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Abstract

Background: Ischemic cardiomyopathy (ICM) is characterized by transcriptomic changes that alter cellular processes
leading to decreased cardiac output. Because the molecular network of ICM is largely unknown, the aim of this study
was to characterize the role of new transcriptional regulators in the molecular mechanisms underlying the responses
to ischemia.

Methods: Myocardial tissue explants from ICM patients and control (CNT) subjects were analyzed by RNA-Sequencing
(RNA-Seq) and quantitative Real-Time PCR.

Results: Enrichment analysis of the ICM transcriptomic profile allowed the characterization of novel master regulators.
We found that the expression of the transcriptional regulators SP100 (−1.5-fold, p < 0.05), CITED2 (−3.8-fold, p < 0.05),
CEBPD (−4.9-fold, p < 0.05) and BCL3 (−3.3-fold, p < 0.05) were lower in ICM than in CNT. To gain insights into the
molecular network defined by the transcription factors, we identified CEBPD, BCL3, and HIF1A target genes in the
RNA-Seq datasets. We further characterized the biological processes of the target genes by gene ontology annotation.
Our results suggest that CEBPD-inducible genes with roles in the inhibition of apoptosis are downregulated and that
BCL3-repressible genes are involved in the regulation of cellular metabolism in ICM. Moreover, our results suggest that
CITED2 downregulation causes increased expression of HIF1A target genes. Functional analysis of HIF1A target genes
revealed that hypoxic and stress response genes are activated in ICM. Finally, we found a significant correlation
between the mRNA levels of BCL3 and the mRNA levels of both CEBPD (r = 0.73, p < 0.001) and CITED2 (r = 0.56,
p < 0.05). Interestingly, CITED2 mRNA levels are directly related to ejection fraction (EF) (r = 0.54, p < 0.05).

Conclusions: Our data indicate that changes in the expression of SP100, CITED2, CEBPD, and BCL3 affect their
transcription regulatory networks, which subsequently alter a number of biological processes in ICM patients. The
relationship between CITED2 mRNA levels and EF emphasizes the importance of this transcription factor in ICM.
Moreover, our findings identify new mechanisms used to interpret gene expression changes in ICM and provide
valuable resources for further investigation of the molecular basis of human cardiac ischemic response.
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Table 1 Clinical characteristics of patients with ischemic
cardiomyopathy

RNA-Seq qRT-PCR

ICM (n = 13) ICM (n = 19)

Age (years) 54 ± 7 53 ± 7

Gender male (%) 100 85

NYHA class 3.5 ± 0.4 3.1 ± 0.9

BMI (kg/m2) 26 ± 4 27 ± 3

Hemoglobin (mg/mL) 14 ± 3 13 ± 3

Hematocrit (%) 41 ± 6 38 ± 8

Total cholesterol (mg/dL) 162 ± 41 167 ± 33

Prior hypertension (%) 30 31

Prior smoking (%) 84 58

Prior diabetes mellitus (%) 38 36

EF (%) 24 ± 4 23 ± 8

FS (%) 13 ± 2 12 ± 4

LVESD (mm) 55 ± 7 53 ± 7

LVEDD (mm) 64 ± 7 60 ± 6

LV mass index (g/cm2) 139 ± 36 130 ± 34

Data are showed as the mean value ± SD or % of subjects. ICM, ischemic
cardiomyopathy; NYHA, New York Heart Association; BMI, body mass index;
EF, ejection fraction; FS, fractional shortening; LVESD, left ventricular end-systolic
diameter; LVEDD, left ventricular end-diastolic diameter; LV mass index, left
ventricular mass index.
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Background
Ischemic cardiomyopathy (ICM) is the most common
cause of death in western countries [1]. The factors con-
tributing to ICM are complex. They include microvascular
dysfunction, inflammation, disruption of Ca2+ homeosta-
sis, and activation of apoptosis [2,3]. In addition, studies
have indicated that a number of fetal and immediate-early
genes, including those encoding proteins involved in sig-
nal transduction and energy metabolism, are deregulated
in the ischemic heart [4,5]. These altered processes are as-
sociated with a specific gene expression pattern, or tran-
scriptional signature. The transcriptional signature of ICM
is thought to arise from ischemic injury or other types of
stress stimulus, ultimately resulting in heart failure (HF).
Although several global gene expression studies have been
carried out in ICM [6], the molecular mechanisms that
coordinate the transcriptional profile in ICM are not com-
pletely understood.
Gene expression is determined by specific sets of tran-

