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Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle iden-
tity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regu-
lation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that
generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and
Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83)
into the filamentous (�1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat for-
mation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the
pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p),
and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of
these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with
this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Vari-
ous PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of
the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation
MAPK pathway and other cellular processes.

MAPK (mitogen-activated protein kinase) pathways are evo-
lutionarily conserved signal transduction modules (1, 2).

MAPK cascades regulate the response to environmental chal-
lenges, such as changes in osmolarity, nutrient starvation, DNA
damage, and damage to cell integrity. In the budding yeast Saccha-
romyces cerevisiae, MAPK pathways regulate cell wall integrity (3),
pheromone response or mating (4), filamentous growth (5), and
the response to high osmolarity (high-glycerol response [HOG]
pathway [6]). Each MAPK pathway in yeast responds to a different
stimulus. Under some circumstances, several MAPK pathways are
required to mount an appropriate response (7–11).

The filamentous-growth MAPK pathway regulates differenti-
ation to the filamentous cell type (12–14) and the development of
biofilms or mats (15). During filamentous growth, the MAPK
pathway, together with other pathways (16–18), induces a delay in
the cell cycle (19), a reorganization of cell polarity, which leads to
a distal-unipolar budding pattern (12, 13, 20, 21), and elevated
expression of the cell adhesion molecule Flo11p (22). The devel-
opmental foraging responses that occur in S. cerevisiae are evolu-
tionarily conserved across many fungal species. In pathogenic
fungi, like Candida albicans, an orthologous differentiation
MAPK pathway (called the Cek1p pathway) regulates filamen-
tous/hyphal growth and biofilm formation (23–25). These behav-
iors are critical for virulence (24, 26–30). Studies of filamentous
growth in a genetically tractable fungal system like S. cerevisiae
provides information about the genetic basis of fungal behaviors
that can be applied to other species, including pathogens.

In S. cerevisiae, the filamentous-growth MAPK pathway is reg-
ulated by Msb2p (31, 32), a member of the signaling mucin family
of glycoprotein receptors (33). Msb2p, the tetraspan adaptor
Sho1p (31, 34–36), and the cytosolic adaptor protein Bem4p (37)
together regulate the Rho-type GTPase Cdc42p and effector p21-
activated kinase Ste20p (38, 39) in the filamentous-growth MAPK
pathway. Ste20p activates the MAPK cascade by phosphorylating

the MAPKKK Ste11p. Ste11p phosphorylates the MAPKK Ste7p,
which in turn phosphorylates the MAPK Kss1p (13, 40). Opy2p is
another transmembrane protein that recruits Ste11p to the PM
through the adaptor protein Ste50p (35, 36, 41–43). The culmina-
tion of these events is the activation of transcription factors,
Ste12p and Tec1p, which regulate target genes that control differ-
entiation to the filamentous cell type (14, 44–47).

Phosphorylation of the key lipid phosphatidylinositol (PI) is a
critical modification of membrane phospholipids in eukaryotes
that is important for normal cellular function (48–50). PIPs are
utilized as a mark for organelle identity and impact diverse cellular
processes, including the reorganization of the actin cytoskeleton,
protein trafficking through the endomembrane system, and pro-
tein secretion (51–56). A family of lipid kinases phosphorylates
the inositol ring at different positions to designate organelles with
specific PIP combinations (54). Two kinases generate PI(4)P in
yeast: Pik1p regulates the level of PI(4)P at the Golgi (57), and
Stt4p regulates PI(4)P at the PM (58). Mss4p regulates the distri-
bution of PI(4,5)P2 at the PM (59). In addition, Vps34p regulates
the level of PI(3)P at the endosome (60–62), and Fab1p regulates
PI(3,5)P2 at the vacuole/lysosome (63). PIPs are recognized by
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specific domains on effector proteins (64–67). PIP modification is
reversible by the action of phosphatases that dephosphorylate
PIPs (54). Synaptojanin-type proteins Sjl1p, Sjl2p, and Sjl3p are
the major PIP phosphatases in yeast. These proteins exhibit a high
degree of functional redundancy (68).

Lipid signaling has established connections to the regulation of
morphogenetic pathways (69). For example, activation of the
yeast mating pathway requires recruitment of the mating-path-
way specific scaffold Ste5p to the PM by recognition of PI(4,5)P2
(70). The pheromone response and HOG pathways are regulated
by Pik1p at the level of Ste11p (71). The guanine nucleotide ex-
change factor for the cell wall integrity pathway, Rom2p, interacts
with PI(4,5)P2 at the PM by its PH domain to regulate the PKC
pathway activity (58). A clear link between PIP signaling and the
regulation of the filamentous-growth MAPK pathway has yet to be
defined. Intriguingly, in C. albicans, steep PI(4,5)P2 gradients oc-
cur at hyphal tips and promote filamentous growth and invasion
(72–74).

