HACS. However, LACS and HACS
are required for hyphal orientation in response to electric fields
and surface topography (21). LACS appears to function only in
rich media, such as yeast extract-peptone-dextrose (YPD) or syn-
thetic complete (SC) media, and is insensitive to calcineurin,
while HACS is almost undetectable in rich media due to feedback
inhibition by calcineurin (56).

Ca2� SECRETORY SYSTEM ON ENDOMEMBRANE

Like animal cells, fungal cells employ a compartmentalized secre-
tory system that contains numerous Ca2�-dependent proteins
and enzymes, such as channels, transporters, or pumps, on the
vacuole, Golgi apparatus, mitochondria, and endoplasmic reticu-
lum (ER). The vacuole, an important compartment in fungi, is
crucial for differentiation, adaptation to stress, endocytosis, au-
tophagy, and pathogenesis (57). Moreover, this compartment, not
the ER, is the major site of intracellular calcium storage in fungal
cells (58, 59). Vacuolar calcium channels, which are similar to IP3
or ryanodine receptors in the mammalian ER membrane, are un-
doubtedly involved in cellular calcium homeostasis and cell re-
sponse to an environmental stimulus.

Yvc1p, the transient receptor potential (TRP) homolog, has
been identified as a vacuole membrane-localized calcium channel
protein in some eukaryotic cells (15, 60, 61). Just like the CCH1-
MID1 complex, YVC1 also mediates calcium transport and con-
tributes to cytoplasmic calcium fluctuation by releasing calcium
from the vacuole into the cytoplasm as a response to an alkaline
stimulus (15). However, a sustained increase in the cytosolic Ca2�

concentration is detrimental to fungal cells. Numerous enzymes
that catalyze the folding, modification, processing, and trafficking
of secretory proteins are activated in response to stress, which
results in Ca2� sequestration in secretory organelles or the initia-
tion of other restorative pathways. Specifically, the Ca2�-ATPase
Pmc1p and H�/Ca2� exchanger Vcx1p, which are located on the
vacuole membrane, and the Ca2� pumps Pmr1p, Cod1p, and
Eca1p, which are predominantly located on the Golgi apparatus
and ER, are activated to direct the cytosolic Ca2� to secretory
organelles, such as the vacuole, Golgi apparatus, and ER (31, 58,
62–65). However, Vcx1p was identified as the protein complex
that is predominantly responsible for restoring cytosolic Ca2�

concentrations after a brief challenge with high extracellular Ca2�

concentrations, while Pmc1p appears to be critical for long-term
Ca2� tolerance (59). Furthermore, most cells express Ca2� release
channels in the endoplasmic reticulum that can be activated by
secondary messengers during responses to extracellular stimuli.
Rapid Ca2� release lowers the Ca2� concentration in the endo-
plasmic reticulum and elevates the free Ca2� concentrations in the
cytosol, which then can activate various signaling transduction
pathways. Because Ca2� pumps in the plasma membrane compete
with secretory organelle pumps for substrates, the intracellular
Ca2� concentration can return to basal levels prior to the refilling
of secretory compartments. Thus, in the absence of Ca2� influx
into the cell, the repetitive or continuous activation of Ca2� re-
lease channels will only transiently elevate the intracellular Ca2�

and result in the sustained depletion of the secretory Ca2� reser-
voir.

CALCIUM-REGULATING PROTEINS IN THE CYTOPLASM

Calcineurin (CN) is a Ca2�/calmodulin (CaM)-activated protein
phosphatase that is highly conserved from fungi to mammals (66)
and transmits Ca2� signals to elicit downstream responses mainly
by regulating various transcriptional factors, such as CRZ1 and
PRZ1 (19, 67, 68). CN consists of two subunits, a catalytic subunit
A (encoded by CNA1 and CNA2) (66, 69) and a regulatory subunit
B (encoded by CNB1) (70). The A subunit contains a central calm-
odulin-binding domain, and the B subunit is identified as a dumb-
bell-shaped protein with four EF hands, which serve as the high-
affinity Ca2�-binding site (71, 72). These two subunits are tightly
associated via hydrophobic interactions at a 1:1 ratio in an inactive
state (71). However, the Ca2� sensor protein calmodulin (CaM)
detects increases in the intracellular Ca2� concentrations and
binds cytosolic Ca2� ions at EF-hand motifs of CaM to subse-
quently activate several Ca2�/CaM-dependent enzymes, such as
the phosphatase calcineurin (73). Activated calcineurin acts on its
downstream targets CRZ1/TCN1, PRZ1, and other CRZ1 ortho-
logues, which are C2H2-type zinc finger transcription factors, in-
ducing their dephosphorylation and translocation from the cyto-
plasm to the nucleus (67, 74, 75). Calcineurin-PRZ1/CRZ1
signaling then induces the expression of a set of Ca2�/CN-depen-
dent target genes, including the Ca2�-ATPase genes PMC1,
PMR1, and PMR2 (encoding Ca2�-pumping ATPases in the vac-
uole and Golgi complex) and the glucan synthase gene FKS2, by
binding to CN-dependent responsive elements. This signaling
also strongly inhibits the function of Vcx1p (74, 76–79). Subse-
quently, the intracellular Ca2� level is reduced to the basal level
due to the uptake of Ca2� by organelles and the inhibition of Ca2�

release from the vacuole. While this set of calcineurin targets gen-
erally seems to be coordinately regulated, the authors of another
report (80) demonstrate that a deletion mutation of any of the
components SNF7, SNF8, STP22, VPS20, VPS25, VPS28, and
VPS36 of the endosomal sorting complex required for transport
(ESCRT) complex activates Ca2�/CN signaling in yeast cells but,
surprisingly, reduces the expression of the ER/Golgi calcium
pump gene PMR1 by nearly half, independent of calcium stress.
Although this finding seems to contradict the well-known fact that
Ca2�/CN signaling positively regulates Pmr1, it is consistent with
the important role of PMR1, together with PMC1, in preventing
the lethal activation of calcineurin under standard (low-Ca2�)
conditions (81).

THE ROLES OF CALCIUM SIGNALING IN FUNGAL CELL
SURVIVAL

The survival of all organisms depends critically on their interac-
tions with their environment, which are mediated largely by the
actions of small molecules, such as reprogramming of gene ex-
pression, dephosphorylation of calcineurin, unfolded protein re-
sponse (UPR), etc. (82, 83). A calcium cell survival (CCS) pathway
may be involved in the survival of cells subjected to a variety of
cellular stresses, because the activation of a variety of Ca2� chan-
nels, calmodulin, calcineurin, and other factors is necessary for the
long-term survival of cells undergoing ER stress, and the genes
involved in this pathway are known to be essential in many cell
biological processes; these essential components of the whole
pathway would likely make good targets for antifungal therapy
(19, 56, 84–86).

The major calcium influx system components CCH1 and
MID1 have been identified as important factors in the survival of

Minireview

April 2015 Volume 14 Number 4 ec.asm.org 327Eukaryotic Cell

http://ec.asm.org


many fungi (45, 48, 50, 87). Previous reports have demonstrated
that CCH1 and MID1 are responsible for the resistance of Candida
albicans to azoles, as the deletion of the CCH1 and MID1 genes
attenuated the strain’s resistance to fluconazole and itraconazole,
and the cch1�/� or mid1�/� mouse models displayed attenuated
virulence (85). Moreover, hypha formation and maintenance de-
fects, as well as sensitivity to oxidant agents, were identified in the
mutant strains, which demonstrates that CCH1 and MID1 play
important roles in morphogenesis, the oxidative stress response,
and virulence in Candida albicans (86, 87). CCH1 also plays a role
in mediating the virulence of C. neoformans and is required for the
growth of C. neoformans at low extracellular Ca2� concentrations,
especially at mammalian body temperatures (45). In aspergilli, the
homologs of CCH1 and MID1, cchA and midA, not only have the
functional benefits of fast growth but also play important roles in
calcium homeostasis and virulence (50, 51).

The components of the Ca2� secretory system in fungal cells
also play critical roles in fungal survival, virulence, and infections.
Many reports have demonstrated that VCX1, YVC1, PMC1, and
PMR1 are involved in the tolerance and virulence of a variety of
fungi, such as Cryptococcus neoformans, Saccharomyces cerevisiae,
and Aspergillus fumigatus (51, 88, 89).