scription factors (TFs) and by a particular organization,
or chromatin structure, of the genome. Several TFs have
been implicated in ICM [7]. Specifically, our group iden-
tified changes in the protein levels of TFs including
nuclear factor of activated T cells 1 (NFAT1), GATA
binding protein 4 (GATA4), and nuclear myocyte enhan-
cer factor 2C (MEF2C) in ICM patients [8]. These DNA
binding factors are involved in the Ca2+ signaling and
may also participate in apoptosis, highlighting the im-
portance of these processes in ICM. Other TFs impli-
cated in ICM include the homeobox protein CSX/
NKX2-5 [9], which participates in the transcriptional
regulation of fetal and early-stage genes, the NF-kB
pathway activator protein [10], STAT-3 [11], and AP-1
[12]. Despite these findings, the regulatory mechanisms
underlying the disruption of essential biological pro-
cesses in ICM, such as angiogenesis [13] and cellular
metabolism, remain to be elucidated.
A traditional approach for identifying the underlying

causes of a specific disease is to look for genes that are
differentially expressed in disease samples and the ap-
propriate control (CNT) samples. Microarray-based ex-
pression profiling has been widely used for this purpose.
In addition, gene expression profiling has been used to
identify TFs involved in biological processes [14] and in
diseases such as dilated cardiomyopathy [15]. There are
no genome-wide expression analysis-based studies re-
lated to TFs in ICM. RNA sequencing (RNA-Seq) has
recently emerged as a precise and sensitive method for
mapping and quantifying RNA transcripts [16]. This
technology can potentially be used to identify novel
transcriptional regulators involved in the molecular
mechanisms controlling ICM. Therefore, we aimed to
identify novel transcriptional regulators with roles in in
ICM development and to characterize their target genes
in order to provide novel insights into the mechanisms
involved in the responses to ischemia.

Methods
Ethical approval
This study was approved by the Biomedical Investigation
Ethics Committee of La Fe University Hospital of Valencia,
Spain. This work was performed in accordance with the
guidelines of the Declaration of Helsinki [17]. Informed
written consent was obtained from each patient prior to
tissue collection.

Tissue collection
Left ventricular (LV) tissue samples were collected from
human hearts of 13 and 19 patients with ICM undergo-
ing cardiac transplantation and subsequently used in
RNA-Seq and quantitative Real-Time PCR (qRT-PCR),
respectively. The clinical characteristics of the patients
are shown in Table 1. Clinical history, electrocardiog-
raphy, hemodynamic studies, Doppler echocardiography,
and coronary angiography data were available. All pa-
tients were functionally classified according to the New
York Heart Association (NYHA) criteria and were re-
ceiving medical treatment following the guidelines of the
European Society of Cardiology [18]. ICM was diagnosed
on the basis of the clinical history, Doppler echocardiog-
raphy, and coronary angiography data.
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CNT LV samples were obtained from the hearts of six
(RNA-Seq) or seven (qRT-PCR) healthy donors whose
hearts could not be transplanted due to surgical reasons
or blood type incompatibility. The cause of death in
these individuals was cerebrovascular or motor vehicle
accident. All donors had normal LV function and had no
history of myocardial disease or active infection at the
time of transplantation.
Fresh transmural samples were recovered from near

the apex of the left ventricle at the time of transplant-
ation. Tissue samples were maintained in 0.9% NaCl at
4°C for a maximum of 6 hours from the time of coron-
ary circulation loss and then frozen at −80°C until RNA
extraction.

RNA extraction
Heart samples were homogenized with TRIzol® Reagent
in a TissueLyser LT (Qiagen; UK). All RNA extractions
were performed using a PureLink® RNA Mini Kit
(AmbionLife Technologies; CA, USA), according to the
manufacturer’s instructions. RNA was quantified using a
NanoDrop1000 spectrophotometer (Thermo Fisher Sci-
entific; UK) and the purity and integrity of the RNA
samples were measured using an Agilent 2100 Bioanaly-
zer with the RNA 6000 NanoLabChip kit (Agilent Tech-
nologies; Spain). All samples displayed a 260/280 nm
absorbance ratio greater than 2.0 and RNA integrity
numbers ≥ 9.

RNA-Seq
PolyA-RNA was isolated from 25 μg of total RNA using
the MicroPoly(A) Purist kit (Ambion, USA). Total
PolyA-RNA was used to generate whole transcriptome
libraries for sequencing on the SOLiD 5500XL platform
following the manufacturer’s recommendations (Life
Technologies; CA, USA). Amplified cDNA quality was
analyzed using the Bioanalyzer 2100 DNA 1000 kit
(Agilent Technologies; Spain) and quantified using the
Qubit 2.0 Fluorometer (Invitrogen; UK). Whole tran-
scriptome libraries were used to make SOLiD templated
beads following the SOLiD templated bead preparation
guide. This protocol consisted of an RNA enrichment
and chemical modification step, followed by a clonal
amplification step. Bead quality was estimated based on
work flow analysis parameters. The samples were se-
quenced using the 50625 paired-end protocol, generat-
ing 115 nt sequences consisting of 75 nt plus 35 nt
(Paired-End) + 5 nt (Barcode). Quality data was mea-
sured using software parameters of the SOLiD Experi-
mental System.