Here, we examined the impact of PI signaling on the regulation

of the filamentous-growth MAPK pathway in S. cerevisiae. We
show that conditional PI kinase mutants exhibit defects in the
filamentous-growth pathway. Membrane-associated regulators of
the filamentous-growth MAPK pathway (including Msb2p,
Sho1p, and Cdc42p) were mislocalized in PI(4)P kinase mutants,
which may account for the reduction in MAPK activity in this
context. Perhaps unexpectedly, other PI kinases, including
Vps34p and to some degree Fab1p, were also involved. Polarity
defects in these mutants might explain the MAPK signaling de-
fects, as disruption of the actin cytoskeleton led to ablation of
MAPK activity. Roles for PI kinases and PIP phosphatases in axial
bud site selection in haploid cells, the maintenance of the yeast cell
wall, and the HOG pathway were also uncovered. Therefore, PIP
signaling plays a critical role in the regulation of a differentiation
MAPK pathway and other aspects of cellular biogenesis and deci-
sion-making.

MATERIALS AND METHODS
Strains, media, and growth conditions. Yeast strains are listed in Table 1.

TABLE 1 Yeast strains

Strain Genotypea Reference

PC313 MATa ura3-52 14
PC538 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 31
PC948 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 msb2::KanMX6 31
PC1029 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 flo11::KanMX6 156
PC1531 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sho1::HYG 78
PC2053 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 pbs2::KanMX6 106
PC2382 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 ste12::KanMX6 78
PC776 MATa his3 ura3-52 rsr1::HIS3 20
PC677 MATa his3 ura3-52 bud3::KlURA3 20
PC2613 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 trp1::NAT This study
PC4305 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl1::KlURA3 This study
PC4306 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl2::KlURA3 This study
PC4307 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl3::KlURA3 This study
PC4308 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl1::KlURA3 sjl2::NAT This study
PC4309 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl3::KlURA3 sjl2::NAT This study
PC4312 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl1::KlURA3 sjl3::NAT This study
PC4990 SEY6210 MAT� leu2-3,112 ura3-52 his3-�200 trp1-�901 lys2-801 suc2-�9b 94
PC4991 SEY6210 MAT� leu2-3,112 ura3-52 his3-�200 trp1-�901 lys2-801 suc2-�9 sjl3::TRP1 sjl2::HIS3 sjl1::HISG

pRS314sjl2tt,s-8 (LEU2 CEN6 sjl2ts-8)b

68

PC4992 SEY6210; stt4::HIS3 pRS415stt4-4 (LEU2 CEN6 stt4-4)b 57
PC4993 SEY6210; mss4::HIS3MX6 Ycplacmss4-102 (LEU2 CEN6 mss4-102)b 68
PC4994 SEY6210; pik1::HIS3 pRS314pik1-83 (TRP1 CEN6 pik1-83)b 57
PC5260 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl2::NAT sjl3::HYG This study
PC5276 MATa ura3-52 sjl2::NAT sjl3::HYG This study
PC5294 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sjl2::NAT sjl3::HYG rga1::KlURA3 This study
PC5303 MATa ura3-52 sjl2::NAT sjl3::HYG ssk1::KlURA3 This study
PC5319 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 trp1::NAT pik1::KLURA3 pRS314pik1-83 (TRP1 CEN6 pik1-83) This study
PC5433 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 fab1::HYG This study
PC5436 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 sac1::KlURA3 This study
PC5438 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 trp1::NAT pik1::KLURA3 pRS314pik1-83 (TRP1 CEN6 pik1-83) URA3 This study
PC5473 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 vps34::NAT This study
PC5659 RSY255 MATa leu2-3,112 ura3-52 157
PC5661 MAT� leu2-3,112 his4-519 ura3-52 suc2-�9 sec7-1 116
PC5562 RSY263 MATa leu2-3,112 ura3-52 sec12-4 157
PC5563 RSY271 MATa his4-619 ura3-52 sec18-1 157
PC5564 RSY529 MATa sec62-1 ura3-52, leu2-3,112, his4-619 157
PC5712 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 msb2::KanMX6 sho1::NAT This study
PC6324 MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 inp54::KlURA3 This study
a All strains were made in the �1278b background unless otherwise indicated.
b Strain was made in the SEY6210 background.
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Strains were grown under standard laboratory conditions (75). Strains
were maintained at 30°C unless otherwise indicated. The medium used
was YEPD (yeast extract-peptone-dextrose, 2% Glu) or YEP-Gal (2% Gal)
for most experiments. For temperature shift experiments, cells were incu-
bated at 37°C in prewarmed medium for 4 to 5 h. Plasmids were main-
tained on synthetic medium (generally on SD-Ura). Bacterial cultures of
Escherichia coli were propagated in LB�CARB (carbenicillin) by standard
methods (76).

Plasmid pAxl1p-HA was provided by the Boone lab (77). pMsb2p-HA
(78), pMsb2p-GFP (78), pSho1p-GFP (79), ppik1-83 (80), pGFP-Cdc42p
(81), and Sec7p-DsRed (82) have been described previously.

