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Inertial swimmers use flexural movements to push water and
generate thrust. We quantify this dynamical process for a slender
body in a fluid by accounting for passive elasticity and hydrody-
namics and active muscular force generation and proprioception.
Our coupled elastohydrodynamic model takes the form of a non-
linear eigenvalue problem for the swimming speed and locomo-
tion gait. The solution of this problem shows that swimmers use
quantized resonant interactions with the fluid environment to
enhance speed and efficiency. Thus, a fish is like an optimized
diode that converts a prescribed alternating transverse motion to
forward motion. Our results also allow for a broad comparative
view of swimming locomotion and provide a mechanistic basis for
the empirical relation linking the swimmer’s speed U, length L, and
tail beat frequency f, given by U=L∼ f [Bainbridge R (1958) J Exp
Biol 35:109–133]. Furthermore, we show that a simple form of
proprioceptive sensory feedback, wherein local muscle activation
is function of body curvature, suffices to drive elastic instabilities
associated with thrust production and leads to a spontaneous
swimming gait without the need for a central pattern generator.
Taken together, our results provide a simple mechanistic view of
swimming consistent with natural observations and suggest ways
to engineer artificial swimmers for optimal performance.
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Understanding locomotory behavior requires that we inte-
grate the neural control of muscular dynamics with the body

mechanics of the organism as it interacts with the environment.
Simultaneously, we must also account for sensory feedback from
the environment and from the organism’s sense of its own shape.
However, translating these concepts to quantitative theories is
challenging because of the variety of organism sizes and shapes
and the complexity of their physical and biological environment.
Therefore, investigations typically focus on specific organisms
and try to glean principles that might be of broader relevance. In
the context of terrestrial locomotion, recent experimental and
theoretical work on the undulating worm Caenorhabditis elegans
(1) shows that proprioceptive feedback suffices to coordinate
undulatory motions. Complementing these studies, general the-
oretical models have explored the conditions under which co-
ordinated crawling occurs in a coupled brain–body–environment
system (2). These models explain observations in larvae of
Drosophila melanogaster, showing how a sensorimotor coupling
that links brain, body, and environment can robustly lead to
crawling in a range of conditions.
Translating these ideas to macroscopic aquatic locomotion,

when inertia dominates viscous forces, is a formidable challenge
owing to the presence of complex hydrodynamic nonlinearities,
which must be coupled to body mechanics and neural dynamics
of proprioceptive and sensory feedback. The hydrodynamics of
swimming has been the subject of a variety of studies for more
than half a century from experimental (3–6), theoretical (7–11),
and computational (12–19) perspectives. Recently there has
been growing interest in integrating these physical approaches
with neurobiological models using coupled neuromechanical
simulations (20) and biomimetic devices (21, 22) to study de-
velopmental and evolutionary aspects of the problem. Indeed,
when a dead fish is dragged through water it flutters and moves

in a manner reminiscent of a live, swimming fish (23). Similarly,
a passive flexible foil whose tip is subject to oscillations can
generate thrust (11, 22). These observations suggest that the
nervous system can work in close conjunction with and profits
from elastohydrodynamic effects. Locomotion then emerges via
a continuous interaction between embodiment and environment
orchestrated by sensory feedback (21, 24). However, the role of
proprioception, the body’s sense of self, is typically not accounted
for in these studies, leaving open the two-way coupling that links
neural dynamics to muscular movements to changes in body
shape, which in turn modulates neural dynamics.
Here we build on a classic theory for inertial locomotion of

a slender body (9, 10) by accounting for body elasticity, hydro-
dynamics and viscous boundary layer effects, muscle activity, and
proprioceptive feedback. Our model complements previous large-
scale simulations of these dynamical processes in a simple setting
that allows for a transparent view of the various mechanisms at
play and links the average swimming velocity to body deforma-
tions as solution of a nonlinear eigenvalue problem. Our results
show that elastohydrodynamic resonances yield a mechanism for
optimal gait selection. Furthermore, our theory quantitatively
agrees with experimental data for swimming fish (3) and
provides a theoretical basis for the empirical relation U=L∼ f .
Finally, we show that a minimal proprioceptive feedback loop
based on local body curvature is sufficient to trigger and
maintain undulatory swimming, leading to a self-organized gait
and speed.