Computational analysis of RNA-Seq data
The initial whole transcriptome paired-end reads ob-
tained from sequencing were mapped against the latest
version of the human genome (version GRchr37/hg19)
using the Life Technologies mapping algorithm (http://
www.lifetechnologies.com/), version 1.3. For both for-
ward and reverse reads, the seed was the first 25 nu-
cleotides with a maximum of 2 mismatches allowed.
Additional file 1: Table S1 describes the main statistical
parameters of the mapping analysis. The aligned records
were reported in BAM/SAM format [19]. Insufficient
quality reads (phred score < 10) were eliminated using
Picard Tools software, version 1.83 (http://picard.source-
forge.net/). Gene prediction was estimated using
Ensembl ID and the Cufflinks method for de novo as-
sembly [20]. After alignment the read counts or gene ex-
pression levels were calculated using HTSeq software,
version 0.5.4p3 (http://www-huber.embl.de/users/anders/
HTSeq/). Differential expression analysis between condi-
tions was performed using the edgeR method, version
3.2.4 [21]. This method uses a Poisson distribution to
model genic read counts following normalization based
on size factors and variance; therefore, this software allows
normalization of RNA-Seq data based on sequencing
depth, GC content, and gene length for analysis of differ-
ential expression. We selected differentially expressed
genes with a p-value < 0.05 and a fold change of at least
1.5. Primary RNA-Seq data were submitted to the public
database Gene Expression Omnibus (GEO) repository,
and the accession number to the data file is GSE55296
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GS
E55296).
Finally, we assessed the technical variation by Pearson

correlation analysis using the R-statistical software, ver-
sion 3.0.3 (http://www.r-project.org).

Principal component analysis
To classify heart samples, a principal component ana-
lysis (PCA) was performed with the RNA-Seq data. A
scatter plot was produced in order to visualize the differ-
ences between the sample sets based on each sample’s
gene expression profile. This analysis was performed
using R-statistical software, version 3.0.3 (http://www.r-
project.org).

Gene set enrichment analysis
To identify over-represented TFs from RNA-Seq data,
we used a web-based interactive application called ChIP
Enrichment Analysis (ChEA) [22]. The ChEA database
contains data from genome-wide ChIP studies and
therefore takes into consideration the chromatin state of
the cell. TFs showing a p-value < 0.05 were considered
significant.

qRT-PCR
One microgram of RNA was reverse-transcribed to cDNA
using the M-MLV enzyme (Invitrogen, UK). qRT-PCR

http://www.lifetechnologies.com/
http://www.lifetechnologies.com/
http://picard.sourceforge.net/
http://picard.sourceforge.net/
http://www-huber.embl.de/users/anders/HTSeq/
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was performed in duplicate using the TaqMan protocol in
a ViiA7 Fast Real-Time PCR System according to the
manufacturer’s instructions (Applied Biosystems; USA).
The following TaqMan probes were designed and ob-
tained from Applied Biosystems: SP100 nuclear antigen
(SP100) (Hs00162109_m1), Cbp/p300-interacting transac-
tivator 2 (CITED2) (Hs00366696_m1), CCAAT/enhancer
binding protein delta (CEBPD) (Hs00270931_s1) and B-
cell CLL/lymphoma 3 (BCL3) (Hs00180403_m1). The
housekeeping genes GAPDH (Hs99999905_m1), PGK1
(Hs99999906_m1), and TFRC (Hs00951083_m1) were used
as reference genes. ΔΔCt-based fold change calculations
were used to determine relative transcript quantity [23].
Individual fold changes were calculated comparing each
ICM ΔCt value with the corresponding CNT pooling ΔCt
values.
TF target genes prediction
To decipher the transcriptional regulatory networks, we
identified the TF target genes that were differentially
expressed between ICM patients and CNT individuals.
TF target gene prediction was carried out using the tran-
scriptional regulatory element database (TRED) (http://
rulai.cshl.edu/TRED), TFactS (http://www.tfacts.org), and
the ChIP-X database, a component of the ChEA software.
All three informatics tools encompass the prediction of
TF regulation based on TF binding motifs and experimen-
tal evidence.
TF target genes functional annotation
Functional annotation analysis of differentially expressed
genes was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID, version
6.7). Gene ontology (GO) terms that had a p-value < 0.05
were selected [24].
Statistics
Data are expressed as the mean ± standard deviation
(SD). The Kolmogorov-Smirnov test was applied to
evaluate the data distribution. Clinical characteristics
were compared using Student’s t-test for continuous var-
iables and Fisher’s exact test for discrete variables. Sig-
nificant mean differences in mRNA levels between
groups were determined using Student’s t-test. Pearson’s
correlation coefficient was calculated to analyze the as-
sociation between mRNA levels and the relationship be-
tween mRNA expression levels and clinical parameters.
A p-value < 0.05 was considered significant. Statistical
analysis was performed using the Statistical Package for
Social Sciences, version 20.0 (IBM SPSS Inc., Chicago.
IL, USA) and GraphPad Prism software version 6.0
(http://www.graphpad.com).
Results
Clinical characteristics of patients
We analyzed by RNA-Seq a total of 19 LV tissue samples
corresponding to hearts from 13 ICM patients undergo-
ing cardiac transplantation and six non-diseased CNT
donors. ICM patients were 100% male, and were a mean
age of 54 ± 7 years. All of them had a NYHA functional
classification of III–IV and previously had been diag-
nosed with significant comorbidities, including hyper-
tension and hypercholesterolemia (Table 1). The CNT
group comprised 83% men and the mean age was 53 ±
10 years.
We used a greater sample size for qRT-PCR validation