Moreover, calcineurin has been demonstrated to be essential
for the survival of Candida spp. and required for virulence and
stress responses in many other major fungi (18, 84, 90, 91). Zhang
et al. found that calcineurin and its downstream target CRZ1 were
responsible for Candida lusitaniae’s pseudohyphal growth, cell
wall integrity, ER stress response, optimal growth in serum, viru-
lence in a murine systemic infection model, and antifungal drug
tolerance (19). Another study also demonstrated that the activa-
tion of the Ca2� channel, calmodulin, calcineurin, and other fac-
tors was necessary for the long-term survival of cells undergoing
ER stress (92). When treated with tunicamycin (TM), an inhibitor
of N glycosylation in the ER, yeast strains lacking Cch1p, Mid1p,
Ca2�/calmodulin (Cmd1-6 mutants), Ca2�/calmodulin-depen-
dent protein kinases (CMK1 CMK2 double mutants), and cal-
cineurin (CNB1 mutants) died rapidly, whereas mutants lacking
the calcineurin-dependent transcription factor Tcn1p behaved
similarly to wild-type cells, remaining fully viable for long periods
of time in survival assays. Moreover, the calcineurin-binding pro-
tein CBP1 and calmodulin direct the morphogenesis and high-
temperature growth of Cryptococcus neoformans (36, 93). These
findings demonstrated that calcium factors such as Cch1p, Mid1p,
calmodulin, and calcineurin promote the long-term survival of
cells that suffer ER stress. Furthermore, the authors also demon-
strated that the CCS pathway is responsible for the resistance to
azole antifungal drugs and operates in pathogenic fungi, such as C.
albicans and Candida glabrata.

The CCS pathway is so closely related to the survival of fungal
cells that its presence in fungi may provide new opportunities for
the treatment of fungal infections.

POTENTIAL ANTIFUNGAL TARGETS IN FUNGAL CALCIUM
SIGNALING PATHWAY

Calcium is a highly versatile intracellular signal that can regulate
many different cellular functions, such as cell differentiation, di-
vision, cell-cell fusion, endocytosis, and mating morphogenesis
(94). Therefore, the balance of the flows between the extracellular
and intracellular stores that constitute the cytoplasmic concentra-
tion of Ca2� must be maintained at close to 0.1 mM to ensure

normal intracellular signaling transduction. Small increases in the
intracellular calcium concentration can trigger a variety of cellular
responses, such as the activation of pathways that control ion
channel activity, secretion, and gene transcription. However,
larger, sustained increases can be deleterious to cells and may
cause cell death, which highlights the Ca2�-mediated cell death
pathway as a promising approach to antifungal drug develop-
ment. Many of these findings suggest that specific inhibitors of
fungal Ca2� channels, such calmodulin, calcineurin, or other as-
yet-unknown components of the CCS pathway, could greatly im-
prove the efficacy of existing antifungal therapies.

TARGETS IN FUNGAL MEMBRANE SYSTEM

The concentration of calcium in fungal cells may increase in re-
sponse to external or internal stresses, leading to a variety of in-
tracellular responses, such as the opening of calcium channels and
exchangers on the plasma membrane or endomembrane system.
These calcium channels or exchangers and their genes contribute
significantly to the cytosolic calcium concentration fluctuation,
and the deletion of some calcium signaling components is detri-
mental to fungal survival. Thus, interfering with the influx or up-
take of calcium through the channels or transporters to disturb the
calcium homeostasis may benefit fungicidal activity.

INTERFERENCE WITH CALCIUM INFLUX SYSTEM ON CELL
MEMBRANE

Calcium channel blockers, which exert their functions by inhibit-
ing the VGCC on the plasma membrane of mammalian cells, have
been the intensive focus of research that examines genes related to
the fungal Ca2� influx system because of the homology of calcium
channels in fungi and mammals. For example, the CCH1-MID1
complex is similar to the VGCC of mammals in structure, and
reports confirm that it is sensitive to the L-type VGCC blockers
nifedipine and verapamil, which decrease the Ca2� concentration.
However, another L-type VGCC blocker, diltiazem, activates
Ca2� entry (52). Fewer reports have documented the antifungal
effect of calcium channel blockers used alone, whereas verapamil
has been shown to inhibit Candida albicans’ hyphal development,
adhesion, and gastrointestinal tract colonization, which is related
to decreased expression and abnormal transport of the proteins
required for morphogenesis (95). Verapamil and fluconazole or
tunicamycin have also been observed to exert combined effects,
and the results of these previous studies demonstrate synergistic
effects on the inhibition of the formation of Candida albicans bio-
film. Furthermore, verapamil alone or in combination with flu-
conazole or tunicamycin significantly decreased the transcrip-
tional level of ALS3, which is essential for biofilm development
(96). Because verapamil exerts its inhibitory effects on the plasma
membrane calcium channel CCH1 in Saccharomyces cerevisiae
(52), calcium channel blockers may be attractive targets for the
prevention or eradication of Candida albicans biofilm. Therefore,
further studies to observe the effects of other calcium channel
blockers used alone or in combination with azole antifungal drugs
are needed.