Mathematical Model
For simplicity, we focus on 2D swimming gaits, neglecting 3D
effects, an approximation that is effective in characterizing many
of the salient aspects of aquatic locomotion (15, 25). We model
the fish as a neutrally buoyant, slender elastic sheet of density ρs,
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length L, and thickness ξ, characterized by a small aspect ratio
L � ξ. We assume that the filament is aligned with the x di-
rection and moving in the negative x region with velocity U (Fig. 1).
Muscle-driven transverse undulations of the body in the y direction
induce locomotion by generating reactive forces associated with the
inertial acceleration of fluid.

Equations of Motion. We denote an infinitesimal element of the
fish by Rðx; tÞ=Xðx; tÞi+Y ðx; tÞj with respect to a coordinate
frame moving with the fish speed U. Assuming small deforma-
tions of the slender body so that ∂xY � 1, and ∂xX = 1+Oð∂xY Þ2,
we may use Cartesian rather than arc-length-based coordinates
to write down the equations of motion for the fish. Then, the
momentum balance reads

ρsξ
�
∂2t R−∂tUi

�
= ∂xðTτ +NnÞ+ΔPn+ στ: [1]

Here the first term of the right-hand side represents the local
divergence of the internal stresses, with Tτ being the tangential
stress resultant along τ = ∂xX i+ ∂xY j and Nn being the normal
stress resultant along n=−∂xY i+ ∂xXj at a transversal section of
the fish. The second term on the right-hand side represents the
pressure difference ΔP across the body of the fish and the third
term corresponds to the tangential shear stress σ associated with
moving through a viscous fluid.
We project Eq. 1 into the horizontal and vertical direction,

retaining terms to second order

ρsξ∂tU = ∂xðN∂xY −TÞ+ΔP∂xY − σ [2]

ρsξ∂2t Y = ∂xðT∂xY +NÞ+ΔP+ σ∂xY : [3]

Because the plate is slightly deflected, U is almost uniform,
and we can spatially average the horizontal velocity so that
Eq. 2 becomes

ρsξ∂tU =
1
L

ZL
0

ðΔP∂xY − σÞdx; [4]

where tension Tjx=0;L = 0 and normal forces Njx=0;L = 0 because
the ends of the fish are free.
To close this system, we need to prescribe expressions for

the internal stresses owing to passive elasticity, active muscular
forces, hydrodynamic reactions from the fluid in the normal and
tangential directions, and proprioceptive sensory feedback that
links body shape to active force generation.

Passive Elasticity, Muscular Activity, and Proprioception. The de-
pendence of the internal stress resultants T and N on the elastic
properties of the material that constitutes the fish follows from
balancing the torque M on an infinitesimal section of the sheet
(26). Ignoring the effects of rotatory inertia (an assumption that
we can justify a posteriori) yields

N =−∂xM: [5]

For slender bodies, the internal moment M may be additively
decomposed (10) into the sum of a linear elastic response Me,
a viscous response Mv, owing to the hydrated flesh of the fish, an
active torque Ma, generated by muscular activity (27), and a pro-
prioceptive feedback torque Mf :

M =Me +Mv +Ma +Mf : [6]

For small deformations, the elastic torque is proportional to the
body curvature approximated by ∂2xY , so that (26)

Me =B∂2xY ðx; tÞ; [7]

where BðxÞ=EIðxÞ is the local bending stiffness characterized by
Young’s modulus E and second moment of inertia IðxÞ. The
functional form of BðxÞ is chosen here to fit the experimental
measurements reported in (6) (Supporting Information). We as-
sume that the active torque Ma compensates for the viscous
torque Mv and further that the internal viscous losses are small
compared with the external frictional losses, and so we neglect
it. We approximate the active torque using the traveling wave
form (28)