of up to 26 LV samples corresponding to hearts from 19
ICM patients and seven non-diseased CNT donors. ICM
patients were 85% male, and were a mean age of 53 ±
7 years. Their clinical characteristics are shown as the
mean value ± SD in Table 1. No significant differences
were found in clinical parameters between the two ICM
groups. The CNT group comprised 75% men and the
mean age was 51 ± 9 years.

RNA-Seq results
To investigate the transcriptomic changes accompanying
ICM, we performed a large-scale expression screen using
RNA-Seq technology. Nineteen heart samples were used
for the analysis (ICM, n = 13 and CNT, n = 6). Primary
RNA-Seq data were submitted to the public database Gene
Expression Omnibus (GEO) repository [accession number
GSE-55296]. Results of pairwise Pearson-correlations
between samples showed no significant differences
(Additional file 2: Figure S1). We applied a threshold of
0.85. Since inclusion of transcripts expressed at very low
levels increases the risk of false discovery, a minimum of
five normalized transcript read counts was used as the
cut-off point. Transcripts from 13,374 genes were identi-
fied in CNT hearts and from 13,464 genes were detected
in ICM tissue by RNA-Seq. For transcript identification
we used Ensembl ID information and the Cufflinks
method for the unknown genes. Expressed genes were di-
vided into groups according to their relative expression
levels (Figure 1A-B). We found that 943 and 1,026 genes
showed the lowest levels of expression, represented by five
and ten read counts in CNT and ICM, respectively. While
the majority of genes in CNT (88%; 11,748/13,374) and in
ICM (87%; 11,780/13,464) displayed between 10 and 1000
read counts, only 13 genes in CNT hearts and in ICM
samples were highly expressed, with ≥100,000 read counts
(Figure 1A-B). The most abundantly transcribed genes
were MT-ND4 (NADH dehydrogenase subunit 4, a
mitochondrial-encoded gene), with a read count of
2,422,108, in CNT and MT-COI (cytochrome c oxidase
subunit I, a mitochondrial-encoded gene) in ICM, with a
read count of 2,170,339. Most prevalent among the genes

http://rulai.cshl.edu/TRED
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http://www.graphpad.com


Figure 1 Transcriptomic profiling of heart samples by RNA-Seq.
The number of genes and their relative expression levels represented
by transcript normalized read counts in controls (A) and ICM patients
(B). (C) Principal Component Analysis of heart samples were cluster on
the basis of their gene expression profile. Samples are represented by
points at CNT for controls and ICM for patients. Proportions of
variances showed that 0.95% of the differences among the sample
groups could be explained by PCA component 1 (PC1) and 0.233% by
PCA component 2 (PC2).
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with read counts of approximately 100,000 in both types
of samples were those encoding cytoskeletal components,
including MYL2, ACTLC1, or DES.
Significance analysis of the RNA-Seq results revealed a

total of 1,334 genes that were differentially expressed in
ICM patients vs CNT; 649 genes were upregulated (≥1.5
fold, p < 0.05) and 685 genes were downregulated (≤1.5
fold, p < 0.05). These genes encompass the ICM tran-
scriptome signature. In order to validate these genetic
differences, clustering analysis of the samples was per-
formed by PCA with the differentially genes. When PCA
is applied to data, samples with similar trends in their
gene expression profiles tend to cluster close together in
the plot. PCA demonstrated that the gene expression
profiles showed a clear distinction between ICM patients
and CNT group (Figure 1C).

