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Ye et al. (1) address a critical problem con-
fronting the management of natural ecosys-
tems: How can we make forecasts of possible
future changes in populations to help guide
management actions? This problem is espe-
cially acute for marine and anadromous fisher-
ies, where the large interannual fluctuations of
populations, arising from complex nonlinear
interactions among species and with varying
environmental factors, have defied prediction
over even short time scales. The empirical
dynamic modeling (EDM) described in Ye
et al.’s report, the latest in a series of papers
by Sugihara and his colleagues, offers a
promising quantitative approach to building
models using time series to successfully pro-
ject dynamics into the future.
With the term “equation-free” in the arti-

cle title, Ye et al. (1) are suggesting broader
implications of their approach, considering
the centrality of equations in modern science.
From the 1700s on, nature has been increas-
ingly described by mathematical equations,
with differential or difference equations
forming the basic framework for describing
dynamics. The use of mathematical equations
for ecological systems came much later, pio-
neered by Lotka and Volterra, who showed
that population cycles might be described in
terms of simple coupled nonlinear differential
equations. It took decades for Lotka–Volterra-
type models to become established, but the
development of appropriate differential equa-
tions is now routine in modeling ecological
dynamics. There is no question that the in-
jection of mathematical equations, by forcing
“clarity and precision into conjecture” (2), has
led to increased understanding of population
and community dynamics. As in science
in general, in ecology equations are a key
method of communication and of framing
hypotheses. These equations serve as compact
representations of an enormous amount of
empirical data and can be analyzed by the
powerful methods of mathematics.
However, mathematics has not had the

“unreasonable effectiveness” in ecology that it
has had in physics. Critics point out that

models in ecology have not passed the crite-
rion of predictive ability (3, 4). There are
many reasons for this, one being the highly
nonlinear nature of ecological interactions.
This has led to arguments over whether the
“right” models are being used, but also to
broad opinion that, unlike in physics, there
are no right models to describe the dynamics
of ecological systems, and that the best that
can be done is to find models that are at least
good approximations for the phenomena
they are trying to describe. It is common
in introductions of ecological modeling to
find descriptions of the “modeling cycle,” in
which a question is formulated, hypotheses
are made, a model structure is chosen in
the form of variables and equations, the
equations are parameterized according to best
information, and the model is analyzed and
compared with patterns in nature. The cycle
can be repeated again and again to obtain the
best fit or validation by data. Although this
methodology may work for some cases, it has
become clear that there are limits on the ac-
curacy of models applied to systems, with
many variables interacting nonlinearly to cre-
ate complex dynamics (e.g., marine ecosys-
tems). Complete parameterization of models
of such systems is nearly impossible. Further-
more, the nonlinearities of ecological systems
cause models to be so sensitive to structure
and parameters that even the most thoroughly
and carefully developed model can hardly be
expected to be predictive (5–7).
The message of Ye et al.’s report (1) is that

there are ways to make predictive forecasts
that do not rely on specifying equations at all,
thus avoiding the problems outlined above.
One can say generally that “the study of nat-
ural systems begins and ends with the spec-
ification of observables describing such a
system, and a characterization of the manner
in which these observations are linked” (8).
In traditional models, equations are formu-
lated with certain functional forms character-
izing linkages of variables. For example, the
Ricker difference equation model links the
number of recruits to a fish population, Rt,

to population size Si through the relationship
Rt = St exp(r – αSt), so that population size
can be projected ahead to St+1 at time t + 1.
Given a set of time series data from a fishery,
the modeler attempts to find values of r and α
from the best fit for the equation. Most mod-
els are more complex, linking a population’s

Fig. 1. Two-species competition model of Sugihara
et al. (10) showing two populations going in and out of
mirage correlations at different periods of the simulation.
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change through time to its own current size,
the sizes of other populations, and relevant
abiotic conditions. The functional forms de-
scribing these linkages can in principle be
estimated based on measured correlations be-
tween variables over time. Although such cor-
relations can in principle be extracted from
data, meta-analyses on marine fisheries show
that apparent correlations between populations
and environmental variables have not stood up
when additional data were analyzed (9). This is
an important part of the argument of Ye et al.
(1) in favor of equation-free modeling. To
illustrate this point, Sugihara et al. (10) gen-
erated time series from a nonlinear model of
two marine populations fluctuating through
time, showing that what appear to be tightly
positive correlations, over a period, suddenly
switch to no correlation or even a negative
correlation for another period (Fig. 1). Pa-
rameterizing equations based on these “mi-
rage correlations” from one part of the time
series would produce models that make false
predictions.
The mirage correlations reflect deeper

