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Abstract

The cerebral cortex contains dozens of neuronal subtypes grouped in specific layers and areas. 

Recent studies have revealed how embryonic and induced pluripotent stem cells (PSC) can 

differentiate into a wide diversity of cortical neurons in vitro, while recapitulating many of the 

temporal and spatial features that characterize corticogenesis. PSC-derived neurons can integrate 

into the brain following in vivo transplantation and display patterns of morphology and 

connectivity specific of cortical neurons. PSC-corticogenesis thus emerges as a robust model that 

provides new ways to link cortical development, evolution, and disease.

The cerebral cortex is arguably the most complex structure in our brain, and cortical neuron 

number and diversity are thought to be at the core of its powerful computational capacities. 

Most (>85%) cortical neurons are excitatory pyramidal neurons, while the remaining 15% 

are inhibitory interneurons. Pyramidal neurons and interneurons can be further subdivided 

into many subtypes, characterized by specific patterns of gene expression, morphology and 

connectivity [1].

Pluripotent stem cells (PSC), whether embryonic (ESC) [2] or induced (iPSC) [3,4], have 

emerged as a promising tool to model normal brain development and diseases. Here we will 

review recent data that demonstrate that a substantial fraction of cortical neuron diversity 

and complexity can be generated in vitro from PSC, while mimicking much of in utero 

development, revealing that many features of corticogenesis can result from self-

organization. We will put special emphasis on studies that used human cells, and the insights 

that they provide on human brain development, evolution, and disease.
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Starting-up: regional patterning and neuronal specification

The cortical primordium emerges in the telencephalon, the anterior-most part of the 

forebrain. Interestingly, the telencephalic/forebrain identity first develops largely in the 

absence of any extrinsic morphogenic cues, and is even enhanced through active inhibition 

of morphogen signals such as Wnts or BMPs [5]. The telencephalon then undergoes 

patterning along the dorso-ventral axis, leading to the parcellation into several neurogenic 

niches, including the dorsal telencephalon and the ventrally located ganglionic eminences, 

which will generate cortical pyramidal neurons and most interneurons, respectively [6–8]. 

These basic features of corticogenesis are essentially recapitulated during directed 

differentiation of cortical neurons from PSC. Indeed when PSC are cultured without any 

added (caudalizing) morphogen or in the presence of selected morphogen inhibitors, most of 

them differentiate into neural precurors displaying a forebrain/telencephalic identity [9–13] 

[••14–16]. Moreover, if PSC-forebrain differentiation takes place with little or no SHH 

signalling, it mostly leads to the generation of dorsal telencephalic progenitors and 

glutamatergic, cortical pyramidal neurons [9, ••14,15, ••17–20]. In contrast, addition of SHH 

leads to specification of ventral telencephalic progenitors that will differentiate into both 

GABAergic and cholinergic neurons [19, • 21–23]. Since the majority of cortical 

GABAergic interneurons in humans, as in rodents, originate in the subcortical telencephalon 

[• 24,25], ventralized telencephalic differentiation of human PSC also give rise to cortical 

interneurons [••26–28].

Modeling temporal patterns of corticogenesis

Following early patterning, cortical neurogenesis will start to take place leading to the 

generation of 6 different neuronal layers, each characterized by specific patterns of gene 

expression and connectivity [1]. The layer-identity of a cortical neuron is tightly linked to 

the timing of its generation: this temporal patterning results in the sequential generation of 

layer-specific types of cortical neurons and is a fundamental process of neuronal 

diversification [29]. Remarkably, PSC-derived corticogenesis recapitulates this temporal 

patterning in vitro, leading to the sequential generation of a repertoire of neurons displaying 

specific molecular markers of all six layers [9,15,17,20,30], similarly to what was previously 

demonstrated using ex vivo cultures of early cortical progenitors [31]. Intriguingly, the 

proportion of each layer-specific neuronal subtype varies considerably depending on 

differentiation conditions. ESC-derived pyramidal neurons obtained in minimal culture 

conditions (low cell density without any added morphogens) are strongly skewed towards a 

deep layer identity [9,15], while a higher proportion of upper layer neurons are obtained 

when PSC are first differentiated at high density [20] or as cell aggregates [17,32], or when 

the PSC-derived cortical progenitors are transplanted in the mouse brain [15]. These 

differences should be explored much further, and it may yield new insights on the 

mechanism that control the timing and rates of production of specific pyramidal neuron 

subtypes.