Hagihara et al. (97) provided insight into the molecular mech-
anisms of fingolimod hydrochloride (FTY720), which is a novel
sphingosine 1-phosphate (S1P) receptor modulator that acts on
Ca2� signaling in fission yeast. FTY720 induced a dose-dependent
increase in the cytoplasmic Ca2� levels immediately after the ad-
dition of FTY720. This effect was due to an influx of Ca2� across
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the Ca2� machinery on the plasma membrane that is involved in
Ca2� entry, because the addition of EGTA (extracellular Ca2�

chelator) inhibited the peak responses and increased the cytoplas-
mic Ca2� levels via FTY720. In addition to the agents discussed
above, some secreted antifungal proteins have been reported to
disrupt Ca2� homeostasis by increasing the intracellular Ca2�

concentration. These agents inhibited the growth of a broad range
of filamentous fungi (98). PAF is secreted from Penicillium chryso-
genum, and it belongs to a family of antifungal peptides. Its eleva-
tion of the intracellular Ca2� resting level within the conidial germ
is primarily due to the influx of extracellular Ca2�. Because Ca2�

is a selective chelator, BAPTA [bis-(aminophenoxy)-ethane-
N,N,N=,N=-tetraacetic acid] ameliorated the PAF toxicity in
growth inhibition assays and counteracted the PAF-induced per-
turbation of Ca2� homeostasis (98). In contrast, the effects of the
L-type Ca2� channel blocker diltiazem on the response of cells
were analyzed, and the results demonstrate that diltiazem and PAF
disrupt Ca2� homeostasis in a similar manner. Moreover, com-
bining diltiazem and PAF had an additive effect on the growth
inhibition and change in Ca2� signatures in response to external
stimuli. However, experiments with an aequorin-expressing
�cch1 deletion strain of N. crassa indicated that the L-type Ca2�

channel CCH1 was not responsible for the observed PAF-induced
elevation of the intracellular Ca2� resting level. Thus, the specific
mechanism of PAF in Ca2� homeostasis disruption requires more
research. Another antifungal protein, AFPNN5353, which is a de-
fensinlike protein of Aspergillus giganteus, has been examined (99,
100). This protein mediates the germination and growth of fila-
mentous ascomycetes, including important human and plant
pathogens, as well as the model organisms Aspergillus nidulans and
Aspergillus niger, by inducing the rapid influx of extracellular
Ca2�. This influx eventually results in a loss of intracellular Ca2�

homeostasis, because the Ca2�-selective, membrane-imperme-
able chelator BAPTA did not influence the resting level of intra-
cellular Ca2� in 12-h-old A. niger cultures, whereas a pretreatment
of the samples with 10 mM BAPTA prior to the addition of
AFPNN5353 inhibited the protein-specific increase in the intracel-
lular Ca2� resting level. These findings demonstrate that calcium
signaling plays important roles in the mechanistic function of an-
tifungal agents.

INTERFERENCE WITH THE CALCIUM SECRETORY SYSTEM ON
THE ENDOMEMBRANE

The calcium secretory system also plays important roles in main-
taining normal cytosol Ca2� concentrations by releasing or se-
questrating Ca2� in a secretory Ca2� reservoir. Therefore, agents
that interfere with the secretory system may impair fungal cells.
The antiarrhythmic drug amiodarone (AMD) has been shown to
display potent fungicidal activity against not only Saccharomyces
but also pathogenic yeasts, such as Candida, Cryptococcus, Fusar-
ium, and Aspergillus species, by interfering with the channel pro-
teins in the calcium secretory system (101–103). Mutants that lack
key regulators of calcium homeostasis, including the secretory
pathway Ca2� pump Pmrlp, vacuolar H�-ATPase, and Ca2�/cal-
modulin-activated protein phosphatase calcineurin, were shown
to be hypersensitive to amiodarone, which underlines the impor-
tant role of Ca2� in the cellular mechanism of amiodarone toxicity
(104, 105). One report (106) indicates that Ca2� uptake by the
mitochondria and Ca2� release from intracellular stores, such as
vacuoles, are crucial in the candidacidal activity of human lacto-