Ma =A sinðΩt−QxÞFðxÞ; [8]

where A is the amplitude, Ω is the active angular frequency, Q
the wavenumber, and FðxÞ is a function determining the swim-
ming pattern (anguilliform, carangiform, etc). We set FðxÞ to be
proportional to the bending stiffness (Supporting Information),
motivated by the fact that BðxÞ is related to the body thickness,
and therefore to the muscle volume and torque. Eq. 8 is tan-
tamount to assuming that a central pattern generator is respon-
sible for the initiation and maintenance of a wave of muscular
activity (17).
Although we will use a traveling wave of active torque for part

of our study of self-propelled swimming, this approach is not
altogether satisfactory, because it does not provide any insight on
the mechanisms that lead to such a wave. Alternatively, muscular
torques may be related to an excitatory and inhibitory neural
network driven by the proprioception of the fish shape. This is
biologically motivated by the fact that body deformations are
detected by stretch receptor neurons in organisms such as
lampreys and variations in curvature have been found to affect
muscular activity (29). It is also not an accident that from
a mathematical perspective curvature is naturally invariant with
respect to translation and rotation of the midline of the fish.
Therefore, here the proprioceptive feedback torque is given by

Mf =X∂2xY ðx; t−ΔÞ; [9]

where X is the strength of the response to the stimulus ∂2xY and
Δ is a temporal delay that effectively accounts for the temporal
dynamics of the excitatory–inhibitory neural network underlying
proprioception (29).
For a self-propelled swimmer the extremities are free of

forces and torques. This implies that Mjx=0;L = 0 and ∂xMjx=0;L = 0.
Because the bending stiffness vanishes at the smooth tips, this is
automatically satisfied, but in general we enforce these conditions

Fig. 1. Schematic showing the notation used in a moving frame of refer-
ence: A thin sheet of thickness ξ and length L moves with velocity U in the
negative x direction, through undulatory motions characterized by tail beat
amplitude Aλ (in dimensionless notation λ=Aλ=L). Unit vectors are denoted
by i and j.
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by independently setting Mejx=0;L = 0, Majx=0;L = 0, Mf
��
x=0;L = 0,

∂xMejx=0;L = 0, ∂xMajx=0;L = 0, ∂xMf
��
x=0;L = 0 so that

∂2xY
��
x=0;L = ∂3xY

��
x=0;L = 0: [10]

Finally, to determine T we project Eq. 1 in the x direction and
note that the fish can be regarded as an inextensible sheet,
therefore subject to the condition ð∂xRÞ2 = 1. Differentiating this
relation with respect to time twice, and using Eq. 1, at leading
order, this yields

T =
x
L

ZL
0

σdx−
Zx

0

σdx: [11]

Hydrodynamic Drag and Thrust. To compute the tangential and
normal stresses σ and ΔP induced by the flow, we note that at
high Reynolds numbers ðRe=UL=ν � 1Þ the viscous shear is
confined to a thin boundary layer around the body. For small
deformations and slopes of the midline, the wall shear stress
along the fish may be approximated by the Blasius boundary
layer over a flat plate (30):

σ = 2eρf

ffiffiffiffiffiffiffiffiffi
νU3

x

s
; [12]

where ρf and ν are, respectively, the fluid density and kinematic
viscosity, e= 0:332 is a dimensionless constant, and we have
accounted for a boundary layer on each side. Substituting this
result into Eq. 11 yields the tension

T = 4eρf

ffiffiffiffiffiffiffiffiffi
νU3

L

s �
x−

ffiffiffiffiffiffi
xL

p �
: [13]

The pressure difference ΔP is dominated by effectively irro-
tational and inviscid flow away from the boundary layer. If
we further assume that the longitudinal velocity along the fish is
slowly varying, following refs. 31 and 32 we can write

ΔP=−ρf UC½γ�kðsÞð∂tY +U∂xY Þ−Lρf nðsÞ∂2t Y ; [14]

with s= x=L, and kðsÞ= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1− sÞ=sp

and nðsÞ= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1− sÞsp

are
dimensionless functions, and C½γ� is the Theodorsen functional
(31, 33) that quantifies the unsteadiness of the flow. Indeed, this
function captures the effects of an oscillatory trailing vortex
sheet on the hydrodynamic loads acting on a flat plate, as a func-
tion of the reduced frequency γ of the wake. In the case of steady
flow γ→ 0 and C½γ�→ 1. Here, for simplicity we set C½γ�= 1,
noting that a more accurate calculation would slightly change
the results quantitatively, but not qualitatively (32). In Eq. 14
each of the three terms has a simple meaning: the first corre-
sponds to an effective damping term proportional to the local
transverse velocity ∂tY , owing to the exchange of momentum
with the flow, the second corresponds to a lift or resistive force
term proportional to the local slope ∂xY and that scales as ρf U2,
and the third corresponds to an added mass term that is pro-
portional to the body acceleration ∂2t Y and the fluid density.
Our complete model consists of Eqs. 3 and 4 subject to the

boundary conditions (Eq. 10) and some initial conditions. This
allows us to transparently see the role of namely passive elasticity
(Eq. 7), muscular activity coordinated via the central pattern
generator (Eq. 8), proprioceptive sensimotor feedback (Eq.
9), and both viscous (Eqs. 12 and 13) and inertial (Eq. 14)
hydrodynamic effects.

