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Timing and magnitude of surface uplift are key to understanding
the impact of crustal deformation and topographic growth on
atmospheric circulation, environmental conditions, and surface
processes. Uplift of the East African Plateau is linked to mantle
processes, but paleoaltimetry data are too scarce to constrain
plateau evolution and subsequent vertical motions associated
with rifting. Here, we assess the paleotopographic implications
of a beaked whale fossil (Ziphiidae) from the Turkana region of
Kenya found 740 km inland from the present-day coastline of the
Indian Ocean at an elevation of 620 m. The specimen is ∼17 My old
and represents the oldest derived beaked whale known, consis-
tent with molecular estimates of the emergence of modern strap-
toothed whales (Mesoplodon). The whale traveled from the Indian
Ocean inland along an eastward-directed drainage system con-
trolled by the Cretaceous Anza Graben and was stranded slightly
above sea level. Surface uplift from near sea level coincides with
paleoclimatic change from a humid environment to highly variable
and much drier conditions, which altered biotic communities and
drove evolution in east Africa, including that of primates.
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The Turkana ziphiid was found at Loperot in West Turkana,
Kenya and described in 1975 by James G. Mead (1), who

listed associated fauna, including mollusks, fish, crocodiles, tur-
tles, and mammals, notably primates. Mead (1) detailed the
anatomy of the whale fossil, estimated its length in life at some 7
m, and speculated that it was an open-ocean whale that became
stranded after swimming up an eastward-flowing river and was
then preserved near where it died. After the original publication
of this fossil find (1), the specimen went missing until late 2011,
when it was rediscovered at Harvard University and returned to
the National Museums of Kenya (KNM), where it is curated
under the number KNM-LP 52956.
Because the whale was found during the pre-Global Posi-

tioning System era, we studied the original 1964 Harvard expe-
dition field notes and catalog to locate the exact site of the ziphiid
(2°23′30″ N, 35°52′30″ E by triangulation) (Fig. 1C) in coarse
fluvial sandstones and conglomerates of the Lower to Middle
Miocene Auwerwer Formation (2–4) ∼7 m below a basalt dated
at 17.1 ± 1.0 Ma (4). Although located in an area repeatedly
affected by extensional processes since the Cretaceous, the fossil
location corresponds to the northern periphery of the Late Ce-
nozoic East African Plateau (EAP) (Fig. 1B). The specimen
consists of the rostrum and the ascending processes of the
maxillae and premaxillae (length of 82 cm and width of 55 cm)
broken from the rest of the skull (1). Five phylogenetically in-
formative characters of KNM-LP 52956 (Fig. 2A and SI Ap-
pendix) were scored and entered into a data matrix of 46
characters and 29 fossil and recent taxa (5). A traditional Wagner
tree search (one random seed and 10 replications) applied to
unweighted and unordered characters yielded 17 most parsimo-
nious trees of 124 steps (Fig. 2B). In all most parsimonious trees,
the Turkana ziphiid falls in a derived but unresolved clade

with modern Indopacetus, Hyperoodon, and Mesoplodon plus
four extinct genera.
Beaked whales are predicted by molecular clocks to have

originated 26.52–35.82 Ma (6). The early record of fossil ziphiids
is poor, but at 17.1 ± 1.0 Ma, the Kenyan specimen is currently
the most precisely dated ziphiid fossil. Phylogenetic analysis nests
the Turkana ziphiid with three modern genera, most notably Meso-
plodon, which has species that are estimated to have diverged at
16.6 Ma (6, 7). Thus, the geochronologic constraint provided
by the Turkana ziphiid is consistent with molecular predictions.

Ziphiids and Other Cetaceans in Present-Day and Paleorivers
Modern ziphiids are open-ocean, deep-diving specialized suction
feeders that prey mainly on squid (8). Phylogenetic analyses in-
corporating molecular data (9) indicate that they are nested
between the freshwater Ganges River dolphin (Platanista) and
the Yangtze (Lipotes) plus South American river dolphins (Inia
and Pontoporia). The Kenyan whale possesses derived ziphiid
characters of the beak, including hyperostosis, reduced gape, and
evolutionary loss of teeth (characters not found in any clade of
river dolphins). Moreover, the Turkana ziphiid’s total body
length falls within the range of modern ziphiids (10) and is up to
three times that observed in river dolphins.
A wide variety of present-day marine whales has been ob-

