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Abstract

Airway hyperresponsiveness (AHR) has long been considered a cardinal feature of asthma. The 

development of the measurement of AHR forty years ago initiated many important contributions 

to our understanding of asthma and other airway diseases. However, our understanding of AHR in 

asthma remains complicated by the multitude of potential underlying mechanisms which in reality 

are likely to have different contributions amongst individual patients. Therefore the present review 

will discuss the current state of understanding of the major mechanisms proposed to contribute to 

AHR and highlight the way in which AHR testing is beginning to highlight distinct abnormalities 

associated with clinically relevant patient populations. In doing so we aim to provide a foundation 

by which future research can begin to ascribe certain mechanisms to specific patterns of 

bronchoconstriction and subsequently match phenotypes of bronchoconstriction with clinical 

phenotypes. We believe that this approach is not only within our grasp but will lead to improved 

mechanistic understanding of asthma phenotypes and hopefully better inform the development of 

phenotype-targeted therapy.

1. Introduction

Airway hyperresponsiveness (AHR) is defined as the predisposition of the airways of 

patients to narrow excessively in response to stimuli that would produce little or no effect in 

healthy subjects (Figure 1). Cockcroft et al (1) are largely credited with popularising the 

non-specific test of AHR almost forty years ago; however, the abnormal responses of 

asthmatics to non-specific stimuli were first described by Tiffeneau and Beauvallet in 1945 

(2) and later developed during the 1960s in both Europe (3) and the United States (4). AHR 

has long been considered a cardinal feature of asthma and its measurement has provided 

profound insights into the underlying pathophysiology of the disease. Our view of AHR has 

greatly matured, and because of recent findings it is important to re-assess the current 

knowledge of AHR particularly in our understanding of the underlying mechanisms. While 

we did not embark upon a systematical evaluation of all literature regarding mechanisms of 
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AHR in asthma we have endeavoured to provide an extensive update on the most recent 

findings. We will first introduce a few key clinical studies to provide a foundation for 

discussing the way in which future research of the mechanisms of AHR may contribute 

significantly to clinical practice.

But let’s start with a pair of case studies. Both authors have at one time responded positively 

to bronchial challenge. One (DC) had AHR to methacholine despite being concurrently 

negative to mannitol challenge. Following treatment, he is now in “AHR remission”. The 

other (CI) responded positively in the past to exercise, methacholine and histamine when 

inhaled but negatively during systemic administration. Currently he does not respond to 

methacholine even up to high doses. Despite this small sample size, a few key concepts 

emerge. Firstly, AHR is a moving target, in that its severity and presence are dependent 

upon many factors, including the modality of agonist chosen and level of treatment. 

Secondly, AHR is likely due to a plethora of underlying mechanisms that will have greater 

or lesser contributions in individual patients. This heterogeneity is not always well 

appreciated. While the clinical utility of AHR has been extensively reviewed elsewhere (5–

7) we believe that understanding the heterogeneity of the mechanisms underlying AHR is an 

often over-looked yet important piece of the puzzle. Therefore we propose that future 

research into the mechanisms of AHR should aim to can move our understanding from a 

“one size fits all” approach to ascribing specific mechanisms of AHR to distinct patient 

populations. In this way we believe that it will provide much needed insight into the ever-

developing recognition of distinct clinical phenotypes of asthma.

2. Clinical Importance

Airway hyperresponsiveness is used as a tool in the diagnosis, classification of severity (8) 

and management (9, 10) of asthma. AHR is useful in those who report symptoms (9), 

particularly in those with normal baseline lung function as measured by spirometry (11). 

The presence of AHR is associated with increased decline in lung function (12), even in 

those with asymptomatic AHR (13), increased risk for the development of asthma (12) and 

increased likelihood of the persistence of wheeze from childhood to adulthood (14). 

Furthermore, the severity of AHR is associated with an increased risk of exacerbation (15), 

increased asthma severity as measured by symptoms (16) and an increased level of treatment 

required to control symptoms (1). While the clinical implications relating specifically to the 

loss of the maximal response plateau in asthma are unclear, an increased or absent plateau 

represents uninhibited airway narrowing or closure that has the potential for life-threatening 

exacerbations (17). Understanding the factors contributing to the presence and severity of 

AHR therefore provides an important component for improving asthma control and reducing 

disease progression.