Analysis and Results. To make the system of equations dimen-
sionless, we scale all lengths by the fish length L and the velocity
by the slowest bending wave of wavelength 2πL, such that

Ub =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ðρsξL2Þ

q
, where B is the average bending stiffness of the

fish. We define the scaled length s= x=L, vertical displacement
h=Y=L, time τ=Ubt=L, and velocity u=U=Ub. Furthermore,
by defining ρ= ρf L=ðρsξÞ, the bending Reynolds number Reb =
ð16e2Þ−1ðLUb=νÞ with e= 0:332 as in Eq. 12, the scaled bending
stiffness b=B=B, active torque ma =MaL=B, and proprioceptive
torque mf =MfL=B, we can write the dimensionless form of
Eqs. 3 and 4 as

∂τu=−ρC½γ��u2I1 + uI2
�
− ρI3 −

1ffiffiffiffiffiffiffiffi
Reb

p ρu3=2 [15]

ð1+ ρnðsÞÞ∂2τh=−ρukC½γ�ð∂τh+ u∂shÞ−∂2s
�
bðsÞ∂2s h+ma +mf

�
+

1ffiffiffiffiffiffiffiffi
Reb

p ρu3=2
�
∂sh+

�
s−

ffiffi
s

p �
∂2s h

�
;

[16]

where

I1 =
Z1

0

ð∂shÞ2kðsÞds; I2 =
Z1

0

kðsÞ∂sh∂τhds; I3 =
Z1

0

nðsÞ∂sh∂2τhds:

[17]

The integral I1 > 0 is the pressure drag, the integral I2 is the
damping term, and I3 corresponds to the added mass effect
and is primarily responsible for the generation of thrust. This
allows us to see how active (or proprioceptive) torque in Eq.
16 induces lateral undulations that generate thrust through the
integrals I1, I2, and I3 as long as their weighted sum is negative
and large enough to counterbalance the viscous shear due to the
boundary layer, as detailed in Eq. 15.

Active Swimming Without Proprioception. We first consider the
case of active swimming when the central pattern generator is
fully responsible for driving and maintaining a traveling wave of
muscle torque without proprioception (i.e., mf = 0). At steady
state, swimming velocity u is a constant. Furthermore, the
transverse oscillations governed by h respond with one temporal
frequency that is slaved to the driving torquema at leading order.
Therefore, we can separate temporal and spatial variables
by studying solutions of the form hðs; τÞ= eiωτηðsÞ+ c:c:, where
ω=ΩL=Ub is the dimensionless active angular frequency, ηðsÞ=
θðsÞ+ iϕðsÞ is a complex variable, and the complex conjugate c:c:
ensures that h is real at all times. Substituting the above defini-
tion of h into Eqs. 15–17 we obtain a nonlinear eigenvalue
problem for the velocity u and the gait hðs; τÞ of the fish that
reads, in complex notation,

1ffiffiffiffiffiffiffiffi
Reb

p ρu3=2 =− 2kðsÞC½γ�ρu2
Z1

0

h
ð∂sθÞ2 + ð∂sϕÞ2

i
ds

− 2kðsÞC½γ�ρωu
Z1

0

ð∂sϕθ−∂sθϕÞds

+ 2nðsÞρω2
Z1

0

ðθ∂sθ+ϕ∂sϕÞds

[18]
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−ω2ð1+ nðsÞρÞη=− ρkðsÞC½γ�uðiωη+ u∂sηÞ
−∂2s

�
bðsÞ∂2s η−

a
2i
FðsÞe−iqs

�

+
1ffiffiffiffiffiffiffiffi
Reb

p ρu3=2
�
−∂sη+

� ffiffi
s

p
− s

�
∂2s η

�
;