Standard gene disruption techniques were used (83). Antibiotic resis-
tance (84) and heterologous auxotrophic markers were used for gene
disruption (85) and to create integrated fusion proteins (86). The pik1-83
allele was introduced into the �1278b strain background by allele replace-
ment. Wild-type �1278b cells (PC538) were transformed with a plasmid
containing the pik1-83 allele. The PIK1 gene was subsequently disrupted
in cells harboring the pik1-83 plasmid. Gene disruptions were confirmed
by PCR analysis.

Biological assays for filamentous growth and biofilm/mat forma-
tion. The plate-washing assay was performed as described previously (13).
Biofilm/mat assays were performed as described previously (15). Cells
were spotted onto low-agar medium (0.3% YEPD) for 3 days and photo-
graphed. Calcofluor white (CFW) staining was performed as described in
reference 87. Cells were grown to saturation in YEPD medium at 30°C.
Cells were fixed in 3.9% formaldehyde for 30 min at 30°C. Cells were
harvested by centrifugation, washed with 1� PBS (phosphate-buffered
saline, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4

[pH 7.4]), and resuspended in 0.01% CFW for 5 min. Cells were washed 3
times in 1� PBS and observed by fluorescence microscopy using the
DAPI (4=,6-diamidino-2-phenylindole) channel (350 to 400 nm). Cells
stained with CFW were also analyzed for budding pattern. Budding pat-
tern determination was based on previous methods (88), except that cell
position was also taken into consideration among adherent cells (20, 89).

Protein immunoblot analysis. Cells were harvested, and pellets were
frozen at �80°C. Proteins were extracted from cell lysates using the tri-
chloroacetic acid (TCA) precipitation method as described previously
(90). Protein extracts were separated by 10% SDS-PAGE analysis and
transferred onto nitrocellulose membrane. Phosphorylated Kss1p was de-
tected using p42/p44 antibodies (1:4,000 dilution; no. 4370; Cell Signaling
Technology). Antibodies to total Kss1p (1:5,000; no. sc6775; Santa Cruz),
Hog1p (1:5,000; yc-20; no. sc6815; Santa Cruz), and Pgk1p (1:5,000 dilu-
tion; catalog no. 459250; Life Technologies) were purchased and used
according to the manufacturers’ specifications. Antibodies to green fluo-
rescent protein (GFP; clones 7.1 and 13.1; no. 11814460001; Roche Diag-
nostics) and the hemagglutinin (HA) epitope (no. 11583816001; Roche)
were used to detect epitope-tagged proteins. Secondary antibodies were
used, including goat anti-mouse IgG conjugated to horseradish peroxi-
dase (HRP; 170-6516; Bio-Rad) and goat anti-rabbit IgG–HRP (111-035-
144; Jackson ImmunoResearch Laboratories, Inc.). Msb2p-HA secretion
was evaluated as described previously (78). Protein bands were quantified
by ImageJ by densitometry scanning analysis. The numbers indicate the
ratio of phosphorylated protein to total protein, or the ratio of total pro-
tein to loading control where appropriate. To determine the change in
phosphorylated proteins, total protein levels were normalized to the load-
ing control (Pgk1p).

FIG 1 Role of PI(4)P kinases in regulating the filamentous-growth MAPK
pathway. (A) Phosphorylation of Kss1p in wild-type cells and the pik1-83,
stt4-4, and mss4-102 mutants in the SEY6210 background. Cells were incu-
bated at 37°C for 4 h and harvested for immunoblot analysis. Antibodies

against Pgk1p were used to compare total protein levels between samples. (B)
Evaluation of Msb2p-HA secretion in the pik1-83 mutant. The wild type and
the pik1-83 mutant harboring pMsb2p-HA were grown to saturation at 37°C
for 4 h and separated into supernatant (SUP) and pellet fractions by centrifu-
gation. Cell extracts were prepared and examined by immunoblot analysis for
HA-Msb2p levels and Pgk1p levels as a control for protein loading. (C) Phos-
phorylation of Kss1p in wild-type cells and the pik1-83 mutant in the �1287b
background. Cells were incubated in YEPD and YEP-Gal medium at 30°C for
4 h. (D) Cells used for panel C were incubated at 37°C for 4 h.
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Microscopy and protein localization experiments. For protein local-
ization experiments, cells were grown in SD-Ura for 16 h at 30°C, shifted
to 37°C for 4 h, and examined at 37°C. Differential interference contrast
(DIC) and fluorescence microscopy using fluorescein isothiocyanate
(FITC) filter sets were performed using an Axioplan 2 fluorescence mi-
croscope (Zeiss) with a Plan-Apochromat 100�/1.4 (oil) objective (nu-
merical aperture [NA], 0.17). Digital images were obtained with the
Axiocam MRm camera (Zeiss). Axiovision 4.4 software (Zeiss) was used
for image acquisition and analysis. Cells were examined by oil immersion
on glass slides (no. 2947-75; Corning, Inc., Corning, NY) with a glass
coverslip (VWR 48366-227) using the 100� objective. Cells were photo-
graphed at 37°C using a slide warmer (no. 0115.000; PeCon GmbH, Ger-
many).