Although AHR is considered a hallmark of asthma, it is important to recognise that the 

severity, and even presence, of AHR is not stable. AHR to non-specific stimuli, such as 

histamine and methacholine, is increased in some, but not all, subjects following allergen 

challenge (18). This increase in AHR occurs most frequently in those subjects with a late 

asthmatic response and its persistence can be short-lived or remain for up to several months 

from exposure (19). It is not surprising, then, that seasonal allergen exposure alters the 

Chapman and Irvin Page 2

Clin Exp Allergy. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



severity of AHR (20). In addition, anti-inflammatory therapy profoundly improves AHR and 

since its widespread introduction many patients on appropriate treatment regimens may not 

respond positively to bronchial challenge in the range associated with asthma. For example, 

in a population of poorly controlled, chronically undertreated asthmatics, Reddel et al (21) 

reported that 16 weeks of high dose inhaled corticosteroid (ICS) followed by dose titration 

led to a 4.0 doubling dose increase in PD20FEV1 (reduction in AHR). After 72 weeks, 40% 

of subjects had responses to methacholine challenge within the normal range. Consistent 

with this, in asthmatic subjects on regular controller therapy, the sensitivity of a positive 

methacholine challenge for the diagnosis of asthma is only 77% (22). This sensitivity is 

further reduced in Caucasian and non-atopic patients. Furthermore, the measurement of 

AHR is confounded by its moderate repeatability, with estimates of within-subject 

repeatability ranging from 1–3 doubling doses (reviewed in (23)). Variability of AHR is 

further increased in those with non-atopic disease and those over 50 years of age (24). It is 

important to acknowledge that the variability of AHR is not only due to variability in the 

underlying mechanisms but also due to the imprecision of the measurement itself. Although 

it is clear that a negative challenge does not exclude the presence of asthma, interpretation of 

a negative bronchial challenge must consider the presence or absence of current symptoms. 

In a patient with current symptoms a negative challenge may suggest that diagnoses other 

than asthma should be considered. However, a negative challenge in a period without 

symptoms does not preclude asthma and in consideration of history it may be more 

appropriate to label such a patient as “currently negative AHR”.

3. Measurement of AHR: To what do we respond and how do we measure 

it?

Traditionally measurements of airway responsiveness have been presented using two 

different, yet qualitatively similarly, calculations. The provocative concentration (or dose) 

causing a 20% fall in FEV1 (PC20FEV1) is calculated by interpolation from the dose causing 

≥20% fall in FEV1 and the penultimate dose on a semi-log scale. It is maybe not surprising 

that determining the actual dose delivered (PD20) appears to be a more robust measure than 

simply using the concentration of agonist (PC20) (25). The dose response slope (or DRS), 

also referred to as the response dose ratio (RDR), is calculated as the slope of the dose 

response curve plotted with a linear dose axis. The advantage of the DRS is that it provides a 

continuous measure of airway responsiveness allowing inclusion of subjects who do not 

reach a 20% fall in FEV1. In a more philosophical sense, the DRS more accurately reflects 

that airway responsiveness is a continuous variable in which AHR merely describes those 

people at one extreme. As both calculations provide similar information studies providing 

either calculation will be subsequently mentioned without differentiation.

a. Methacholine vs Mannitol

There are two groups of stimuli utilised in the measurement of AHR; those which allegedly 

act directly on the airway smooth muscle to induce bronchoconstriction, such as 

methacholine and histamine, and those which indirectly cause bronchoconstriction through 

the release of upstream mediators. Indirect challenge tests include exercise, eucapnic 

voluntary hypernea (EVH), hypertonic saline, mannitol, adenosine 5’monophosphate (AMP) 
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and various allergens. Although extensive review of the clinical application (6) and 

mechanisms (5) of these various stimuli have been provided elsewhere, the increasing 

interest in mannitol is worth considering as an example of an indirect challenge. Airway 

eosinophilia, measured by both sputum eosinophils and exhaled NO (eNO), is more strongly 

associated with AHR to mannitol than to methacholine (26, 27). Although this suggests that 

mannitol may provide a marginally better reflection of airway eosinophilia, the clinical 

utility of this finding is unclear. In addition, mannitol is more variable than methacholine 

which probably reflects variability in underlying inflammation. Therefore mannitol might be 

useful in predicting those patients who respond best to anti-IL-13 or anti-IL-5 monoclonal 

antibody treatment given the projected high cost of these treatments. Compared to treatment 

guidelines based upon symptoms and lung function, treatment strategies targeting reductions 

in AHR to mannitol (STAMINA trial) (28) or methacholine (AMPUL trial) (9) both lead to 

improvements in the number of mild exacerbations. Mannitol appears more specific in 

detecting a diagnosis of asthma although it is less sensitive than methacholine (27, 29, 30). 