TF enrichment analysis
In order to identify key TFs mediating the differential
expression of genes in ICM, the transcriptional signature
was analyzed in ChEA database containing 94% of these
genes. Using ChEA enrichment analysis, we identified
TFs associated with ICM at a p-value < 0.05, calculated
by Fisher’s exact test (Additional file 3: Table S2).
Figure 2 shows relevant TFs with a p-value < 0.01. These
TFs include those previously associated with ICM, in-
cluding GATA4 (1.7-fold enrichment), NKX2.5 (1.7-fold
enrichment), STAT3 (2.4-fold enrichment), and EP300
(2-fold enrichment) [8,9,11,25], demonstrating the reli-
ability of this database. In addition, TFs such as ESR1
(2.2-fold enrichment), and the pluripotency markers
SOX2 (2.9-fold enrichment) and NANOG (2-fold enrich-
ment), have not been previously implicated in human
ICM. HIF1A (3.02-fold enrichment) was significantly
over-represented in ICM, as were CEBPD (3-fold enrich-
ment), and BCL3 (1.7-fold enrichment) (Figure 2). Fur-
thermore, RNA-Seq data showed that gene expression
levels of CEBPD, BCL3, and the HIF1A repressor,
CITED2, significantly decreased in ICM patients (Table 2).
Not all TFs identified in the enrichment analysis were

differentially expressed according our RNA-Seq results.
Since protein levels, post-transcriptional modifications,
and other factors that affect TF regulatory function can
also influence the activities of target genes, it is not



Figure 2 Transcription factor (TF) enrichment analysis. Relevant
TFs identified using the ChEA database and based on the RNA-Seq
genetic profile. The graph shows the official name and the fold
enrichment of each TF in ICM vs CNT. Fold enrichment was calculated
by an algorithm considering target genes of our list/target genes
ChIP-X database relation. All comparisons were statistically significant
(*p < 0.01, **p < 0.001).
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surprising to find overrepresentation of a specific TF sig-
naling pathway without a change in the gene expression
of the TF.
On the other hand, the TFs NFAT1 and MEF2C,

already found in ICM patients in previously studies [8],
are not included in the ChIP-X database. Because ChIP
studies that profile the binding of NFAT1 and MEF2C
are not available, these proteins were not identified in
the TF enrichment analysis.

qRT-PCR analysis
Next, we used qRT-PCR to validate the RNA-seq data
indicating differences between ICM and CNT samples in
the mRNA levels of SP100, CITED2, CEBPD, and BCL3,
four transcriptional regulators that have not been impli-
cated previously in ICM. SP100 encodes a transcriptional
coactivator/corepressor that regulates DNA-binding by
other TFs, and CITED2, CEBPD and BCL3 encode TF that
are closely involved in stress or hypoxia responses [26].
Given the importance of these processes in disease devel-
opment, we considered it interesting to further study their
Table 2 Selected genes analyzed by RNA-Seq and used
for qRT-PCR validation

Gene ID Gene symbol Fold change
(ICM vs CNT)

p value

ENSG00000067066 SP100 −1.8994 0.0005

ENSG00000164442 CITED2 −1.5631 0.0215

ENSG00000221869 CEBPD −3.2139 2.20E-09

ENSG00000069399 BCL3 −1.9970 1.38E-05
regulatory mechanisms. As a result, we validated the ex-
pression levels of these genes.
qRT-PCR confirmed lower expression of SP100 (−1.5-

fold, p < 0.05) in ICM than in CNT (Figure 3). In addition,
the expression of the TF genes CITED2 (−3.8-fold, p <
0.05), CEBPD (−4.9-fold, p < 0.05) and BCL3 (−3.3-fold,
p < 0.05) were significantly lower in ICM vs CNT hearts
(Figure 3). Further verification of fold change values for
these genes was performed by comparing qRT-PCR and
RNA-Seq data from the same 10 patient samples. The dir-
ection and degree of fold changes were similar in all cases
for RNA-Seq and qRT-PCR. For most of the genes ana-
lyzed there was a good correlation between both tech-
niques, although, generally, greater fold change differences
were detected for the downregulated genes by qRT-PCR
(Figure 4).

TF target genes analysis
To gain insights into alterations in the gene regulatory
network in ICM patients, we identified downstream re-
sponsive genes of CEBPD, BCL3, and HIF1A and then
compared RNA-Seq expression levels of these genes be-
tween ICM and CNT LV samples. We performed an in-
tegrative bioinformatic approach using three prediction
databases: TRED, TFactS, and ChEA. The results from
the database analyses were complemented with results
from a previous study by Yang et al. [27], which deter-
mined the transcriptomic signature of cardiomyocytes
overexpressing BCL3. Although the protein encoded by
SP100 binds to chromatin and regulates gene expression
[28], is not defined as a TF so we did not use it in the
following analysis.
Results from the target predictions showed that a total

of 25 CEBPD target genes were downregulated in the
cardiac tissue of ICM patients, and that these targets
encompassed members of the TGFβ family, including
TGFBR2 and BMPR1B. In addition, 70 BCL3 target
genes were downregulated in ICM patients, including
genes encoding TFs (STAT2, FOSL2, GABPR2), cyto-
kines (CXCL1, CXCL10), and growth factor receptors
(TGFBR3). CITED2 is a TF without typical DNA binding
domains, and a well-known corepressor of HIF1A tran-
scriptional activation [29]; so we further studied the po-
tential function of HIF1A and CITED2 through changes
in the expression of HIF1A target genes. We found that
17 HIF1A target genes were upregulated in ICM pa-
tients, including well-known hypoxic genes such as
EGLN3 and IGFBP3 [30]. All target genes of CEBPD,
BCL3, and HIF1A are shown in Additional file 4: Table S3.
We next analyzed the functional downstream effects

of the differentially expressed genes using the DAVID
software for GO annotation. A significant enrichment
(p < 0.05) indicates specific biological processes that are
affected when the corresponding genes are altered. GO