served in rivers, some of which may be associated with seasonal
migrations (11, 12). Modern ziphiids occasionally enter rivers,
such as occurred in the 2006 stranding of Hyperoodon ampullatus
in the Thames River at London. Killer whales (Orcinus orca) have
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been reported 161 km up the Columbia River at an elevation of
6 m and river depth >10 m (Table 1) (13). In 2007, mother and
calf humpback whales (Megaptera novaeangliae) swam 133 km
upstream to Sacramento, CA (elevation of 4 m and river depth of
∼10 m) (Table 1) (13). An Antarctic minke whale (Balaenoptera
bonaerensis) swam 1,000 km up the Amazon and its tributary the
Tapajós, traveling as much as 83 km in 1 day (Table 1) (14). In
comparison, South American Sotalia fluvatilis, a river dolphin, has
a normal range that reaches an elevation of ∼100 m, where river
depths are 10–30 m, 3,600 km up the Amazon drainage from the
Atlantic Ocean (Table 1) (15). In each of these cases, the riverine
distribution of modern cetaceans is facilitated by sufficient water
discharge in low-gradient rivers and the absence of shallow bed-
rock rapids and waterfalls (15, 16).

Results and Discussion
Rifting, Paleodrainage Evolution, and Surface Uplift of the EAP. The
fluvial sandstones and conglomerates associated with the Turkana
ziphiid are within the Oligo-Miocene Lokichar halfgraben (3, 17),
which hosts 7-km-thick sedimentary strata related to a fluvial and
freshwater lacustrine depositional environment (18). This basin
is superimposed on an area of widespread Cretaceous exten-
sion associated with the Anza Graben, a northwest to southeast-
oriented rift basin, which is also filled with Paleocene to Miocene

fluviolacustrine strata that transition upward into marine units
toward the Kenya–Somalia coast in the Lamu Embayment (Fig.
1B) (19, 20). The Anza Graben constitutes a failed rift arm,
which once linked rifting in the Central African Shear Zone with
extensional processes in eastern Kenya that led to the separation
of Madagascar from Africa (19).
The size of the ziphiid, the regional context of the fluvial sedi-

ments in which it was found, and the fauna associated with it in-
dicate that the path to its stranding site was a sizable low-gradient
river. The ziphiid may have mistakenly entered the river while
migrating along the east African coast and was subsequently unable
to correct its course. Thus, the precisely dated fossil is not only a
remarkable zoogeographic record of stranding, but also, it reflects
Miocene drainage patterns directed eastward from the developing
EAP and provides an important empirical paleoelevation point that
helps to temporally limit EAP surface uplift and Tertiary rifting.
In light of the regional paleotectonic conditions that have been

inferred from the Lokichar halfgraben sedimentary fill, it is pos-
sible that eastward-directed runoff from the continent and fluvial
connectivity between the Indian Ocean and the Turkana region
during the Early Miocene were guided by the structural grain and
sustained thermal subsidence of the Anza Graben (19). The
presence of Late Early Miocene freshwater rays (Myliobati-
formes) in the Turkana region (21) also attests to the existence
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Fig. 1. (A) Topography of Africa and bathymetry of the Atlantic and Indian Oceans. The white box indicates the location of the principal map shown in B.
(B) Geological setting of the Cenozoic East African Rift System and topography of the present EAP based on a digital elevation model derived from Satellite
Radar Topography Mission data. Elevations >1,000 m are enclosed by a white line. Rock ages for the basalt overlaying the beaked whale fossil and the Yatta
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of a well-developed fluvial system at that time (22). These Oligo-
Miocene paleoenvironmental conditions are compatible with an
overall humid climate with precipitation of >1,000 mm/a (milli-
meters per year), deep freshwater lakes in the rift basins (18), and
a vegetative cover with affinities to the Guinea-Congolia/Zambezia
phytogeographic zone and ancient lowland forest (23, 24) also
present on the Ethiopian Plateau during that interval (25). Simi-
larly, the phylogenetic analysis of Annonaceae suggests the existence
of a trans-African forest and a warmer, moister climate before 16.8
Ma (26) during the Miocene climatic optimum (27).
In summary, the Early Miocene paleoenvironment, where the

Turkana ziphiid was stranded, was characterized by low-gradient
fluvial conditions in a humid, densely vegetated environment.
The fluvial system must have had sufficient discharge and con-
nectivity with the open ocean to provide an unrestricted pathway
for the upstream migration of the whale.
A large expanse between West Turkana and the Indian Ocean