[19]

where q=QL and a=AL=B are, respectively, the dimensionless
wavenumber and amplitude. Because the fish is free of forces
and torques at its ends, the system of eight ordinary differential
equations (ODEs) embodied in Eq. 19 must be accompanied by
some boundary conditions that are given by ∂2s ηð0; 1Þ= 0 and
∂3s ηð0; 1Þ= 0 (see Eq. 10) and the integral constraint Eq. 18. We
solve this problem using the continuation algorithm AUTO (34)
to determine the dependence of the scaled speed u and gait
hðs; τÞ of the fish as a function of the bending Reynolds number
Reb, as well as the wavenumber q and frequency ω of the driving
torque ma.
In Fig. 2A we show the dependence of the swimming velocity u

for an active swimmer characterized by Reb = 3:5 · 104, ρ= 300
(corresponding to a fish of L∼ 4:5 cm with the same density as
that of the surrounding water) and actuated with a= 1 as a
function of the scaled forcing wavenumber q and frequency ω.
We see that the locomotion velocity u is not a monotonic func-
tion of the active frequency ω and the wavenumber q, but instead
shows clear localized peaks at particular values of ω and q. These

hallmarks of a resonance are coincident with maxima in the tail
oscillation amplitude λ, as shown in Fig. 2B.
To further clarify this observation, we consider the case of

a biomimetic swimmer: a flexible sheet that is forced at its
leading edge via an oscillating torque (11, 22, 23). In our model
this corresponds to letting ma = ða=2ÞsinðωτÞδk½x�, where δk½ · �
is the Kronecker delta. Equivalently, this can be achieved by
modifying the boundary conditions Eq. 10 so that ∂2xh

��
x=0 = a=2.

Solving the associated eigenvalue problem, we find that the
passive sheet has a series of characteristic resonance peaks in the
velocity shown in Fig. 2C. These steady-state results are consis-
tent with experiments and transient computations of thrust
production in a foil that is excited at its tip (11, 22, 23). Indeed,
the fundamental resonance frequencies of the passive sheet ac-
tivated at its leading edge and those of the fully actuated
swimmer are coincident, as shown in in Fig. 2C together with
representative midline traces for each mode. Our observations
are also consistent with numerical computations of transient
swimming (17), which show that for a fixed frequency of muscle
activation waves there exist optimal elastic properties (char-
acterized by an effective bending stiffness) that maximize the
organism’s swimming speed. Our model predicts that such op-
timal elastic properties are the ones for which the imposed fre-
quency is resonant.
Moving from a characterization of the speed and gait of the

inertial swimmer as a function of the driving torque, we turn to
a simple measure of locomotor efficiency as embodied in the slip

Fig. 2. Active swimming. (A) Velocity u, (B) tail amplitude λ, and (D) slip efficiency ψ =u=c as functions of the angular frequency ω and wavenumber q
characterizing the active torque ma, obtained by solving Eqs. 15–17 with mf = 0, ρf=ρs=1000 kg/m3, ν =10−6 m2/s, Reb=3.5 ·104, ρ = 300, a = 1. (C) Comparison
between the active swimmer with q = 2π (gray line) and the corresponding passive sheet (red line). For each resonance peak, a representative active
swimmer’s midline gait is reported. (E) Comparison with experimental data. Red circles represent dace, trout, and goldfish of different size (3). Blue squares
correspond to the resonant peaks of active swimmers of different size (3 · 104 ≤Reb ≤ 4 ·104) simulated with a= 4:75, q= 2π. Black and blue lines represent
data fits (U=L=αaf+βa, see SI) for, respectively, experiments and simulations.