RESULTS
PI(4)P kinases regulate the filamentous-growth MAPK path-
way. The role of PI kinases in regulating the filamentous-growth
pathway was examined. The filamentous-growth pathway was
evaluated by measuring phosphorylation of the filamentous-
growth MAPK Kss1p (91–93). Conditional (temperature-sensi-
tive) alleles of PI kinases pik1-83, stt4-4, and mss4-102 were tested,
which showed reduced phosphorylation of Kss1p at 37°C (Fig.
1A). Thus, the generation of PI(4)P is necessary for activation of
the filamentous-growth MAPK pathway. The above-described
test was performed in a laboratory strain (SEY6210 background
[94]). Many lab strains have lost the ability to undergo filamen-
tous growth (95). Indeed, growth in the nonpreferred carbon
source galactose (Gal) induces the filamentous-growth MAPK
pathway (36, 78, 96) but led to a decrease in levels of phosphory-
lated Kss1p (P�Kss1p) in the SEY6210 background (Fig. 1A,
compare GLU lanes to GAL lanes). To better evaluate the role of
PI(4)P signaling in regulating the filamentous-growth pathway,
the pik1-83 allele was introduced into the filamentous (�1287b)
background (12, 95). The pik1-83 strain behaved as expected,
based on temperature sensitivity at 37°C (97), aberrant Golgi
morphology (see Fig. S1 in the supplemental material) (57), and a
defect in protein secretion (98).

The extracellular domain of Msb2p is highly glycosylated and
migrates as a smear at �250 kDa (78). The extracellular inhibitory
domain is proteolytically processed by the aspartyl protease Yps1p

and is shed from cells (78). Consistent with the secretion defect of
the pik1-83 mutant, the large extracellular domain of HA-Msb2p
was not shed (Fig. 1B, SUP) and accumulated in cell pellets (Fig.
1B, PELLET). The pik1-83 mutant is also partly compromised for
function at semipermissive temperatures (30°C) (70). The pik1-83
mutant showed reduced levels of P�Kss1p at 30°C (Fig. 1C, 30°C)
and complete loss of P�Kss1p at 37°C (Fig. 1D). At 37°C,
P�Kss1p levels were equivalent in glucose and galactose in wild-
type cells. These results establish a requirement for Pik1p and
other PI(4)P kinases in regulating the filamentous-growth MAPK
pathway.

Generation of PI(4)P is required for filamentous growth and
biofilm/mat formation. The fact that Pik1p regulates the filamen-
tous-growth MAPK pathway suggested a role for PI(4)P in the
regulation of filamentous growth (12) and biofilm/mat formation
(15). At 30°C, the pik1-83 mutant showed a defect in invasive
growth by the plate-washing assay (Fig. 2A). The pik1-83 mutant
was more defective for invasive growth than a mutant that com-
pletely lacks pathway activity (Fig. 2A, ste12�). This may indicate
that Pik1p has roles in regulating filamentous growth that extend
beyond the regulation of the MAPK pathway. Microscopic analy-
sis of the pik1-83 mutant showed that cells were defective for cell
elongation and filament formation compared to wild-type cells
(Fig. 2B). These phenotypes are controlled by the filamentous-
growth MAPK pathway (Fig. 2B, ste12�).

Like many microbial species, including fungal pathogens (99,
100), budding yeast forms biofilms or mats (15). On low-agar
medium, the pik1-83 mutant was defective for biofilm/mat forma-
tion (Fig. 2C). Specifically, pik1-83 mats were small and smooth in
appearance. In contrast, wild-type mats showed a wrinkled pat-
tern, which was dependent on the filamentous-growth MAPK
pathway (Fig. 2C, ste12�) and the cell adhesion molecule Flo11p
(Fig. 2C, flo11�). Thus, generation of PI(4)P is required for fila-
mentous growth and biofilm/mat formation in yeast.

PI(4)P is required for localization of membrane-associated
regulators of the filamentous-growth MAPK pathway. PI ki-
nases are critical regulators of membrane trafficking (51). Modi-
fication of PI(4)P at the Golgi (98, 101) and modification of

