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Abstract

We present a custom, Boolean query generator utilizing common-table expressions (CTEs) that is 

capable of scaling with big datasets. The generator maps user-defined Boolean queries, such as 

those interactively created in clinical-research and general-purpose healthcare tools, into SQL. We 

demonstrate the effectiveness of this generator by integrating our work into the Informatics for 

Integrating Biology and the Bedside (i2b2) query tool and show that it is capable of scaling. Our 

custom generator replaces and outperforms the default query generator found within the Clinical 

Research Chart (CRC) cell of i2b2. In our experiments, sixteen different types of i2b2 queries 

were identified by varying four constraints: date, frequency, exclusion criteria, and whether 

selected concepts occurred in the same encounter. We generated non-trivial, random Boolean 

queries based on these 16 types; the corresponding SQL queries produced by both generators were 

compared by execution times. The CTE-based solution significantly outperformed the default 

query generator and provided a much more consistent response time across all query types 

(M=2.03, SD=6.64 vs. M=75.82, SD=238.88 seconds). Without costly hardware upgrades, we 

provide a scalable solution based on CTEs with very promising empirical results centered on 

performance gains. The evaluation methodology used for this provides a means of profiling 

clinical data warehouse performance.
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I. Introduction

Clinical data warehouses (CDWs) are a necessary component to any healthcare institution 

for operational and research purposes [1]. Informatics for Integrating Biology and the 

Bedside (i2b2) is an initiative sponsored by the NIH Roadmap National Centers for 

Biomedical Computing [2]. One of the initiative’s main products is the i2b2 Web Client – a 

query tool capable of supplying aggregate counts and basic analyses of patient populations 

from CDWs. i2b2 has been shown to be effective in estimating cohort sizes [2]–[4] and 

serves as a potential cost-effective back-end for performing genome-wide association 

studies [3], [5]. It is reported to be used by over half of all sites awarded a Clinical and 

Translational Science Award (CTSA), over 60 academic medical centers, and 10 

international medical centers [3].

In the age of Google, users expect instantaneous query results. This client-side consumer 

assumption is often difficult to satisfy for informatics software due to open challenges with 

big data and the complexity of queries upon clinical data warehouses. For instance, i2b2’s 

performance is reasonable with our single hospital clinical data set containing approximately 

540,000 patients across 4 million encounters. However, significant performance degradation 

was experienced with our larger state-wide Medicaid data set containing approximately 1.8 

million patients across 160 million encounters. The poorest performing queries were those 

requiring concepts to occur in the same encounter, especially when additional constraints 

such as exclusion criteria or occurrences (frequency) were used.

Some institutions have been able to achieve reasonable performance on large datasets with 

significant investments in hardware upgrades. Because not every medical center can afford 

extensive and elaborate hardware environments and because the growth of biomedical data 

is outpacing Moore’s law for the growth of computational power [6], elegant software 

solutions that are capable of scaling are needed. The goal of this work is to provide a 

scalable query generator that greatly decreases the end-user’s wait time for obtaining 

aggregate counts. In addition, our experimental design provides a methodology for profiling 

and comparing the performance of clinical data warehouse query tools.

II. Background

Clinical data warehouses naturally expand as time elapses. An increased emphasis on 

adopting electronic heath records and other clinical information systems has lead to the 

expansion of CDWs in both volume and breadth [1]. Additionally, the inclusion of genomic 

data is increasingly important for translational science [5], which suggests that the scale of 

the modern CDW will continue to increase. In addition to scale, the use of the data is 

evolving; the Shared Health Research Information Network (SHRINE) is a federated query 

tool that was motivated by the CTSA to produce a tool to enable collaboration across 

multiple sites [7]. SHRINE is an i2b2-based solution where queries are distributed to 

multiple i2b2 warehouses within the SHRINE and result sets are aggregated for the end-

user. The expansion of data in terms of raw size and scope of usage is further evidence that 

scalability is pivotal to the success of the individual informatics software solutions and 

consequently to the much larger goals of clinical and translational science.
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Other query tools exist for performing clinical research, including BTRIS [8], DEDUCE [9], 

FURTHeR [10], STRIDE [11], and VISAGE [12]. Note that these are tools created with 

specific goals in mind, while i2b2 is essentially an extendable platform for open-source 

development. Regardless of the specific design, a tool must somehow allow the user to 

construct a query that pinpoints the data being requested. Boolean queries are important in 

clinical data warehousing because they provide the natural mapping for inclusion and 

exclusion criteria when selecting sets of patients, cohorts, and encounters. Additionally, this 

selection stage is critical for clinical research [1], [4].