Interestingly, the biggest distinction may be in the effect of allergen exposure with increased 

responsiveness to methacholine but reduced responsiveness to mannitol three hours after 

allergen challenge (31). This highlights the distinct underlying mechanisms between the two 

tests and suggests that comparison of the two methods may be useful in identifying 

phenotypes of AHR, and the underlying mechanisms, in subpopulations of patients. Indeed, 

one recent study reported 15% of asthmatics in primary care had AHR only to methacholine 

while another 15% had AHR only to mannitol (32). Similar variability in response has been 

reported when comparing exercise, EVH and methacholine challenge (33). Further research 

is required to determine the clinical importance of these distinct phenotypes of AHR.

b. What lung function measurement to use?

Traditionally AHR has been measured as reductions in spirometric parameters, most 

particularly FEV1. However, spirometry is highly effort dependent and therefore requires 

considerable subject co-operation which is impossible for children under five and difficult 

for the elderly and those with increased disease severity. In contrast, the forced oscillation 

technique (FOT) is a measure of the mechanics of the respiratory system which can be 

acquired without special breathing manoeuvers. The FOT imposes oscillations over tidal 

breathing with the subsequent changes in pressure and flow analysed to provide measures of 

respiratory system resistance (Rrs) or its inverse conductance (Grs), as measures of airway 

calibre, and reactance (Xrs), as a measure of elastance. Recent advancements have allowed 

the FOT to cross the divide into clinical practice. FOT is capable of detecting patients with 

AHR, as assessed by spirometry, during methacholine (34), mannitol (35) and carbachol 

challenges (36). Furthermore, the repeatability of Grs and Xrs is not different to that of 

FEV1 (2.0 and 1.95 vs 1.67 doubling doses, respectively, (35)). However, it should be noted 

that the aforementioned comparative studies included deep inspirations (inherent in 

spirometry) which provide beneficial effects in non-asthmatic but not moderate to severe 

asthmatic subjects (37). More importantly, removing deep inspirations during FOT 

measurement may also alter responsiveness in asthmatics with mild AHR since reduced 

responses are observed in mild disease when challenge inhalation is performed with the deep 

inspiration method compared to the tidal breathing method (38). Therefore, measuring 

responses to bronchial challenge during only tidal breathing with FOT may reduce the 
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ability to discriminate borderline AHR from normal responsiveness. Furthermore, decades 

of research indicates the clinical utility of AHR measured by spirometry, leaving us with a 

scenario where the use of FOT during bronchial challenge may best be suited as an adjunct 

to spirometry. Comparison of spirometry and FOT responses to bronchial challenge, as well 

as comparisons between FOT variables, may provide important clues as to the underlying 

pathophysiology. Lastly, FOT measurements may be capable of detecting differences in the 

pattern of response between stimuli (39) which may further aid in assigning phenotypes of 

AHR to distinct clinical populations.

4. Mechanisms of Airway Hyperresponsiveness

Despite decades of research, there is still little consensus as to the mechanisms underlying 

AHR in asthma. This is most likely due to the numerous pathophysiological abnormalities 

associated with asthma and the likely reality that different mechanisms or a combination of 

these gives rise to AHR in different patient populations. The definition of asthma as an 

inflammatory airways disease characterised by exaggerated airway narrowing immediately 

brings attention to the role of airway inflammation and the airway smooth muscle (ASM) in 

the manifestation of AHR. In addition, the structural remodelling reported in many patients 

with asthma is also likely to contribute in some, but presently unclear, way to the severity of 

AHR. Lastly, there is currently renewed interest in airway closure as a cause of AHR rather 

than merely a consequence.

a. Genetics

The role of familial inheritance in asthma was formally acknowledged by Coca and Cooke 

in 1923 (40) and the heritability of AHR has since been reported to be approximately 30% 

(41). However, the mechanisms linking genetics and AHR remain to be defined. Levitt and 

Mitzner (42) showed the large genetic contribution to AHR in mice by demonstrating that 

airway responsiveness to acetylcholine was controlled by a single autosomal recessive gene. 

Genome-wide association studies have revealed a substantial number of genes associated 

with susceptibility to asthma (recently reviewed in (43)), with genes corresponding to 

inflammatory pathways, airway epithelial function and ASM function likely contributing to 

AHR (mechanisms discussed below). Indeed, β2-adrenergic receptor genotype appears to 

partially determine the improvements in AHR to methacholine following salmeterol/ICS 

therapy (44). Although not substantiated, this may represent distinct genotype-dependent 

mechanisms of AHR rather than differences in general treatment efficacy since 

improvements in baseline lung function, eNO and bronchodilator responsiveness were not 

affected by genotype. Similarly, it has been reported that allergen exposure in mice induces 

epigenetic changes in the transforming growth factor-β signaling pathway which are 

associated with development of AHR (45). Despite considerable advancement of our 

understanding of genetics in asthma future research is required to determine if and how 

genetic/epigenetic alterations are causally linked to the development and severity of AHR in 

human asthma.
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b. Airway Inflammation