ferrin (hLF), which is an antimicrobial protein. Oxalate, which
inhibits Ca2� release from intracellular stores in various cell types,
partially inhibited and a high Ca2� level completely blocked the
hLF-induced killing of Candida albicans. Moreover, ruthenium
red interferes with the mitochondrial Ca2� uniporter to inhibit
mitochondrial Ca2� uptake and block the peptide-induced killing
of Candida albicans. However, the specific secretory stores have
not been identified. In addition, ruthenium red, oxalate, high ex-
tracellular CaCl2, and EGTA completely blocked the hLF-induced
change in mitochondrial rhodamine 123 staining, suggesting that
mitochondrial Ca2� uptake and Ca2� release from intracellular
stores are essential for the hLF-induced changes in the mitochon-
drial membrane potential. Another marine-derived polyketide,
endoperoxide plakortide F acid (PFA), was found to elicit a tran-
scriptomic response indicative of a Ca2� imbalance. This response
affected the expression of genes known to be responsive to altered
cellular calcium levels and strongly inhibited the opportunistic
fungal pathogens Candida albicans, Cryptococcus neoformans, and
Aspergillus fumigatus (107). The authors showed that calcium
transporters, including those with pmr1/pmr1 and pmc1/pmc1
mutations, were sensitive to PFA, and this finding agreed with the
transcriptional response to PFA, which appears to be indicative of
Ca2� overload-related stress. In addition, cch1/cch1, mid1/mid1,
cna1/cna1, cna2/cna2, cnb1/cnb1, and crz1/crz1 mutants were all
hypersensitive to PFA; Ca2� deprivation in these mutants may
result in a compensatory induction of the intracellular Ca2� levels,
and the Ca2� regulation function deficiency of calcineurin mu-
tants prevented a recovery to normal Ca2� concentrations, which
caused PFA to be more toxic under these conditions.

TARGETS IN FUNGAL CYTOPLASM SYSTEM

The calcium signaling transduction system includes enzymes and
proteins, such as calmodulin, calcineurin, and the transcription
factors encoded by CRZl/TNC1 and PRZ1, that have been shown
to be nonessential for normal growth but critical in mediating cell
survival in response to stress (19, 84). Calcineurin-mediated resis-
tance has been considered one of the important factors in the
failure of clinical treatment of mycoses (18, 19, 23), and its activa-
tion is evoked by the calcium-binding protein calmodulin (73).
Therefore, the inhibition of calmodulin and calcineurin activity in
order to reverse antifungal resistance and increase the antifungal
activity of existing antifungal drugs has been extensively studied.

INTERFERENCE WITH CALMODULIN

Calmodulin is a small calcium-binding protein that participates in
the transduction of calcium ions to its effector proteins (108). An
increase in the calcium concentration to approximately 10	5 M
results in the binding of three calcium ions to fungal calmodulin
(109). Ca2�-calmodulin then specifically binds to calcineurin,
leading to its activation to regulate the stress response (73). There-
fore, preventing calmodulin from exerting its function may per-
turb Ca2� homeostasis. Fortunately, Edlind et al. (24) verified this
assumption. The authors observed the antifungal effects of three
structurally distinct compounds known to be inhibitors of the
Ca2�-binding regulatory protein calmodulin: fluphenazine, cal-
midazolium, and J-8 (W-7 analogue). These three compounds
exhibited little or no inhibitory activity of their own, but they all
enhanced the activities of azole drugs (miconazole, itraconazole,
and terbinafine), and this enhancement varied from 1.6- to �11-
fold. To further confirm that these inhibitors are truly specific for
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calmodulin, strains with calmodulin site-directed mutagenesis
were constructed. The results demonstrated that calmodulin mu-
tants showed increased sensitivity to miconazole, terbinafine, or
itraconazole compared with the sensitivities of the parent strains.
Recently, another report demonstrated that the estrogen receptor
antagonists tamoxifen and toremifene exerted their anticrypto-
coccal activity alone or in combination with fluconazole and am-
photericin B by directly binding to the essential EF-hand protein
calmodulin, which prevented calmodulin from binding to its well-
characterized substrate calcineurin and blocked calcineurin acti-
vation (110). This finding indicated that calmodulin antagonism
contributes to the antifungal activity of this scaffold. More studies
that inhibit the function of calmodulin are needed to identify its
influence on fungal cell survival in order to discover more efficient
antifungal agents.