FIG 2 The role of Pik1p in regulating haploid invasive growth and biofilm/mat formation. (A) Plate-washing assay. Wild-type cells and the pik1-83 and ste12�
mutants were spotted onto YEPD medium and incubated at 30°C for 2 days. Plates were photographed (left), washed in a stream of water, and photographed
again (right). (B) Cells scraped from the invasive scars on the washed YEPD plate were examined by differential interference contrast (DIC) microscopy at a
magnification of �40. Bar, 20 	m. (C) Biofilm/mat formation by the indicated strains on YEPD�0.3% agar medium. Wild-type cells and the pik1-83, ste12�,
and flo11� mutants were spotted onto plates and incubated for 5 days at 30°C. Representative colonies are shown. Bar, 1 cm.
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FIG 3 The localization and relative levels of PM regulators of the filamentous-growth MAPK pathway evaluated in the pik1-83 mutant. (A) Localization of
Msb2p-GFP, Sho1p-GFP, and GFP-Cdc42p in wild-type cells and the pik1-83 mutant. Cells were incubated to mid-log phase at 30°C and shifted to 37°C for 4
h. Bar, 5 	m. The localization patterns shown are representative of the patterns seen in most cells over multiple independent trials. More than 200 cells were
examined. The panels on the right show higher magnifications of the areas marked by rectangles in the middle column. Arrows indicate differences between wild
type and the pik1-83 allele. (B) Relative levels of Msb2p-GFP in wild-type cells and the pik1-83 mutant compared to a loading control, Pgk1p. Cells were grown
in YEPD medium to mid-log phase at 30°C and shifted to 37°C for 4 h. (C and D) Relative levels of Sho1p-GFP (C) and GFP-Cdc42p (D). (E) Phosphorylation
of Kss1p in wild-type cells and the indicated trafficking mutants at 37°C for 4 h.
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PI(4,5)P2 at the PM (102, 103) are required for delivery of vesicles
and cargoes to the PM. The signaling defect of the pik1-83 and
other PI(4)P mutants might result from mislocalization of PM
proteins that regulate the filamentous-growth MAPK pathway. A
functional Msb2p-GFP fusion shows primarily vacuolar localiza-
tion (78), which results from turnover of the protein from the PM
(104). Msb2p-GFP failed to show precise vacuolar localization in
the pik1-83 mutant, which indicates that the protein is mislocal-
ized (Fig. 3A). Msb2p may fail to be delivered to the vacuole in the
pik1-83 mutant because it does not reach the PM, although we
cannot rule out the possibility that Msb2p is trafficked from the
Golgi to the vacuole directly.

Sho1p is a transmembrane protein and adaptor for the fila-
mentous-growth MAPK pathway (31, 32, 34) and the HOG
MAPK pathway (105). Sho1p-GFP localizes to the PM and the
mother-bud neck (Fig. 3A) (106–108). Sho1p-GFP was also mis-
localized in the pik1-83 mutant (Fig. 3A). Sho1-GFP was specifi-
cally identified in internal sites in the pik1-83 mutant. Sho1p-GFP
was also mislocalized in the stt4-4 and mss4-102 mutants (see Fig.
S2 in the supplemental material).

Cdc42p is a Rho-type GTPase that regulates (among other
things) the filamentous-growth MAPK pathway (38, 39, 109).
Cdc42p is localized to the PM membrane by a lipid modification,
geranylgeranylation (110–114). GFP-Cdc42p was also mislocal-

FIG 4 The role of PI kinases Vps34p and Fab1p in regulating the filamentous-growth MAPK pathway. (A) Kss1p phosphorylation in the vps34� mutant
incubated at 30°C for 6 h in YEPD (GLU) and YEP-Gal (GAL) medium. (B) Biofilm/mat formation in the vps34� mutant and control strains incubated in
YEPD�0.3% agar at 30°C for 3 days. (C) Plate-washing assay of the indicated strains incubated at 30°C after 3 days. The pbs2� mutant was used as a hyperinvasive
growth mutant as a control. (D) Kss1p phosphorylation in the fab1� mutant incubated at 30°C for 6 h in YEPD (GLU) and YEP-Gal (GAL) medium.

FIG 5 Regulation of the filamentous-growth MAPK pathway by synaptojanin-type PIP phosphatases. Phosphorylation of Kss1p in combinations of PI
phosphatase mutants was assessed. Wild-type cells and the sjl1�, sjl2�, sjl3�, sjl2� sjl3�, sjl1� sjl2�, and sjl1� sjl3� mutants were incubated in YEPD (for
wild-type [GLU]) or YEP-Gal (GAL) medium for 6 h at 30°C.
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ized in the pik1-83 mutant. Compared to wild-type cells, which
show Cdc42p localization at the PM and vacuolar membrane (Fig.
3A), GFP-Cdc42p was seen primarily in internal sites in the
pik1-83 mutant (Fig. 3A). GFP-Cdc42p was also mislocalized in
the stt4-4 and mss4-102 mutants (see Fig. S3 in the supplemental
material).

It was previously reported that Cdc42p levels are reduced in the
mss4-102 mutant (103). The localization defects of Cdc42p and
other filamentous-growth MAPK regulatory proteins might result
from a decrease in protein stability. The processed form of Msb2p-
GFP, Msb2Pp, migrates at 55 kDa, and a minor product migrates
at 75 kDa (104). The level of Msb2Pp-GFP was not reduced in the
pik1-83, stt4-4, or mss4-102 mutants (Fig. 3B). The higher levels of
Msb2p seen in these mutants might result from a delay in turnover
of the protein. The level of Sho1p-GFP was reduced in the pik1-83
mutant (Fig. 3C). The levels of GFP-Cdc42p were not reduced in
the pik1-83 mutant (Fig. 3D). Thus, defects in trafficking of path-
way components to the PM in a PI(4)P-dependent manner, not
loss of protein abundance, may account for the defect in activation
of the filamentous-growth MAPK pathway in PI kinase mutants.