Asthma is a disease associated with chronic inflammation and the influx of inflammatory 

proteins likely contributes to AHR. Although allergic asthma has long been known to be 

associated with increased eosinophils in the airways, recent research suggests that subsets of 

asthmatic patients have elevated neutrophils with or without increased eosinophils (46). In 

asthmatic subjects there is a positive correlation between the severity of AHR and the 

number of eosinophils and metachromic cells in sputum (47, 48), as well as the number of 

mast cells in the airways (49). Furthermore, the level of exhaled nitric oxide (eNO), 

considered a biomarker for eosinophilic inflammation (50), correlates with the severity of 

AHR to methacholine in asthmatic subjects (51, 52). Interestingly, the link between eNO 

and AHR appears driven by airway narrowing, but not airway closure (53). In a small study 

of mild asthmatics, Brusasco et al (54) found no relationship between baseline AHR and 

inflammatory cells in bronchoalveolar lavage. However, after allergen challenge a strong 

correlation was reported between the increase in AHR and increase in eosinophils, further 

supporting the role of eosinophils in AHR. In contrast, there is little evidence that airway 

neutrophilia contributes to the severity of AHR in asthma. Indeed, Porsbjerg et al (48) were 

unable to show any correlation between neutrophils or neutrophil mediators and AHR. 

However, sputum neutrophils were correlated with an increased contribution of airway 

closure to the overall level of bronchoconstriction. Taken together, these findings suggest 

that eosinophillic airway inflammation may contribute to the severity of AHR whereas 

airway neutrophilia may be associated (causally or coincidentally) with an alteration in the 

type of bronchoconstriction towards predominance of airway closure.

c. Airway Smooth Muscle

Bronchoconstriction is due, at least in part, to constriction of the airway smooth muscle 

(ASM) surrounding the airway. Therefore it is not surprising that increased contractility of 

the ASM has long been touted as a principal cause of AHR. Abnormal ASM function could 

be due to intrinsic abnormalities of the ASM itself or to the effects of the asthmatic 

environment in which it resides.

i. Intrinsic factors—Despite considerable research it is still unclear as to whether 

asthmatic ASM is intrinsically hyper-contractile, and if so, what factors are mechanistically 

involved. Recent gene expression profiling of ASM revealed four novel genes that not only 

differentiated asthmatic and non-asthmatic patients, but were related to the severity of AHR 

(55). Furthermore, the expression of contractile proteins α-smooth muscle actin and desmin 

in ASM from asthmatics correlates with the severity of AHR (56) suggesting a role of 

intrinsic ASM dysfunction. Some in vitro studies have reported increased force generation 

of ASM from asthmatic patients (57, 58), while others have reported no difference when 

compared to healthy controls (59–61). However, increased airway narrowing could be due 

to an increase in the shortening velocity of ASM despite normal force generation. This 

would theoretically occur because a muscle that shortens quickly would produce greater 

airway narrowing during expiration before the dilatory effect of the proceeding inspiration 

(62). Indeed, in vivo findings support an effect of ASM shortening velocity on the 

magnitude of ASM shortening (63).
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ASM contraction involves the formation of actin-myosin cross-bridges with the rate of 

formation dependent upon the activity of myosin light chain kinase (MLCK) and myosin 

light chain phosphatase (MLCP). An increase in the activity of either MLCK or MLCP 

would lead to increased shortening velocity of ASM. Indeed, both an increased expression 

of MLCK and increased shortening velocity of ASM have been reported in asthma (64). 

Furthermore, the fast myosin heavy chain isoform is also increased in patients with asthma 

which murine models suggest would also increase cross-bridge cycling and AHR (65). 

Functionally, this may not be important as increased shortening velocity in asthma is not a 

consistent finding (61). Asthmatic ASM is also more sensitive to oxidative stress with the 

extent of oxidative damage within the ASM bundle correlated with the severity of AHR 

(66). This relationship is in part mediated by increased NOX4 expression since siRNA 

knockdown of NOX4 attenuates in vitro ASM contractility. In contrast to dysregulation of 

the molecular pathways controlling ASM contraction, subcellular structure of the ASM 

appears similar between asthmatic and non-asthmatic subjects (67).

ii. Extrinsic factors—The asthmatic airway resides in a pro-inflammatory environment 

which likely contributes to ASM dysfunction independent of any intrinsic abnormalities. 