Figure 3 Expression levels analysis of transcriptional regulators genes in ICM vs CNT hearts. The relative differential expression in ICM
comparing to CNT was quantified by qRT-PCR using the ΔΔCt method for SP100 (A), CITED2 (B), CEBPD (C), and BCL3 (D). GAPDH, PGK1, and TFRC
were used to normalize. Results were considered statistically significant at *p < 0.05. Bars represent the mean ± SEM.

Herrer et al. BMC Medical Genomics  (2015) 8:14 Page 7 of 13
results indicated that the downregulated CEBPD target
genes are mainly involved in activating apoptosis and
that the BCL3 target genes are involved in energy me-
tabolism, including the regulation of responses to glu-
cose levels (Table 3). Finally, genes regulated by HIF1A
participate in hypoxic and stress responses (Table 3).
Additional GO terms related to biological processes and
significantly represented by genes downstream of CEBPD,
BCL3 and HIF1A are shown in Additional file 5: Table S4.

Relationship between gene expression levels and LV
function parameters
In order to determine a potential association between
the dysregulated genes in ICM, we determined whether
there was some relation between changes in gene ex-
pression levels. The results showed that BCL3 mRNA
levels were significantly correlated with CEBPD (r = 0.73,
p < 0.001) and CITED2 (r = 0.56, p < 0.05) mRNA levels
(Figure 5A-B). We also investigated the association be-
tween the mRNA expression levels and the clinical
parameters of the patients. Ejection fraction (EF) repre-
sents the fraction of blood that leaves the left and right
ventricles when the heart contracts. The EF clinical data
from the ICM patients were available for 14 of the sam-
ples used in qRT-PCR analysis. We found a direct cor-
relation between CITED2 mRNA expression levels and
LV EF (r = 0.54, p < 0.05) (Figure 5C).

Discussion
The regulation of gene expression is dependent on the
expression profiles of specific TFs, and also involves
chromatin remodeling complexes that regulate the ac-
cess of TF to DNA sequences. These mechanisms repre-
sent a key node in maintaining cell homeostasis, and the
dysregulation of these interactions has been associated
with diseases, including ICM [31]. While TFs involved in
altered Ca2+ homeostasis, inflammation, and apoptosis
disruption have been associated with ICM [2], little is
known about the specific signaling response that is af-
fected. The role of TFs in orchestrating other important



Figure 4 qRT-PCR vs RNA-Seq data comparison. Individual ICM vs CNT fold change data obtained by qRT-PCR and RNA-Seq (Y-axis) were
represented for each patient (X- axis) in SP100 (A), CITED2 (B), CEBPD (C), and BCL3 (D). Slight differences are visualized as the gaps between the
points of the two spline curve lines in the scatter-plot.
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processes, such as stress and hypoxic responses, is also
not clearly understood. Moreover, although previous
microarray studies have identified ICM specific gene
expression profiles [6,32], the regulatory mechanism
underlying these profiles has not yet been determined.
We hypothesized that novel regulatory factors could
function to coordinate the gene expression signatures in-
volved in the etiology or development of ICM.
In this work, we have described the spectrum of genes

expressed in CNT and ICM heart tissue, identified by
RNA-Seq. Transcriptomic analysis indicated that genes
that encode components of the respiratory electron
transport are those that are among most abundantly
expressed. The analysis also indicated that cytoskeleton
genes are highly expressed, demonstrating the significant
abundance of their components in the heart. The differ-
ential gene expression profile between ICM and CNT
LV samples was used to perform an enrichment analysis
to identify relevant TFs. Enrichment analysis of RNA-
Seq results identified TFs previously found to be in-
volved in ICM, including EP300, GATA4 [8], STAT-3
[11] and NKX2-5 [33]. Moreover, the identification of
ESR1 as a regulatory factor in human ICM in this study
correlates with the association of specific polymorphisms in
the ESR1 gene to coronary heart disease [34]. In addition,
evidence of the pluripotency of the TFs MYC, NANOG,
and SOX2 in ICM suggests that they may participate in the
fetal gene re-expression program in ICM [35].
We next focused our study on analyzing the expres-

sion levels of the TFs genes CITED2, CEBPD, and BCL3,
which are involved in the regulation of the stress or hyp-
oxic response, and on the SP100 gene, which encodes a
heterochromatin binding factor. qRT-PCR analysis vali-
dated the downregulation of these transcriptional regula-
tors in ICM.
The SP100 gene encodes a nuclear body component

that has an important role in chromatin-mediated gene
regulation [36]. It has been proposed that suppression of
SP100 activates cell immortalization, leading to genomic
instability and cytoplasmic sequestration of p53 [37].
Interestingly, ICM hearts are characterized by presenting
DNA fragmentation [38], and recently it has been shown