To further test this possibility, protein trafficking mutants that
trap PM cargoes in the secretory pathway were tested for filamen-
tous-growth MAPK pathway activity. Specifically, the sec62-1,
sec12-14, sec18-1, and sec7-1 mutants, which are defective for pro-
tein trafficking at various steps in the secretory pathway (115–
120), were tested. Like PI kinase mutants, these mutants showed a
decrease in MAPK activity (Fig. 3E) and mislocalization of PM
regulators of the filamentation MAPK pathway (data not shown).
These results are consistent with the idea that delivery of mem-
brane-associated regulators of the filamentous-growth MAPK
pathway to the PM is required for activation of the filamentous-
growth MAPK pathway.

Other PI kinases regulate the filamentous-growth MAPK
pathway. Other PI kinases may also regulate the filamentous-
growth MAPK pathway. Vps34p regulates PI(3)P levels at the en-
dosome/multivesicular body and is required for protein traffick-
ing to the vacuole/lysosome (62, 121–123). The vps34� mutant
showed reduced P�Kss1p levels (Fig. 4A). The levels of total
Kss1p were also reduced, which may result from a positive-feed-
back loop, given that the KSS1 gene is a transcriptional target of
the filamentous-growth pathway (124).

The vps34� mutant was also defective for biofilm/mat forma-
tion (Fig. 4B). The flo11� mutant was used as a control in evalu-
ating biofilm/mat formation. The vps34� mutant also had a
growth defect; however, vps34� mats were smaller than wild-type
mats and smooth in appearance. The unstructured appearance of
these mats suggests that Vps34p plays a role in their development.
Vps34p was also required for invasive growth (Fig. 4C), although
its growth defect on YEPD (Glu) medium may contribute to its
invasive growth defect. The PI(3,5)P2 kinase Fab1p (63, 125) was
also tested. The fab1� mutant showed a modest reduction in

FIG 6 The role of LatA on the activity of the filamentous-growth MAPK
pathway. (A) Wild-type cells were grown in YEPD (GLU) or YEP-Gal (GAL)
for 6 h at 30°C and treated with LatA at the indicated concentrations (	M) for
3 h at 30°C. (B) Phosphorylation of Kss1p in wild-type cells and msb2�, sho1�,
and msb2� sho1� mutants. Data are the ratios of the phosphorylated Kss1p
levels to total Kss1p quantified by ImageJ. (C and D) Same experiment per-
formed in the msb2� (C) and sho1� (D) mutants with 20 	M LatA for 3 h at
30°C.
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P�Kss1p levels in high-glucose (basal) conditions (Fig. 4D) and ex-
hibited a defect in invasive growth (Fig. 4C). Thus, Fab1p may play a
minor role in regulating the filamentous-growth MAPK pathway and
may have several roles in regulating filamentous growth.

Synaptojanin-type PIP phosphatases regulate the fila-
mentous-growth pathway. PIP phosphatases dephosphorylate
PI(4,5)P2 at different cellular locations to maintain PIP balance
(54, 68, 126). The role of PIP phosphatases in regulating the fila-
mentous-growth MAPK pathway was evaluated. The level of
Kss1p�P was reduced in PIP phosphatase sjl1�, sjl2�, and sjl3�
single mutants (Fig. 5). sjl1� sjl2�, sjl2� sjl3�, and sjl1� sjl3�
double mutants also showed reduced MAPK activity (Fig. 5). The
sjl1� sjl2� mutant showed higher P�Kss1p levels than the single
mutants. The Sjl proteins are functionally redundant, and it is
possible that Sjl3p alone carries out a new function in this genetic
context. Therefore, PIP phosphatases are involved in regulating
the filamentous-growth MAPK pathway. Two other phosphata-
ses, Sac1p and Inp54p, were also tested but did not regulate the
filamentous-growth MAPK pathway (data not shown). Thus, al-
tering the balance of PIP signaling through perturbation of PI
kinases or PIP phosphatases impacts the filamentous-growth
MAPK pathway.

An intact actin cytoskeleton is required for filamentous-
growth pathway activity. The trafficking defect of the PM regu-
lators Msb2p, Sho1p, and Cdc42p in PI(4)P kinase mutants may
explain the defect in filamentous-growth MAPK pathway activity.
Other PI kinase mutants and PIP phosphatase mutants did not
show dramatic localization defects of these proteins (data not
shown). PI kinases and PIP phosphatases also regulate cell polarity
and the actin cytoskeleton (58, 59, 68, 82, 127–129). Defects in the
actin cytoskeleton may underlie the MAPK signaling defects of
these mutants. To test this possibility, a pharmacological inhibitor
of filamentous actin, latrunculin A (LatA) (130), was tested. Ad-
dition of a minimal concentration of LatA (10 	M) led to reduced
P�Kss1p levels (Fig. 6A), despite the fact that total Kss1p levels are
higher under this condition. Addition of higher concentration of
LatA (30 	M) caused a more severe reduction in P�Kss1p levels
(Fig. 6A). Thus, an intact cytoskeleton is required for filamentous-
growth MAPK pathway signaling.