While the sequential generation of pyramidal neurons from PSC is a robust feature, 

observed from ESC and iPSC of mouse and human origin, direct comparison between 

mouse and human PSC-corticogenesis revealed that it is greatly extended in time with 
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human PSC [15,17,19,20,32], even when using identical culture conditions [15]. Consistent 

with the protracted period of cortical neurogenesis in humans, human ESC-cortical 

progenitors start to generate postmitotic neurons after about 4 weeks instead of 6–8 days in 

the mouse, which is correlated with appearance of radial glia (RG)-like progenitors, the 

main neurogenic cortical progenitor [33]. Thereafter, mouse ESC-corticogenesis takes 2–3 

weeks to be completed, while it takes 10–15 weeks starting from human ESC (Figures 1 and 

2) [9]. These temporal specificities are strikingly similar to in vivo corticogenesis [34–38], 

and they may be directly relevant to the links between development and evolution of the 

cortex. Indeed, many of the species-specific features of the primate/human cortex, including 

a larger number and diversity of neurons, are thought to be linked to differences in the 

mechanisms underlying the generation of cortical neurons [36,38,39]. The mechanisms by 

which the primate embryonic brain can generate more neurons for prolonged periods might 

be linked to species-specific properties intrinsic to cortical progenitors, such as differential 

cell cycle control or tuning of self-renewal vs. terminal differentiation [40]. The emergence 

of other types of progenitors may also contribute to evolutionary changes in cortical 

neurogenesis. These progenitors include the recently described “outer” radial glial (oRG) 

cells [35,37,41–44], which share many features with RG cells, including the potential for 

self-renewal, but they lack any apical projection. Most strikingly, while human oRG cells 

can generate neurons directly, their progeny undergoes multiple rounds of divisions before 

final differentiation, thus providing a mechanism for increased neuronal output and cortical 

expansion. Importantly, the detection of oRG-like cells was reported following in vitro 

differentiation from human PSC [••20,45,46] but not from mouse PSC [46], providing 

further evidence of species-specific features of PSC-corticogenesis directly relevant to 

evolution.

A third aspect of corticogenesis that appears to be species-specific is neuronal maturation: 

once generated human cortical neurons display much prolonged patterns of morphological 

and functional maturation, such as dendrite patterning and synaptogenesis [47,48]. 

Similarly, PSC-derived human cortical neurons mature very slowly at the molecular and 

functional levels [15,20,32]. Even more strikingly, comparison of human vs. mouse PSC-

derived cortical neurons transplanted into the mouse neonatal cortex revealed that the human 

pyramidal neurons follow a species-specific program of delayed neuronal maturation and 

synaptogenesis [15,49]. For instance, while ESC-derived mouse pyramidal neurons develop 

full blown and specific axonal and dendritic projections after 4 weeks [9], similarly 

differentiated and transplanted human neurons take more than 6 months to develop 

subcortical projections and at least 9 months to develop complex dendrite arborization 

pattern, dendritic spines, and functional synaptic activity [15]. Similar results are found with 

GABAergic cortical interneurons derived from human PSCs. While synaptogenesis and 

reasonably mature-appearing action potentials can be detected within one month of co-

culturing with mouse cortical pyramidal neurons [27], transplantation studies into the 

neocortex of neonatal mice show limited terminal differentiation of these cells even 6 

months later [28].