Gazzola et al. PNAS | March 31, 2015 | vol. 112 | no. 13 | 3877

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y



efficiency ψ = u=c, where c=ω=q is the wave speed. In Fig. 2D
we show ψðω; qÞ and again see resonance peaks for a set of
different ω along which there is an optimal wavenumber q that
dictates the maximum.
A simple physical interpretation of this resonant response

follows by recognizing an analogy between swimming and the
flag flutter (32). A flag converts steady input flow into an oscil-
latory output via an instability known as 1:1 resonance. Physi-
cally, the flow couples the two lowest oscillator modes of the
system so that as the fluid velocity is increased the corresponding
frequencies approach each other. When they coincide energy is
transferred from the flow into the flag, causing it to flutter; in-
deed, this is a fairly general instability mechanism in hydroelastic
systems (35). A fish works in reverse, converting flexural oscil-
lations into steady motion. This is most effectively achieved when
the fish’s muscular activation sets the surrounding fluid into
motion in a way such that the flow reaction is resonant with the
body’s modes of passive hydroflexural oscillations. This 1:1 res-
onance condition is responsible for the peaks illustrated in Figs.
2 and 3. This duality between fishes and flags shows that the
kinematic swimming waves (see modes 1, 2, and 3 in Figs. 2 and
3) are associated with the body’s flexural modes and selected via
the actuation frequency f but are independent of the driving
wavenumber q.

Comparison with Experiments.We start by showing that our theory
is consistent with a recent comparative analysis of macroscopic
swimming (25). In the laminar regime, balancing the propulsive
term with the viscous drag in Eq. 15 yields ρI3 ∼ ρu3=2=

ffiffiffiffiffiffiffiffi
Reb

p
.

Expressing the vertical displacement as h∼ eiωτγðsÞλ, where γðsÞ
is a bounded function, implies that I3 ∼ λ2ω2. In dimensionless
notation, this reads Re∼ Sw4=3, where the output Reynolds number
is Re=UL=ν and the input swimming number is Sw= fAλL=ν. In
the turbulent regime, the balance of the propulsive term with the
pressure drag in Eq. 15 yields ρI3 ∼ ρu2I1. In dimensionless no-
tation this leads to U=L∼ f , providing a mechanistic explanation
for Bainbridge’s empirical relation (3). By recalling that Aλ=L
is approximately constant (3, 6) (Figs. 2B and 3C), we obtain
Re∼ Sw, consistent with ref. 25 (Supporting Information). This
explains why, as noticed by Bainbridge himself (1), a linear data
fit is not accurate for frequencies approximately f ≤ 5 Hz.

Indeed, in this regime the scaling law Re∼ Sw4=3 holds, whence
the frequency and speed are nonlinearly related.
Our minimal model is consistent with ref. 25 but goes be-

yond it by allowing for a quantitative comparison with experi-
ments (3) on dace, trout, and goldfish swimming to relate their
rescaled speed U=L to their tail beat frequency Ω. In terms of
our theory, we solve the nonlinear eigenvalue problem Eqs. 18
and 19 by varying Ω (or its scaled analog ω) as a continuation
parameter and follow the peak velocities of the swimmers as a
function of the fish size. In Fig. 2E we show that U=L= αaΩ=2π,
where αa approaches the experimental value of ∼ 0:75 when
the scaled amplitude of the swimmer approaches a= 4:75
(Supporting Information). Analyzing our results in terms of the
Strouhal number St= λω=ð2πuÞ, which mixes the input variables
λ;ω and output variable u, we find that St associated with the
velocity peaks is also in agreement with experimental ob-
servations (25, 36) that show that 0:1K StK 0:4 (Supporting
Information).
Thus, we envision a mechanism wherein the fish can rescale

its bending stiffness and thus continuously shift its own passive
resonance frequencies Ub=L and the corresponding velocity
peaks associated with active swimming. This effectively hides
the resonance peaks and can be achieved via an extra contri-
bution to the active torque proportional to ∂2s h (similar to the
passive elastic torque b∂2s h). This may be related to the sug-
gestion that negative muscular work is used by swimmers to
vary their effective body stiffness (37). Altogether, our findings
explain a range of prior observations of comparative swimming
and further suggest that fish can tune their swimming regimes
to take advantage of resonant interactions by flexing their elastic
bodies optimally.