The actin cytoskeleton is required for many different cellu-

lar processes, such as delivery of vesicles and cargoes to the PM
and turnover of proteins from the PM by endocytosis (131,
132). The individual contributions of Msb2p and Sho1p in
regulating MAPK signaling were examined in response to treat-
ment with LatA. Under nutrient-limiting conditions, Msb2p
and Sho1p were partly redundant for activation of the filamen-
tous-growth MAPK pathway (Fig. 6B), which is consistent with
the invasive growth phenotypes of the msb2� and sho1� mu-
tants (31). The msb2� mutant, which is somewhat defective for
MAPK activity, showed a further reduction in P�Kss1p levels
upon treatment with LatA (Fig. 6C). Thus, in the msb2� mu-
tant, the Sho1p-dependent signal requires an intact actin cyto-
skeleton. The sho1� mutant showed a similar response (Fig. 6D),
indicating that the Msb2p-dependent signal also requires an intact
actin cytoskeleton. Therefore, the actin cytoskeleton is required to
facilitate filamentous-growth MAPK pathway signaling by a mecha-
nism that is dependent on Msb2p and Sho1p.

PIP signaling contributes to axial budding in haploid yeast.
Cell polarity in yeast is also controlled by the actin cytoskeleton

FIG 7 Role of the PI kinase Fab1p in regulating axial budding pattern and Axl1p protein levels. (A) CFW staining of the fab1� mutant and control strain grown
to saturation in YEPD medium at 30°C. (B) Levels of Axl1p-HA in the wild-type cells and fab1� mutant at 30°C. Cells were incubated for 6 h in YEPD (GLU) and
YEP-Gal (GAL) medium.

TABLE 2 Budding patterns of mutants defective for PI signaling and
control strains in haploid yeast cells

Mutation(s)a

Percentage of cells with pattern

Distal unipolar Random Axial

None (wild type) 8 
1 92
rsr1�b 10 32 58
bud3�c 36 1 63
fab1� 20 
1 80
sac1� 19 1 80
sjl1� 11 1 88
sjl2� 7 3 90
sjl3� 6 
1 81
sjl1� sjl2� 21 
1 79
sjl1� sjl3� 18 1 81
sjl2� sjl3� 30 6 64
a Cells were grown to saturation in YEPD medium, fixed, and stained with CFW. More
than 200 cells were counted for each mutant.
b The rsr1� mutant exhibits a random budding pattern (135) and was used as a control.
c The bud3� mutant exhibits a distal-pole budding pattern (135) and was used as a
control.
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(133, 134). Depending on cell type and growth condition, yeast
cells bud at the proximal or distal poles (88, 135–138). Many genes
regulate bud site selection in haploid and diploid cells (135, 139,
140). PI kinase mutants showed a bud site selection defect. Specif-
ically, at 30°C, haploid pik1-83 and fab1� mutants failed to bud
axially and showed an increase in distal-unipolar budding (Fig. 7A

shows data for fab1�; results for other mutants are shown in Fig.
S4 in the supplemental material [arrows]). The increased distal-
pole budding in the pik1-83 mutant, which would be expected to
promote filamentous growth, was not sufficient to restore agar
invasion to that mutant (Fig. 2A). This phenotype was quantitated
for the fab1� mutant (Table 2) but not for the essential kinase

FIG 8 Role of the PI kinase and PIP phosphatase mutants in regulating the HOG pathway. (A) Hog1p phosphorylation in essential PI kinase mutants. Cells were
grown for 37°C for 4 h. Cells were treated with 0.4 M KCl for the indicated times. (B) Hog1p phosphorylation in the indicated combinations of PIP phosphatase
mutants. (C) CFW staining of control and PIP phosphatase mutants grown to saturation in YEPD medium at 30°C.
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mutants, because at 37°C the mutants fail to produce buds due to
their growth defect. Combinations of PIP phosphatase mutants
also showed axial budding defects, including the sjl1� sjl2�, sjl2�
sjl3�, and sjl1� sjl3� double mutants (Table 2; also, see Fig. S4
[arrows]). The Golgi PI(4)P phosphatase mutant sac1� also
showed an axial budding defect (Table 2; also, see Fig. S4). Thus,
PIP signaling contributes to axial budding in haploid yeast.

The defect in axial budding might be related to the levels of
Axl1p, an axial-specific protein expressed in haploid cells (141).
Axl1p is not produced in diploid cells (77, 141–143) or haploid
cells grown under nutrient-limiting conditions (20). One of the PI
kinase mutants that showed an axial budding defect was tested for
the levels of Axl1p. The fab1� mutant showed reduced Axl1p-HA
levels by immunoblot analysis, as seen under glucose-rich and
glucose-limited conditions (Fig. 7B). Therefore, changes in Axl1p
levels may provide a connection between axial budding and PI
signaling.