Table 3 Identification and functional annotation analysis of TF target genes

FT GO p-value Genes

CEBPD System development 5.00E-05 CITED2, RGMA, BMPR1B, CALCRL, FGF7, IL1B, IRX3, LRRC4C,
RXFP2, TGFBR2, TNFRSF11A

CEBPD Negative regulation of apoptosis 1.10E-02 CITED2, RIPK2, IL1B, RXFP2

CEBPD Negative regulation of programmed cell death 1.20E-02 CITED2, RIPK2, IL1B, RXFP2

CEBPD Blood vessel morphogenesis 3.20E-02 CTH, IL1B, RXFP2, TGFBR2

CEBPD Negative regulation of cell proliferation 1.20E-02 CITED2, TGFBR2, IL1B

BCL3 Regulation of metabolic process 4.80E-04 PFKFB2, ABCA1, ATPIF1, FOSL2, GABPB2, SP110, TSPYL2,
ATF7, A2M, ANKRD1, CALCRL, GDF7, HR, MLYCD, MYD88,
NR4A1, NR4A3, PER1, PIM1, PDCD4, PSMB9, STAT2, SOAT1,
TXNIP, TGFBR2, TGFBR3, UBB, UBE2L6, ETS2

BCL3 Regulation of nitrogen compound metabolic process 6.30E-03 ABCA1, ATPIF1, FOSL2, GABPB2, SP110, TSPYL2, ATF7, ANKRD1,
CALCRL, GDF7, HR, MYD88, NR4A1, NR4A3, PER1, PIM1,
PDCD4, STAT2, TXNIP, TGFBR3, UBB, ETS2

BCL3 Response to glucose stimulus 1.60E-02 PFKFB2, TXNIP, TGFBR2

BLC3 Response to hexose stimulus 1.80E-02 PFKFB2, TXNIP, TGFBR2

BCL3 Response to monosaccharide stimulus 1.80E-02 PFKFB2, TXNIP, TGFBR2

CITED2/HIF1A Response to hypoxia 9.80E-06 ANGPTL4, EGLN3, NOL3, KCNA5

CITED2/HIF1A Response to oxygen levels 1.20E-05 ANGPTL4, EGLN3, NOL3, KCNA5

CITED2/HIF1A Response to stress 9.20E-04 ANGPTL4, CCND1, EGLN3, MIF, NOL3, KCNA5, TFF3

CITED2/HIF1A Regulation of cell proliferation 8.00E-03 CCND1, DPT, EGLN3, ADM, IGFBP3
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that cytosolic sequestration of p53 facilitates mitochon-
drial dysfunction and HF in mice [39]. These data suggest
that decreased SP100 expression in ICM may be associ-
ated with these molecular heart alterations.
To gain insights into the molecular network of the dif-

ferentially expressed TFs, we studied their potential roles
in ICM by characterizing changes in the expression of
their putative target genes and alterations in associated
processes. Bioinformatics analysis of the RNA-Seq data
identified target genes of CEBPD, BCL3, and CITED2
that are potentially involved in ICM.
Twenty-five CEBPD target genes were downregulated

in ICM patients, some of which are implicated in apop-
tosis via downregulation of RIPK2 and RXFP2 [40].
Many of the 70 BCL3 target genes that are downregu-
lated in ICM patients are involved in the regulation of
energetic biological processes and in the inhibition of
the glucose response [41]. This suggests that BCL3
downregulation may be the underlying cause of the
metabolic disruption of the carbohydrate responses in
these patients. These data are consistent with a previous
study suggesting cooperation between BCL3 and PCG-
1α in the coordination of inflammation and energy me-
tabolism in the heart [31]. It should be noted, however,
that our RNA-Seq data did not detect significant differ-
ences in PCG-1α expression between ICM and CNT
samples. So the physiological mechanism may not be
completely disrupted by the altered BCL3 response in
the disease. BCL3 is an IkB protein that associates
tightly with p50 or p52 homodimers as an activator
component of the NF-kB pathway [42,43], and it has
been shown that NF-kB activation is characteristic of
failing myocardium [44,45]. Functional characterization
of genes downstream of BCL3 downstream genes did
not identify the NF-kB pathway. Activation of the NF-kB
pathway in ICM patients may be mediated by mecha-
nisms that are independent of BCL3.
Given the well-known role of CITED2 as a corepressor