has no record of sediments indicating the former presence of
marine conditions. However, between 23 and 17 Ma, when the
whale stranded, high sea stands of approximately +10 m (28)
flooded the Lamu Embayment (Fig. 3A) as evidenced by Early
Miocene shallow coastal marine sediments of the Baratumu For-
mation recorded in subsurface cores (20). These sediments cor-
respond in age to the Loperot locality and occur some 50 km west
of the town of Garissa (20), bringing the sea closer to the West
Turkana region. Regardless of its exact route, the distance the
whale swam from the sea to its final stranding was considerable.
Taking the Anza Rift axis as a reference line for the paleoriver
course and discounting meanders, the limits are 900 km if it en-
tered riverine conditions near the current Indian Ocean coast and
600 km if its journey started at the limit of the Lamu Embayment
(Fig. 3A and Table 1). Even if a relatively high gradient of 4 cm/km
is assumed for the paleoriver used by the Turkana ziphiid, which
is greater than most river gradients where cetaceans have been
sighted, the whale would have stranded and died at a paleo-
elevation between 24 and 37 m (Fig. 3A and Table 1). If true,
considering the modern elevation of the fossil location at 620 m,
the northern periphery of the EAP must have been uplifted by
a minimum of 590 m during the last 17 Ma.
The inference of an uplifting EAP after 17 Ma is supported by

evidence for the existence of other Middle to Late Miocene
eastward-directed paleovalleys that channeled runoff and lava
flows away from the EAP. For example, Middle Miocene basaltic
and phonolitic lava flows on the eastern margin of the present
plateau followed such drainages in the ancestral Ewaso Ngiro,
Tana, and Athi Rivers (Fig. 3B) (29, 30). Field evidence for
paleoelevation along these eastward drainages was derived from
the emplacement of the 13.5-My-old Yatta lava flow (31) along
the paleo-Athi River, attesting to phonolitic eruptions before the
onset of rifting in the Central EAP at an elevation of 1,400 m
(32). This paleotopographic constraint is in good spatiotemporal
agreement with modeled elevations of the EAP based on recon-
structions of mantle flow (33) and metamorphic density changes
(34). The Turkana ziphiid, thus, provides the second line of
empirical field evidence for paleoelevation in northern Kenya
and the first maximum time constraint for the onset of uplift on
the northeastern flank of the EAP. Together with the inferences
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from the Yatta lava flow, the Turkana ziphiid helps to constrain
the onset of uplift of the EAP to between 17 and 13.5 Ma.

Linking Paleoenvironmental Changes to EAP Surface Uplift. The
particular significance of constraining uplift and defining paleo-
environments in this case is the elucidation of evolutionary drivers
leading to humans. Terrestrial mammals found with the Turkana
ziphiid postdate the Early Miocene faunal interchange with
Eurasia, which introduced a number of artiodactyls, rhinos, and
carnivores and changed the community composition in which older
residents, such as primates and elephants, lived (35, 36). Primates
of the Turkana Basin coeval with the Turkana ziphiid include
Limnopithecus, Rangwapithecus, Noropithecus (37) and the
enigmatic possible hominoids Afropithecus, Turkanapithecus,
and Simiolus (Fig. 4) (38).
The presence of a substantial low-gradient river that drained

the EAP region first to the north into the Lokichar freshwater

basin and then to the southeast toward the Lamu Embayment
(Fig. 3) in today’s driest region of northern Kenya, provides
compelling evidence for a dramatic environmental change since
the Early Miocene. Such a change is compatible with the results
of climate models, which link surface uplift of east Africa to
modified airflow patterns, aridification, and the establishment of
the east African monsoon (39). Uplift of the EAP starting be-
tween 17 and 13.5 Ma correlates with a shift toward aridity ac-
companied by the expansion of C4 plants in east Africa between
14 and 11 Ma (40–42), a change from grassy woodland to
wooded grassland documented in paleosols (43), and the ex-
pansion of a grass-dominated savannah biome that started in the
Middle Miocene and became widespread during the Late Mio-
cene (Fig. 4) (44). Furthermore, recent δ13C isotopic studies on
herbivore teeth reveal changes from C3-dominated to mixed
C3/C4- or C4-dominated diets from the Late Miocene through
the Pliocene in northern Kenya (Fig. 4) (45). Although the age of

Table 1. Comparison of stranding parameters for marine whales in river systems

Cetacean species River
River gradient

(cm/km)
River depth

(m)
Stranding inland

(km)
Elevation

(m) Source

H. ampullatus Thames, United Kingdom 2.9 2–11 70 2 —

M. novaeangliae Sacramento, United States 3.0 ∼10 133 4 13
O. orca Columbia, United States 3.7 >10 161 6 13
Balaenoptera acutorostrata Tapajós-Amazon, Brazil 0.1 10–30 1,000 1 14
S. fluvatilis Amazon, Peru 2.8 10–30 3,600 100 15
Turkana ziphiid Anza River, Kenya 4? Unknown 600–900 24–37 This study

Elevation of 24–37 m for the Turkana whale is arbitrary and exceeds the elevation of other marine whales stranded in rivers. The river dolphin S. fluvatilis
is included for comparison and shows its distance from the coast at 100-m elevation, although its total elevation range extends to 300 m.
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the Turkana whale predates the aridification that accompanies
major vegetation and faunal changes during the Miocene and
Pliocene of Africa, including the origin of hominins, its occur-
rence shows the protracted presence of well-watered, lowland
habitats far inland from the coast at an early stage of east African
community evolution after major faunal exchange with Eurasia
but before the EAP uplift.