Role of PI signaling in regulating the HOG pathway and yeast
cell wall. The filamentous-growth and HOG pathways share a
subset of components (1, 144–147). PIP regulators may impact
the activity of the HOG pathway, which is measured by phosphor-
ylation of the MAPK Hog1p (148, 149). It was previously shown
that Pik1p plays a positive role in regulating the HOG pathway
(71). We found that the stt4-4 and mss4-102 mutants showed con-
stitutive HOG pathway activity at the restrictive temperature (Fig.
8A), although not to the levels seen under activating conditions.
Therefore, PI(4)P kinases that function at the PM play an inhibi-
tory role in regulating the HOG pathway.

Several PI kinase and PIP phosphatase mutant combinations
showed growth defects in high-osmolarity medium. The vps34�
mutant had a growth defect on YEPD supplemented with 1 M KCl
that was similar to the pbs2� mutant (data not shown). No signif-
icant reduction in P�Hog1p was observed in the vps34� mutant
(data not shown). Some combinations of PIP phosphatase mu-
tants also showed osmotic sensitivity, such as the sjl2� sjl3� mu-
tant (128). The sjl2� sjl3� mutant showed normal HOG pathway
activity compared to wild-type cells (Fig. 8B). This may indicate
that PIP phosphatases play roles in regulating osmotic tolerance
through a mechanism that is independent of the HOG pathway.

A connection between the cell wall integrity pathway and PIP
signaling has been described (58). Calcofluor white (CFW), which
stains chitin in the yeast cell wall (150, 151), showed an irregular
pattern in the sjl1� sjl2� mutant (Fig. 8C). A triple PIP phospha-
tase mutant, the sjl1� sjl2�ts sjl3� mutant, also showed a defect in
chitin deposition at 37°C (Fig. 8C). Single sjl mutants showed
uniform distribution of CFW on the cell surface (see Fig. S4 in the
supplemental material). Thus, combinations of Sjl-type phospha-
tases have a function in maintenance of the yeast cell wall.

DISCUSSION

PIP signaling is an essential cellular process that is critical for the
regulation of protein secretion, actin cytoskeleton reorganization,
and organelle identity, biogenesis, transport, and inheritance.
Here, we describe a role for PIP signaling in the regulation of an
ERK-type MAPK pathway that controls filamentous growth in
yeast. We specifically show that generation of PI(4)P is required
for filamentous-growth MAPK pathway signaling. This may result
from mislocalization of PM regulators of the MAPK pathway in
PI(4)P kinase mutants. Failure of PM regulators to reach the PM
may be expected to result in MAPK signaling defects. Previous

studies have implicated PI signaling in the regulation of filamen-
tous growth, particularly in C. albicans (72–74). Here, we posit
that this connection can be explained, at least in part, at the level of
the MAPK pathway.

We also demonstrate that the filamentous-growth MAPK
pathway requires other PI kinases that generate PI(3)P and
PI(3,5)P2 and Sjl-type PIP phosphatases. PM MAPK regulatory
proteins are not mislocalized in these mutants (data not shown);
thus, how the MAPK is functionally connected to these PIP species
is not clear. We show that perturbation of PIP signaling influences
cell polarity. Thus, the MAPK signaling defect in these mutants
may result from problems in cell polarity. In support of this pos-
sibility, pharmacological disruption of filamentous actin results in
a defect in filamentous-growth MAPK pathway activity. Previous
reports have suggested a link between actin cytoskeleton and fila-
mentous growth (152). Thus, the observations reported here ex-
tend this connection by linking the actin cytoskeleton to the ac-
tivity of the filamentous-growth MAPK pathway.

We also show that PIP signaling is required for a specific aspect
of cell polarity regulation, that of axial bud site selection in haploid
cells. This may result from a general defect in the actin cytoskele-
ton. However, the levels of the axial-specific factor Axl1p are re-
duced in at least one PI kinase mutant and may reflect a specific
connection between the two pathways. PIP signaling in yeast is
required for other cellular processes, including proper regulation
of the cell wall (58), and we identify cell wall defects in some sjl
mutant combinations. Intriguingly, different PIP combinations
influence each of these processes, which indicates a high degree of
functional specialization of PIP regulators.

Different PIP species differentially regulate the HOG pathway.
A Golgi PI(4)P kinase, Pik1p, positively regulates the HOG path-
way (71), whereas PM PI(4)P kinases negatively regulate the HOG
pathway. The mechanistic basis for the antagonistic roles of these
PI(4)P kinases is not clear and underscores the importance of
future studies of PI(4)P in regulation of the p38 MAPK pathway.
The filamentous-growth (ERK-type) and HOG (p38-type) MAPK
pathways have opposing functions in the cell (7, 106, 153–155).
The fact that PI(4)P has different effects on ERK and p38 MAPK
pathways could, in principle, influence the specificity of MAPK
outputs. Future studies on how PIP signaling differentially acti-
vates MAPK pathways will shed light on the overall regulation of
signaling pathways in this system.
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