INTERFERENCE WITH CALCINEURIN

Calcineurin is a major protein phosphatase that is responsible for
maintaining calcium homeostasis by activating downstream
events, and calcineurin-mediated fungal resistance to fungicides
constitutes cause for concern. Therefore, many studies have
searched for antifungal agents by inhibiting the activation of cal-
cineurin. An early study demonstrated that the immunosuppres-
sants cyclosporine (CsA) and tacrolimus (FK506) could bind to
the receptor cyclopilin (CyP) and FK506 binding protein (FKBP),
respectively, in fungal cells and then interact with the regulatory
subunit B of calcineurin (111) to exhibit antifungal activity against
Cryptococcus neoformans (112, 113), which identified calcineurin
as a novel antifungal drug target. Thus, screening for calcineurin
inhibitors via different methods may be a new approach for the
development of antifungal agents. Uesugi et al. (114) found that
inhibiting the calcineurin pathway, such as via the addition of
FK506 and CsA to the growth medium or the disruption of the
CNB1 and CRZ1 genes in S. cerevisiae, confers tolerance to high-
temperature stress on cells with a ubiquitin deletion mutation.
Therefore, the authors screened approximately 800 methanol ex-
tracts from natural resources for compounds that could restore
the growth inhibition of ubiquitin deletion mutant strains follow-
ing high-temperature treatment and found that some diterpenoid
compounds inhibited calcineurin, while their specific antifungal
activities and mechanisms require further research. The calcineu-
rin inhibitors FK506 and CsA not only showed antifungal effects
when used alone, their combination with antifungal drugs like
fluconazole, posaconazole, and itraconazole has also been pro-
posed to treat calcineurin-mediated azole resistance due to their
synergistic antifungal effects (115–118).

This fungicidal synergistic interaction deserves further study,
as it may be a useful adjunct therapeutic strategy for mycoses.
However, FK506 and cyclosporine are not only active in vitro
against fungal cells but are also immunosuppressive in the host,
which may limit their clinical therapeutic application. Thus, re-
search on the differences between the calcineurins of fungal and
mammalian cells is urgently needed to develop antifungal-specific
drugs. Fortunately, Juvvadi et al. (119) have found a novel serine-
proline-rich region (SPRR) that is evolutionarily conserved and
unique to filamentous fungi but completely absent in human cal-
cineurin. The SPRR appears to be required for the phosphoryla-
tion of calcineurin that enables it to be active and function well.
This finding provides a clue for the development of innovative
drugs to fight invasive fungi by harnessing this unique SPRR. In

addition, some reports have demonstrated that RTA2, a potential
stress-related gene that likely encodes a phospholipid translocase,
is responsible for the emergence of calcineurin-mediated azole
resistance and sphingoid long-chain base release in Candida albi-
cans (23, 120). The sensitivity of Candida albicans to fluconazole
was significantly reduced because calcium-activated calcineurin
blocked the impairment of the plasma membrane by fluconazole
via Rta2p. Thus, Rta2p may serve as the direct target of antifungal
agents.

DISCUSSION AND CONCLUSION

Signaling molecules commonly play critical roles in mediating the
cellular stress responses of fungal pathogens. Adverse stimuli ac-
tivate cellular signaling that prompts fungal cells to respond and
adapt to the environment. Calcium, which acts as a secondary
messenger molecule, operates over a wide temperature range to
regulate many different cellular processes in both fungi and mam-
mals. Similar to mammalian cells, fungal calcium signaling tool
kits consist of various signaling molecules that include sensors,
such as calmodulin, effectors, such as calcineurin, and the down-
stream targets of calcineurin, such as CRZ1 and PRZ1. Reports
have demonstrated that calcium and calcineurin can mediate the
drug resistance of invasive fungal strains. Thus, harnessing these
stress responses via the pharmacological inhibition of signaling
pathways may provide the foundation for new therapies that
could enhance the efficacy of our limited clinically useful antifun-
gal drugs or impede the evolution of antifungal resistance.

Many reports have documented compounds that exhibit anti-
fungal activity alone or in conjunction with antifungal drugs by
interfering with the functions of components in the calcium sig-
naling pathway. Although some of these compounds and some
combinations have been demonstrated not to be effective in clin-
ical application, their mechanisms of action may provide clues for
the search for fungal-specific targets from the calcium signaling
pathway. To date, the regulation of Ca2� homeostasis has not
been well studied in all fungal cells, and further searches for safe
fungal-specific calcium channel blockers are warranted. The de-
velopment of biotechnology has allowed transcriptional profiling
experiments coupled with genetic and biochemical analyses to be
employed to gain insight into the mechanism of action of various
antifungal agents, which will delineate the calcium signaling
pathway.
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