Overall, these data point to cortex-intrinsic mechanisms that control the clock of several key 

aspects of corticogenesis, for which PSC-based models may provide attractive experimental 
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set-ups to dissect the underlying mechanisms [30], with potentially important relevance to 

basic mechanisms linking cortical development and evolution.

Importantly, the very slow rate of maturation of cortical cells from human PSC presents a 

major challenge to the widespread application of this system for the study or treatment of 

human disease.

Modeling spatial patterns of corticogenesis

The cytoarchitecture of the cortex is crucial to its function, and despite its apparent 

complexity, key aspects of the patterned, three dimensional (3D) organization of the 

developing cortex can also be recreated in vitro (Figure 1B). When PSC are cultured as 

bowls of cells and differentiated into cortical-like progenitors, this leads to robust polarized 

neurons accumulating at their periphery, following an organization highly reminiscent of a 

nascent cortical primordium, including a ventricular-like zone and a cortical plate-like 

mantle region. Using long-term culture systems of 3D differentiation from PSC, the 

emergence of specific domains of progenitors and even cortical layer-like structures have 

been reported [45,46]. Most remarkably, using a long-term cortical 3D model, the final 

position of the neurons within a cortical plate-like structure was found to depend on its 

neuronal birthdate, where neurons born earlier were found in deeper positions than later 

ones, thus recapitulating the inside-out pattern characteristic cortical neurogenesis [45]. 

These data constitute striking demonstration that a cortical-like cytoarchitecture can self-

organize in vitro, and it will be fascinating to test how far one can go to model further the 

complexity of cortical architecture, and perhaps function, in a dish. For example, it may be 

possible to use focal application of Shh signalling agonists in this system to create an 

interneuron-generating domain, then use the system to study the migration and integration of 

cortical interneurons within the developing human cortex.

The patterning of cortical areas is another complex process [6,50] that can be surprisingly 

modelled using PSC differentiation, combined with intracortical transplantation. Indeed, 

when mouse or human ESC-derived cortical neurons obtained in minimal culture conditions 

are grafted in the mouse neonatal cortex, they send most of their axonal projections to 

targets of the visual and limbic occipital cortex [9,15], with a pattern that is similar to 

grafted embryonic visual cortical tissue [9,51]. This was observed despite the fact that the 

cells were transplanted in the frontal cortex, suggesting that the highly selective ‘occipital-

like’ pattern of projections was not likely due to respecification of the grafted neurons by the 

host. In line with this hypothesis, examination of the molecular identity of ESC-derived 

cortical progenitors and neurons before grafting revealed that most of them expressed 

markers of the occipital cortex [9]. On the other hand, the areal fate of ESC-derived cortical 

progenitors can be modified in vitro by the addition of extrinsic cues known to induce 

frontal cortical fates in vivo [17,45]. Interestingly, the human cortical cells, but not the 

mouse, tended to lose markers of occipital identity following longer periods post-

transplantation, and their axonal projections corresponded to a wider range of areal identities 

with time [15]. These observations suggest that specific patterns of areal identity may be 

acquired in vitro, but that following grafting some of the cells can be specified to other areal 

identities over time, possibly in relation with their relatively early stage of maturation at the 
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time of grafting, and therefore higher susceptibility to extrinsic cues from the host cortex 

[52]. In any case, these data indicate that areal specification can occur in a specific way from 

PSC, which has interesting implications for our understanding of arealization mechanisms, 

and also in the long-run prospect of area-specific cortical repair strategies.

Modeling pathological corticogenesis

The advent of iPSC technology [4] offers in principle many novel opportunities to model 

brain diseases, including those that strike the developing cortex [53,54]. So far few studies 

have relied on iPSC-derived cortical cells to model neurodevelopmental diseases. Among 

these, one striking example is Timothy syndrome (TS), caused by a mutation in a L-type 

voltage-gated calcium channel, and leading to developmental delay and autism. Examination 

of iPSC-derived cortical cells from TS patients revealed several interesting phenotypes. 