Pro-inflammatory cytokines such as IL-4, IL-13 and tumour necrosis factor-α (TNFα) 

increase ASM responsiveness in vitro, possibly via effects on calcium signaling (68). 

Proteases, such as matrix metalloproteinase-1 (MMP-1), are increased within ASM bundles 

of asthmatics and also regulate in vitro ASM contractility (69) and structural integrity. 

Additionally, the number of mast cells within the ASM correlates with the severity of AHR 

in asthma (70). Although the mechanisms are not yet clear, mast cell mediators such as 

histamine, leukotriene D4 (71) and prostaglandin D2 (72) may contribute to increased basal 

ASM tone. Bossé and colleagues (73) reported that ovine tracheal ASM adapts to increased 

basal tone so that subsequent ASM shortening is synergistically amplified. Computational 

modelling suggested that this synergistic effect on ASM shortening, termed force adaptation, 

would translate to an increase in airway narrowing as high as 48% and increase in airflow 

resistance up to 274% for a prototypic ninth generation airway (74). Although force 

adaptation has recently been demonstrated in mice in vivo (75), it is unknown whether force 

adaptation occurs in humans in vivo and to what extent, if any, that would contribute to 

AHR measured by spirometry.

Alternatively, the inflammatory milieu may induce the transition of asthmatic ASM from a 

contractile to a “synthetic” phenotype (reviewed in (76)). This synthetic ASM phenotype is 

characterised by reduced contractile-associated proteins but increased proliferation and 

chemokine secretion. In vitro stimulation of human ASM with TNFα or IL-1β induces the 

secretion of chemokines such as regulated on activation, normal T cells expressed and 

secreted (RANTES), interleukin-6 (77, 78) and IL-8 (79, 80). This proliferative/secretory 

phenotype is associated with reduced expression of contractile proteins such smooth muscle 

myosin heavy chain, smooth muscle α-actin, myosin light chain kinase (81). It is presently 

unclear whether the transition of ASM to the synthetic phenotype confers protection against, 

or further contributes to, AHR.

Damage to the airway epithelium, which provides an initial barrier for inhaled spasmogens, 

also likely contributes to AHR. Disruption of the airway epithelium would increase the 
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amount of stimulus interacting with the ASM and thus potentiate bronchoconstriction. In 

addition, epithelial damage or dysregulation likely reduces the ability of the epithelium to 

maintain relaxation of ASM via release of epithelial-derived relaxing factor(s) (82). For 

example, intratracheal administration of cationic proteins reduces both the barrier effect and 

control of ASM relaxation by the airway epithelium, and results in AHR in animal models 

(83). Additionally, damage to the epithelium may also directly contribute to airway 

narrowing. Recent murine in vitro findings suggest that rupture of small airway epithelial 

cells induce intracellular [Ca2+] waves and subsequent contraction in neighboring ASM 

(84). The contribution of damage of the airway epithelium is most likely to be highly 

relevant to AHR following exposure of noxious inhalants, such as in occupational asthma.

d. Structural airway remodelling

The lung of the asthmatic exhibits a gamut of structural pathologies that are collectively 

termed airway remodelling. Remodelling here merely means that the structure is no longer 

normal with the implication that the change is permanent. These changes include 

subepitheial fibrosis (85), ASM hypertrophy/hyperplasia (86), angiogensis (87) and changes 

in extracellular matrix composition (88). AHR correlates with airway wall thickening (89, 

90) , reticular basement membrane thickness (91) and components of the extracellular 

matrix (56, 92), although others have been unable to replicate these findings (70).

Thickening of the airway wall could contribute to excessive bronchoconstriction in two 

ways. Airway resistance is inversely related to airway radius such that an increase in the 

submucosal area would amplify the reduction in airway calibre for any given degree of 

ASM shortening. Although an attractively simple explanation, it remains unclear whether 

reduced airway calibre is causally associated with increased severity of AHR. On one hand, 

several studies report a correlation between baseline airway calibre and AHR, measured by 

FEV1/FVC (53, 93) and FEF25–75/FVC (94, 95). On the other hand, improvements in airway 

calibre appear dissociated from improvements in AHR. Salome et al (96) administered 

fenoterol prior to histamine challenge and reported that although baseline FEV1 and AHR 

both improved, AHR returned to control levels much more rapidly than FEV1. This 

disconnect was later strengthened by Britton et al (97) who reported that ipratropium did not 

alter AHR despite increasing baseline FEV1 and sGaw. However, determining whether 

reductions in airway calibre are similarly disassociated from AHR is confounded by an 

inability to reduce airway calibre without confounding effects, such as those related to 

transpulmonary pressure or ASM tone.