Proprioceptively Driven Locomotion. Having seen how a traveling
wave of muscular torques driven by a central pattern generator
leads to resonant interactions in a swimmer, a natural question
that arises is whether such a wave can be created spontaneously
using only a local dynamical rule such as the minimal pro-
prioceptive sensorimotor feedback torque Mf given by Eq. 9.
To see whether this is possible, we set ma = 0 in Eq. 16 and

then vary the scaled feedback strength χ =XL=B and the scaled
delay δ=UΔ=L. By substituting h= eiωτηðsÞ+ c:c: into Eqs. 15–17

Fig. 3. Proprioceptive swimming. (A) Families of self-propelled feedback-driven solutions as functions of δ and χ, in the proximity of the natural resonance
frequencies (passive sheet, red line), obtained by solving Eqs. 15–17 with mf ≠ 0 (Eq. 9), ma = 0, ρf = ρs = 1,000 kg/m3, Reb = 3.5 ·104, ρ = 300. For each
resonance peak, a representative proprioceptive swimmer’s midline trace is reported. (B) The locomotion velocity u and (C) the tail amplitude λ as functions of
δ and χ. In A–C the blue, green, and orange surfaces are associated with the first, second, and third resonance peak. The maximum velocity and tail amplitude
are located at ωδ= π=2.
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we obtain a modified nonlinear eigenvalue problem for pro-
prioception driven swimming (Supporting Information). To solve
this problem we start by inducing an initial instability assuming
ma = ða=2ÞsinðωτÞδk½x� with a= 1 at the leading edge. Then we
use a two-parameter continuation scheme to gradually reduce
a until it vanishes while increasing χ from zero to its designated
value. In Fig. 3 we see that self-propelled feedback-driven sol-
utions exist only in the proximity of the natural resonance fre-
quencies of the fish, and swimming performance is modulated by
both δ and χ. Thus, by controlling the strength χ or the delay
according to 0≤ωδ≤ π, the swimmer can vary its velocity u and
tail amplitude λ from zero to a maximum at ωδ= π=2 (Fig. 3A
and Supporting Information). This allows us to see that the pro-
prioceptive torque mf effectively acts on the body stiffness,
shifting the resonance peaks (Fig. 3A). Indeed, the feedback
strength χ may be regarded as a way to control the effective
negative muscle work (37). The class of solutions determined by
the parameters δ and χ produces nested performance surfaces
(Fig. 3 B and C), each of them associated with a resonance
peak, with multiple swimming regimes possible for a given pair δ,
χ. This suggests a control mechanism that allows propriocep-
tive swimmers to continuously switch to higher frequencies,
increasing their speed while maintaining their tail amplitude
approximately constant, as experimentally observed (1, 6). Al-
though we have assumed χ and δ to be constant, when they are
functions of space they can be used to reproduce specific swimming
patterns with complex gaits.
More generally, because locomotion is the product of the

simultaneous action of central pattern generator and pro-
prioception, we also solve Eqs. 15–17 with ma ≠ 0 and mf ≠ 0
(Eqs. 8 and 9). Our results indicate that the resonant char-
acter of optimal gaits persists, although the proprioceptive term
quantitatively modifies the output swimming velocity u by
sharpening or broadening the resonant peaks as a function of

the parameters δ, χ (Supporting Information). Our results show
that the simple form of Eq. 9 suffices to yield self-organized
propulsive gaits, hinting at robotics applications while also sug-
gestive of the role of local sensory feedback mechanisms for gait
evolution in developing organisms.

Discussion
Our simple 2D description for speed and gait selection in swim-
ming accounts for passive elasticity and hydrodynamic drag and
thrust, as well as coordinated muscular activity and proprioceptive
sensory feedback, and thus allows us to dissect the roles of the
physical and biological subsystems in a minimal self-consistent
setting. Our study thus complements recent large-scale simu-
lations by providing a mechanistic perspective on how a flexing
fish converts transverse oscillations to steady swimming but goes
beyond them by having the ability to provide comparative qual-
itative insights. Thus, for a prescribed traveling wave of muscular
torques our observations of quantized resonance peaks of speed
and efficiency have a simple interpretation: They are dictated
by the flexural deformation modes of the elastic body, thus
linking the instability mechanism for flag flutter (32) to reso-
nant swimming. Our theory also allows us to provide a quanti-
tative mechanistic explanation for the now-classic experimental
observations of Bainbridge (3). Finally, we show that a local
proprioceptive rule that links muscular torque to the local
shape with a temporal delay is sufficient to trigger a spontane-
ous elastic instability that leads to thrust production, without
the need for a central pattern generator, and is consistent with
the hypothesis of negative muscle work and modified stiffness
(37). Our study is thus a step in integrating neural dynamics,
mechanics, and flow in the context of locomotory behavior.
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