Materials and Methods
Rediscovery of the Kenya Beaked Whale (KNM-LP 52956). The Turkana ziphiid
specimen was collected by J. G. Mead, a member of the 1964 Harvard–Kenya
Expedition under the leadership of Bryan Patterson. The locality was iden-
tified as Williams’ Flat in field notes but referred to by Mead as the Open
Pit Turtle Mine, because the specimen was identified in the field as a large
turtle (cataloged 14–64K). When Mead was a member of the expedition, he
was an undergraduate student at Yale. He then undertook graduate studies
at the University of Texas followed by the University of Chicago. He borrowed
the specimen for his research and returned it to Harvard in the late 1960s. In
1972, Mead became an assistant curator at the Smithsonian Institution and
published his paper on the Turkana ziphiid in 1975 (1). Patterson died in 1979,
and the whereabouts of the specimen could no longer be determined. L.L.J.
first searched for the specimen in 1980 when he was Head of Paleontology
at the KNM. Since then, several searches were made at the Museum of
Comparative Zoology, Harvard, the Smithsonian Institution, and the KNM.

In late 2011, a relatively new collections manager at Harvard, Jessica
Cundiff, responded to inquiries from L.L.J. with a diligent search. Over time,
larger specimen storage at the Museum of Comparative Zoology had ap-
parently changed locations. Cundiff located the Turkana ziphiid in what had
formerly been the office of the renowned paleontologist Stephen Jay Gould
but was at the time, being used for temporary storage during remodeling.
After its rediscovery at Harvard, the late Farish A. Jenkins Jr. immediately
approved its transfer to KNM. L.L.J. arranged for its transfer first to Texas for
digital scanning, after which he returned it in 2012 to the KNM, where it is
now housed and curated under the number KNM-LP 52956.

Scanning and Rendering the Fossil Specimen. The fossil was surface-scanned
with a NextEngine 3D Laser Surface Scanner (Fig. 2A) at the SouthernMethodist
University Visualization Laboratory. It was scanned at the High-Resolution
X-Ray Computed Tomography Facility at the University of Texas in three runs
comprising the right posterior, the left posterior, and the beak portions of the
preserved skull. The beak portion was scanned as two parallel pieces separated
at the point of a histological sample taken by J. G. Mead in 1975 (1). The scans
produced three datasets of 211, 208, and 249 slices, respectively, all using the
same scanning parameters at an interpixel spacing of 0.292 mm and interslice
spacing of 1.45 mm. The datasets and detailed scanning and processing
parameters are archived at www.digimorph.org/specimens/Turkana_ziphiid.
The slice data were analyzed with Amira 5.3 (FEI Corporation) and ImageJ
(www.nih.gov) to determine relationships of bones. Threshold-based iso-
surface reconstruction was performed in Amira, and the resultant surface
models were saved in Wavefront Technologies object format (.obj). These
models were then imported into Lightwave 9.6 and aligned to generate
figures and virtual reality object (SI Appendix, Movie S1).

Phylogenetic Analysis. In addition to a TNT traditional Wagner tree search,
a second analysis using the Branch and Bound algorithm in PAUP confirmed
the topology obtained from TNT. Bremer support was calculated using TNT
with suboptimal trees retained. In the calculated Majority Rule tree, the
Turkana ziphiid fell with >75% support in an unresolved Hyperoodontinae
along with Indopacetus, Mesoplodon, Africanacetus, and Ihlengesi, with
which the Turkana ziphiid shares the same scores for all five characters that
could be observed. Lambert et al. (5) ran their analysis with weighted and
ordered characters. Our analyses were run unweighted and unordered, which
accounts for the topological differences in the resulting trees (compare with
Fig. 2B, Inset) (notably, that Ziphiidae is paraphyletic when characters are
unweighted and unordered). The positions of Tasmacetus and Nazcacetus
also differ markedly, with these taxa forming a clade sister to Imocetus,
Tusciziphius, and Globicetus. Jackknifing the phylogeny reveals very poor
support for all interclade relationships. Temporal ranges in Fig. 2 were ob-
tained from the Paleobiology Database (www.paleobiodb.org).
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