An increase in the thickness of the adventitial layer has the potential to uncouple the ASM 

layer from the surrounding parenchyma. Under this condition, the ASM is essentially 

untethered from the lung parenchyma, reducing the load against which the ASM shortens. 

This would allow for increased ASM shortening. Increased ASM mass, due to either 

hypertrophy or hyperplasia, is thought to increase the total force generated by ASM and thus 

exaggerate airway narrowing without any alteration in ASM contractile function (98). 

Indeed, increased ASM area in explanted bronchial segments from asthmatics correlates 

with increased in vitro airway narrowing (99). However, airway remodelling may protect 

against AHR. Should the remodelling processes increase airway wall stiffness, it would in 
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fact oppose, and therefore limit, airway narrowing during bronchoconstriction (100). On the 

other hand, some features of airway remodeling may be a consequence, rather than a cause, 

of AHR since bronchoconstriction itself is sufficient to induce subepithelial fibrosis and 

mucous metaplasia without affecting AHR (101).

e. Airway Closure

It is not well recognized that bronchoconstriction is also associated with increased airway 

closure. Moreover, it is important to determine whether increased airway closure is merely 

the consequence of exaggerated airway narrowing (102) or whether asthma is associated 

with a predisposition to airway closure. Increased airway closure assessed by bronchial 

challenge is associated with increased disease severity (103), oral steroid use (104) and a 

history of exacerbations requiring intubation (103). Irvin and Bates (105) reviewed the 

literature that supports the notion that bronchoncostriction in asthma is not due to central 

airway narrow as commonly assumed, but rather due to peripheral airway closure. 

Consistent with this hypothesis, AHR in allergically sensitised mice can be fully attributed 

to an increased susceptibility to small airway closure (106, 107). The importance of airway 

closure to human asthma was validated by the finding that the extent of airway closure 

during methacholine challenge was a significant determinant of the severity of AHR, 

independent of airway narrowing (53). However, unlike in the allergically sensitised mouse, 

there is great variability in the contribution of airway closure to bronchoconstriction in 

human asthma. As shown in Figure 2A and B, asthmatic patients can respond to bronchial 

challenge through predominantly airway narrowing or airway closure. It is important to 

highlight that these examples are the extremes of a continuum with the majority of subjects 

falling in between. Hence, the severity of AHR in specific phenotypes of asthmatic patients 

is likely due in large part to airway closure. However, the clinical features or underlying 

mechanisms of patients who respond predominantly due to airway closure require further 

investigation.

There are several mechanisms by which asthma pathophysiology may lead to increased 

airway closure during bronchoconstriction. Firstly, mucous plugging would obviously 

induce airway closure so it is not surprising that pharmacologically blocking the release of 

mucous protects against AHR in allergically inflamed mice (108). Secondly, increased 

airway closure may be due to surfactant dysfunction caused by inflammation (109, 110). 

Similarly, fibrin is known to inactivate surfactant (111), accumulate in the airways of 

asthmatics and is associated with AHR (107). A role of surfactant dysfunction in AHR is 

consistent with the protective effect of inhaled surfactant against allergen-induced 

bronchoconstriction (112). On the other hand, recent computational and physiological 

evidence suggests that increased baseline ventilation heterogeneity may promote increased 

airway closure during bronchoconstriction. Venegas et al (113) developed a highly advanced 

lung model that takes account of the effects of the parenchymal tethering forces, the intra- 

and extra-luminal pressures and ASM forces. The model predicted that uniform ASM 

contraction with the addition of small, random heterogeneities in airway calibre would lead 

to the abrupt development of airway closure when ASM contraction reached a critical level 

of instability. The validity of the model predictions have been strengthened by subsequent 

findings that the severity of AHR in asthma strongly correlates with the degree of baseline 
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ventilation heterogeneity (52, 114, 115). This has recently been extended by the report that 

baseline ventilation heterogeneity correlates with the increase in airway closure during 

methacholine challenge (116). Importantly, the association between baseline ventilation 

heterogeneity and AHR remained following three months of ICS treatment suggesting that it 

is independent of (steroid-responsive) airway inflammation (52). Further research is needed 

to ascertain the causes of the baseline ventilation heterogeneity and whether they can be 

targeted to treat AHR, which may provide more effective treatment strategies for asthma.