These included, as expected, defects in calcium signaling and neuronal activity, but also 

more surprising defects such as the generation of specific types of neurons [55]. Together 

with other studies [56] [57] [46] [58] [59] these findings illustrate that PSC-derived 

corticogenesis can be used to model some aspects of complex human cortical diseases, 

particularly in the case of synaptic or electrophysiological abnormalities that are not 

restricted to a specific neuronal subtype.

Conclusion and perspectives

In sum, recent years have shown tremendous progress in the generation of cortex-like 

neurons from mouse and human pluripotent cells. Human PSC can generate cortically-

patterned tissue both in 2D and 3D cultures, where they replicate key aspects of temporal 

and spatial patterning. Xenographic transplantation studies with both cortical pyramidal 

neurons and GABAergic interneurons derived from human PSC corroborate the in vitro 

studies, suggesting that bona fide cortical neurons are being produced. The protracted 

differentiation process, and the difficulty in generating and identifying more specific cortical 

neuronal subtypes, present important technical and conceptual challenges for the use of this 

technology to study human cortex development and disease. That said, with the generation 

of transgenic reporter stem cell lines allowing the identification of increasingly specific cell 

types, and the steady improvement of differentiation protocols, PSC-corticogenesis models 

may help to transform how we understand and treat diseases of the cerebral cortex.
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Highlights

• Pluripotent stem cell differentiation models spatial and temporal patterns of 

generation of cortical pyramidal and interneurons.

• Pluripotent stem cell derived corticogenesis displays species-specific features 

relevant to brain evolution.

• Pluripotent stem cell modelling is a promizing tool to reveal insights on 

neurodevelopmental diseases.
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Figure 1. Modelling temporal and spatial patterning of cortical neuron neurogenesis
(A) PSC cultured under minimal conditions or in the presence of Wnt/Tgfβ/BMP 

morphogen inhibitors, undergo differentiation towards forebrain/telencephalic identity. In 

absence or low levels of Shh-signalling, PSC will mostly differentiate into a collection of 

progenitors of dorsal telencephalon/cortical identity. Subsequent generation of cortical 

pyramidal neurons follows a temporal patterning, with deep layer neurons being generated 

earlier than upper layer neurons, eventually followed by a switch to astrocyte production, 

like in vivo. Human PSC-derived corticogenesis follows a much more protracted time-

course than the mouse counterpart, highly reminiscent of the in vivo situation. (B) 
Schematics of the relationships between the various cellular players of corticogenesis found 

in vivo. OSVZ/ISVZ, outer/inner subventricular zone. 3D models can recapitulate in a 

strikingly faithful way the in vivo organization of cortical progenitors and neurons, thereby 

providing unique tools to study spatial patterning and cytoarchitecture formation.
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Figure 2. Comparison of Mouse and Human In Vivo and ESC-based In Vitro PV and SST 
Interneuron Development
Schematic of a mouse (A) and a human (B) half coronal section at comparable ages during 

neurodevelopment, embryonic day 13.5 and 15 gestational weeks (not to scale) showing in 

red the Nkx2.1-expressing medial ganglionic eminence (MGE). The MGE is the progenitor 

domain for both PV and SST expressing cortical interneurons and is relatively well 

conserved across species (A, B), as is the progression (C) from Nkx2.1-expressing 

progenitors, to Lhx6 and then GABA-expressing migratory precursors, then finally to 

terminally differentiated interneurons. Mouse ESC derived PV and SST expressing cells 

mature at analogous rates, with both makers detectable by approximately 4 weeks post 

transplantation into mouse neonatal cortex (D). Conversely human ESC-derived PV and 

SST expressing cells mature very slowly- also analogously to their in vivo counterparts (E). 

E=Embryonic Day, DD=Differentiation Day, GW=Gestational Weeks, P=Days After Birth.
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