of HIF1A transcriptional activation [46], we evaluated
the changes in expression of HIF1A target genes in ICM
and CNT tissues. We found that 17 HIF1A target genes
are upregulated in ICM. The hypoxic and stress re-
sponse genes were highly represented. Previous studies
have suggested that multiple pathways act cooperatively
to fine-tune transcriptional responses [47]; however, our
data are the first to show cooperative transcriptional
regulation of the stress response and hypoxic response
pathways by HIF1A in ICM (Figure 6).
Hypoxia plays an essential role in cellular and systemic

homeostasis. Hypoxia-regulated genes control many cel-
lular processes, including the switch from oxidative to
glycolytic metabolism, stimulation of oxygen release, and
angiogenesis, and these genes even are involved in cardi-
oprotection [48,49]. Lei et al. [50], for example, sug-
gested that chronic activation of the HIF pathway in
ischemic hearts is maladaptive and contributes to car-
diac degeneration and progression to heart failure. The
downregulation of CITED2 also may contribute to the



Figure 5 Relationship between expression levels of transcription factors and left ventricular function parameter. (A) Correlation between
BCL3 vs CEBPD mRNA relative levels (n = 18). (B) Correlation between BCL3 vs CITED2 mRNA relative levels (n = 18). (C) Correlation between CITED2
mRNA relative levels and ejection fraction (n = 14). Arbitrary units (au).
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activation of prolonged-hypoxic response in ICM. Sur-
prisingly, we did not observe changes in the expression
of other hypoxia-inducible angiogenic genes, such as
ANGPT1 or VEGF, which would reflect the defect in
vascular growth in ICM patients. Moreover, GO func-
tional analysis did not show terms related with angiogen-
esis indicating that angiogenic capacity is not affected by
decreased expression of CITED2. These results are con-
sistent with the well-characterized, defects in angiogenesis
that is seen in ICM [51,52]. Evidence suggests that im-
paired capillary growth and the resulting metabolic imbal-
ance are important contributors to the transition to HF.
Furthermore, our data suggest that the downregulation of
the CEBPD pathway suppresses angiogenesis through de-
creased expression of TGFBR [53]. On the other hand, de-
creased expression of CITED2 has been shown to trigger
defects in cardiovascular development via the Nodal-
Pitx2c pathway in the mouse [54]. We did not observe
changes in PITX2 expression between CNT and ICM,
suggesting that this pathway is not compromised in ICM
patients.
Finally, the correlation of BCL3 with both CEBPD and

CITED2 suggests a possible new mechanism of cooperative
regulation. Although a direct interaction between BCL3
and CEBPD has not been previously shown, both are in-
volved in apoptosis [55]. Further studies are needed to
shed light on their relation. The correlation between
CITED2 mRNA levels and the EF clinical parameter dem-
onstrate the relevance of CITED2 in heart function. Re-
cent findings demonstrating that hypoxia reduces EF
underscore the role of CITED2 in ICM [56].
In this study, we analyzed TFs mRNA levels. Additional

levels of control, such as post-transcriptional modifica-
tions or cell compartmentalization, are critical for TF ac-
tivity, and must be considered to understand their roles in
ICM. For example, we have previously shown that disrup-
tion of the nuclear pore architecture, as well as changes in
nucleocytoplasmic transporters at the mRNA and protein



Figure 6 Hypothetical model of the transcriptional regulatory network in ICM patients. Expression of the TFs, CITED2, CEBPD and BCL3, and
SP100 is downregulated under conditions of hypoxia and other stress stimuli, which in turn modifies the expression of their target gene networks.
These changes ultimately result in alterations in cellular processes that are characteristic of ICM.
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levels are characteristic of ICM patients [57,58]. Accord-
ingly, alterations in the mRNA levels of TFs may contrib-
ute to ICM, but are not necessarily the only mechanism
involved in the regulation of their downstream, responsive
genes.
A common limitation of studies that use cardiac tis-

sues from end-stage failing human hearts, including this
study, is the high variability in disease etiology and in
the treatment of the patients. Another issue is that this
study was performed in heart tissue and not in isolated
cardiomyocytes; however, we have analyzed these sam-
ples using confocal and electron microscopy. Images
show that cardiomyocytes are the majority of the cell
population. It is also noteworthy that this study was con-
ducted using a large number of human heart samples,
including samples from CNT hearts. This makes our
data valuable for studies in ICM patients.
Conclusions
The newly described differences in the expression of
SP100, BCL3, CITED2, and CEBPD between ICM and
CNT samples contributes to our understanding of alter-
ations in crucial biological processes, including apop-
tosis, stress, energetic metabolism and hypoxic response,
in ICM patients. The relationship between CITED2 ex-
pression and EF emphasizes the relevance of this factor
in ICM. Our results show new evidence for a dysregu-
lated transcriptional network in ICM patients. Moreover,
our findings provide valuable resources for further stud-
ies of the molecular mechanism in heart ischemic re-
sponse and potential novel biomarkers of ICM.
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