5. Can AHR contribute to our understanding of asthma phenotypes?

Asthma is not a single disease but a combination of many pathophysiological features 

culminating in the clinical presentation of asthma symptoms. This underlies the importance 

of personalised medicine, in which the foundation has been built on improved phenotyping 

of asthmatic patients utilising a variety of clinical, inflammatory and physiological features 

(117, 118). However, these approaches are yet to include charateristics of AHR, such as 

differences between modalities or the pattern of bronchostriction. Below we highlight three 

phenotypes associated with worse asthma control and discuss the current understanding of 

AHR in each group (Table 1).

a. Asthma in the elderly

Asthma control worsens with age (119) with one recent study reporting that 25% of asthma 

patients over 65 years experienced at least one severe exacerbation in the preceding year 

(120). Hardaker et al (114) recently compared the physiological determinants of AHR in 

young and elderly asthmatics. In those below 55 years, the severity of AHR was predicted 

by increased eosinophilic airway inflammation (exhaled NO) and baseline ventilation 

heterogeneity in conducting airways. In contrast, AHR in the elderly was associated with 

baseline gas trapping and ventilation heterogeneity in acinar airways. This suggests that 

AHR in the elderly is associated with more peripheral disease. This is consistent with 

previous reports that AHR in the elderly is associated with increased airway closure during 

methacholine challenge (121). This may be due to the increase in neutrophilia with age, 

since increased airway closure during bronchoconstriction in elderly asthmatics correlates 

with sputum neutrophil levels (48). Alternatively the distinct AHR of the elderly may be due 

to ural change of the loss of elastic recoil due to emphysema-like changes associated with 

aging (122). Bronchial challenge with AMP has been suggested to induce a more peripheral 

response than that due to methacholine (123) and therefore age may have greater effects on 

AHR to AMP than to methacholine challenge. However, it is unclear whether the more 

peripheral disease is due to the additive effects of age on asthma or a synergistic effect of 

disease duration.

b. Asthma in the obese

Cross-sectional studies report an increased prevalence of asthma in the obese (124), while 

obesity and weight gain appear to precede the development of asthma (125). Obesity 

appears to worsen asthma control (126) while weight loss leads to an improvement in 

asthma symptoms (127). There is growing recognition that obese asthmatics comprise two 

distinct clinical populations; those with high IgE and early-onset asthma (allergic), and those 
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with late-onset disease and low serum IgE (non-allergic). Following weight loss, only the 

non-allergic obese asthmatics had an improvement in methacholine responsiveness 

suggesting that obesity negatively impacts AHR only in those with non-allergic disease 

(128). This effect of obesity on AHR is due to increased collapsibility of peripheral airways 

that predisposes to increased airway closure during methacholine challenge (129, 130). This 

is illustrated in Figure 2C, in which the extent of airway closure, adjusted for the level of 

airway narrowing, is substantially greater in non-allergic obese asthmatics compared to non-

obese asthmatics (ie significantly steeper slope). Interestingly, following weight loss, the 

response to methacholine appears identical to that of non-asthmatic obese subjects (ie 

position and slope of regression). These data suggest that allergic obese asthmatics may 

have asthma that is complicated by obesity, whereas non-allergic obese asthmatics have 

asthma secondary to obesity. Since the severity of AMP appears closely associated with 

atopy and IgE levels (131, 132), it is possible that AMP challenge may be better able to 

differentiate these two phenotypes of obese asthma.

c. Asthma in smokers

Asthmatics who smoke report worse asthma control (133) and smoking history is associated 

with the severity of AHR (134). Airway closure during AMP challenge is increased in 

asthmatic smokers compared to non-smokers, but not during methacholine challenge (135). 

This is consistent with a more peripheral response during AMP than methacholine challenge 

(123). Interestingly, improvements in AHR to AMP following smoking cessation occur 

earlier than improvements in AHR to methacholine (136). This may reflect a greater 

sensitivity of AMP to smoking-related pathophysiology. On the other hand, methacholine 

challenge may better reflect underlying structural changes than AMP (131) such that 

differences between the two stimuli may reflect distinct mechanisms underlying the severity 

of AHR in smoking asthmatics. Further research will determine whether these differences 

can be used to detect early smoking-related disease or determine those smokers who may 

respond to asthma guideline therapy and those unlikely to benefit.

6. Looking through the crystal ball: the future of AHR testing

We must ensure that our view of the measurement of AHR does not remain as a “one size 

fits all” approach. On one hand we have many different stimuli for bronchial challenge 

testing and on the other, an extensive list of potential mechanisms underlying AHR. 