causes involving nonlinear interactions within
the system. Rather than declaring analysis
impossible, Ye et al. (1) show that there is an
alternative that starts with the time series,
without a presupposed set of equations. In
this equation-free or nonparametric approach,
no equation is assumed that needs to be pa-
rameterized. Instead, the dataset is used to
build a model independent of equations. The
basic idea is related to a question asked
by Schaffer and Kot (11): “Do strange attrac-
tors govern ecological systems?” The authors
showed that even time series that appear to be
completely random could be following an un-
derlying deterministic dynamic. The time
map of any single population is an emergent
property of interactions with other popula-
tions and abiotic conditions. Understanding
the dynamics would require plotting all
N-interacting variables in an N-dimensional
phase space, something that is practically im-
possible for any real system because of the
lack of data on most species in a community.
However, if there is a sufficiently long time
series for one population, a theorem of Takens
(12) solves this problem. Takens showed that
an N-dimensional phase portrait having the
same dynamic properties as the portrait
from the N-independent variables could
be constructed by plotting the population
size x(t) versus x(t+T), vs. x(t+2T). . .vs.
x(t+(M − 1)T), where T is a time delay.
Using an appropriate value of T, a subset
of these time-lag variables could be plotted

(or embedded) in phase space. An ecological
time series plotted in this way will usually
collapse to a geometric shape of dimensions
less than the number of relevant variables
would suggest. Often, three dimensions are
sufficient to view the trajectories forming an
“attractor,” a criterion for which is that the
trajectories do not cross. What is important
is that this preserves the essential features
of the dynamics of the N variables. Sugihara

The broader message of
the Ye et al. report is
that science may be
moving into a period
where equations do not
play the central role in
describing dynamic
systems that they have
played in the last
300 years.
and his colleagues (10) made important
additions to this embedding theorem of
Takens; in particular, showing that it is
possible to create a composite time series
from ecologically similar species in the
same geographic region to form a longer
time series, and thus create a better model.
Ye et al. (1) apply this approach to sockeye
salmon stocks in the Fraser River. Dividing
a time series of nine salmon stocks into
“library data” used to calibrate, and “pre-
dict data” used to test the model, the
authors show that their results are sub-
stantially better for most stocks than the
parametric models, Ricker and extended
Ricker. This approach allows projection
into the future. One might quibble that it is
well known that the Ricker is poor at de-
scribing population dynamics, so it is an
easy target, but the comparison clearly
demonstrates that, in this case, assuming

no equations is better than assuming some
traditional equations.
The broader message of the Ye et al. (1)

report is that science may be moving into
a period where equations do not play the
central role in describing dynamic systems that
they have played in the last 300 years. This is
largely the result of the rapidly increasing
power of computers. Another sign of this trend
is that, from a very different direction, two re-
lated classes of equation-free models have
emerged as computational power increased.
The methodology of individual- or agent-based
modeling does not specify equations at the level
of populations and communities, and instead
simulates the individual organisms and their
interactions with each other and the environ-
ment (5). A related approach, cellular automata
models, is based on local laws determining
transitions of spatial cells between different
states. Although it would not seem intuitively
that cellular automata models can describe bi-
ological systems, Wolfram (13), through his
Principle of Computational Equivalence, has
proposed that it can form a universal founda-
tion for all phenomena of nature. Both indi-
vidual- or agent-based models and cellular
automata models are bottom-up approaches
for constructing models of phenomena, and
although deeply different conceptually from
EDM, are similar in not specifying equations
for population level variables.
The EDM approach demonstrates progress

toward solving important but seemingly in-
tractable problems of ecology; predicting be-
havior of complex nonlinear dynamic systems
with limited information. This approach also
suggests that, with high-performance com-
putation, the study of dynamic systems is
moving away from formulation and param-
eterization of equations and toward letting
data directly determine the model. Because of
the central role equations hold in science, it
also raises questions: How will these changes
affect the way scientists communicate, the
way they understand, and the way they think?
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