Currently we do not completely understand whether specific mechanisms play a greater role 

in AHR assessed by one challenge test over another. Similarly, we do not know whether 

differences between challenge modalities provide a better assessment of the various clinical 

asthma phenotypes. Physiologists have long known that FEV1 is a polyvalent measure of 

lung function that provides little information about the precise pattern of 

bronchoconstriction. Understanding the pattern of bronchoconstriction in an individual 

patient, whether through comparison of spirometric variables or from measurements such as 

the FOT and inert gas washout, may allow us to ascribe certain phenotypes of 

bronchoconstriction to specific clinical phenotypes. This, too, would help elucidate the 

underlying mechanisms and may contribute to more targeted therapies. As discussed above, 

a combination of these two approaches has already been applied to asthma in the obese, 
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elderly and those who smoke. While only in its infancy, the evidence to date suggests that 

phenotyping AHR may help to uncover the pathophysiology contributing to poor asthma 

control in numerous distinct subsets of patients with asthma.

7. Conclusion

The development of the measurement of AHR forty years ago sparked many important 

contributions to our understanding of asthma and other airway diseases. However, it is time 

to re-evaluate our assumptions of AHR in light of the current population of asthmatic 

patients. We must look towards the future, embracing the technological advancements which 

provide potentially complimentary techniques to measure the response to bronchial 

challenge. These complementary measurements may lead us to better partition global 

bronchoconstriction into its components of airway narrowing and airway closure as well as 

proximal and distal airway effects. This enhancement has to the potential of allowing us to 

assign certain mechanisms to specific patterns of bronchoconstriction, opening the door for 

matching phenotypes of bronchoconstriction with clinical phenotypes. In doing so we are 

likely to gain improved mechanistic understanding of asthma phenotypes, and help better 

focus as well as better assess the development of phenotype-targeted therapy.
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Figure 1. Representative dose response curves (DRC) to methacholine in a healthy and a severely 
asthmatic subject
Airway hyperresponsiveness is characterised by both an increased sensitivity, seen as the 

leftward shift in the DRC of the asthmatic patient (A), and excessive bronchoconstriction, 

resulting in the loss/increase in the maximal response plateau (B).
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Figure 2. The contribution of airway narrowing and airway closure to the fall in FEV1 during 
bronchial challenge
FEV1 is reduced by airway narrowing because a narrowed airway loses some capacity to 

transmit flow. However, FEV1 is also determined by the number of parallel airways 

contributing to flow and is thus reduced by functional airway closure (both true airway 

closure and severe airway narrowing). By contrast, FVC is determined by the volume of air 

in communication with the mouth and is reduced by functional airway closure but not by 

airway narrowing. Air narrowing, per se, is thus reflected in the ratio FEV1/FVC. There is 

substantial variation in the contribution of airway narrowing and airway closure to the fall in 

FEV1 amongst patients with asthma. Shown are dose response curves for an asthmatic 

subject with predominantly airway narrowing (A: 24 years old, baseline FEV1 122%pred, 

PC20FEV1 0.23µmol) and one with predominantly airway closure (B: 24 years old, baseline 

FEV1 78%pred, PC20FEV1 0.28µmol). These examples represent extremes of a continuum 

of responses, with the majority of subjects falling in between. The extent of airway 

narrowing is expected to contribute to airway closure so to determine excessive airway 

closure we have analysed the relationship between %fall FVC and FEV1/FVC (C). A steeper 

slope represents greater airway closure for a given level of airway narrowing. Absolute 
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FEV1/FVC, rather than % fall FEV1/FVC, maintains the contribution of baseline airway 

calibre. Representative regression lines were calculated from the mean baseline FEV1/FVC, 

mean fall in FEV1/FVC and mean % fall FVC for lean non-asthmatics (blue), lean 

asthmatics (red), obese non-asthmatics (green), non-allergic obese asthmatics prior to 

bariatric surgery (purple) and the same subjects 12 months following bariatric surgery 

(dashed purple). Data were adapted from two of our previous studies (53, 130). Important to 

note is the increased slope in asthmatics compared to non-asthmatics, and in all obese 

groups compared to the two lean groups. Following weight loss, the slope of the obese non-

allergic asthmatics decreased suggesting reduced predisposition to airway closure. 

Interestingly, the position and slope of obese non-allergic asthmatics post-surgery is almost 

identical to obese non-asthmatics suggesting that the effect of obesity on airway closure is 

dependent upon the level of adiposity in non-allergic subjects.
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Table 1

Current understanding of AHR in asthma phenotypes associated with worse control

Asthma Phenotype Severity of AHR Pattern of AHR
(Closure vs
narrowing)

Modality Associated
pathophysiology

Elderly Increased Closure Methacholine ↑ Neutrophils

↓ Elastic recoil

Obese

• non-allergic Increased Closure Methacholine ↓ FRC volume

↑ airway compliance

↓ surfactant (?)

• allergic Unaltered Closure Methacholine ↓ FRC volume

Smoking Increased Closure AMP Inflammation/ Acutely
reversible

Increased ~ Equal Methacholine Structural

FRC = functional residual capacity
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