Each of the listed tools has an interface that allows the user to actively construct a query, 

either visually or with the help of pull-down menus; the tool must somehow translate this 

construction into valid SQL so that the CDW can be interactively explored. We call this 

translation component the query generator, which plays a crucial role by allowing non-

technical users to build queries without writing complex statements in a language such as 

SQL. Our query generator works by receiving an XML message from the tool and translates 

it into a SQL query that can be run against the CDW. FURTHeR uses i2b2 as a front-end 

and could use our query generator, since its queries are composed in an identical interface. 

The other tools would need to package their query requests in a similar XML message in 

order to receive a query from our generator.

The most commonly published enhancements or extensions of i2b2 have been in the form of 

project forks and plugins that provide novel functionality [13]–[15] or in-depth examinations 

of i2b2’s use cases [4], [16], [17]. In this paper, we present our research in developing a 

scalable query generator and present our results on associated performance gains when it is 

used as an alternative to the internal generator of i2b2. We note that there exists related work 

[18] directed toward enhancing performance of i2b2, which focuses on pre-computing 

aggregate values and obtaining inexact counts via simulation. This related work could also 

be layered on top of our solution, which, in contrast, focuses on improvements in query 

generation.

i2b2 consists of a web client and desktop client that increasingly share similar functionality. 

In both clients, the user interface consists of a series of panels (also called groups). Users 

select concepts from an ontology and drag them into the panels to form basic Boolean 

queries; concepts within a panel represent a logical OR, while concepts across panels 

represent a logical AND (see details in the METHODS section). Additionally, panels can be 

negated and constrained by time, frequency, and whether the concepts occurred in the same 

encounter — that is, a single billable visit to a provider or inpatient stay at a hospital. The 

basic internal structure of i2b2 is that of a modular hive, where each hive cell is designed to 

provide a certain function [19]. Our contribution concerns the Clinical Research Chart 

(CRC) cell, which acts as the core data repository handler. When the user submits a query, 

the CRC cell converts the panels that the user has composed through the interface into an 

SQL statement that is executed against the local data repository. Our work replaces the 

query generation logic found within the CRC cell, so that more elegant SQL statements are 

produced and are followed by performance gains.
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The default query generator that is packaged with i2b2 generates queries that use a 

procedural, multiple transaction approach. The panels assembled by the user are converted 

into multiple SQL statements. This approach takes patient records that match the concepts in 

the first panel and inserts them into a temporary table. The process continues and the records 

that also match the second panel’s concepts are updated in the temporary table. This process 

continues for all panels where the subsequent set of patients in the temporary table to be 

updated is never larger than the previous and the resulting temporary table will hold only 

those patient records that match the query the user constructed. The major issue is that this 

technique is heavily dependent on hard disk access- and write-speeds coupled with the large 

amounts of temporary storage on the database required for storing and logging these 

temporary result sets.

III. Methods

As an alternative to the procedural approach, we developed a query generator that produces 

a single relational query using Common Table Expressions (CTEs), which were first 

introduced in Microsoft SQL Server 2005 [20] and later integrated into Oracle and other 

database management systems. Fig. 1 shows the general framework for a CTE.

CTEs are temporary, named result sets that reside in memory as complex derived views of 

the underlying data and can be referenced multiple times within a single SQL statement 

(including self-reference); additionally, they can be chained together to create a more 

complex final query. Due to the derived nature of CTEs, there is no need to write these 

temporary result sets to disk, thus reducing I/O requirements to complete each transaction.

Suppose we have multiple tables that contain different complementary pieces of information 

about a patient such as their personal information, physician visits, and prescriptions. Often, 

researchers need to correlate information in these different tables to select a set of patient 

records that satisfy certain criteria. This correlation is generally accomplished using 

database table joins performed on fields common across all tables. A straightforward 

approach to join multiple tables is to form a sequence of joins, where the result of a join 

between two tables is used in turn to perform a join with the next table. As such, the result 

set of a join can also be treated as a table consisting of fields from multiple tables that are 

selected in the join. Instead of storing these intermediate results as explicit temporary tables, 

CTEs enable us to use named result sets or common tables that provide the same 

functionality.

A. Transformation of i2b2 queries to CTE-based queries

A high-level overview of the translation process can be found in Fig. 2 and Fig. 3 represents 

an example of the innermost workings. To make things less abstract, we use an example to 

demonstrate how queries from the i2b2 interface are transformed into the corresponding 

CTE-based SQL queries. As mentioned earlier, the i2b2 interface provides panels to 

formulate Boolean queries on patient records involving certain concepts. In our approach, 

each panel in the i2b2 user-interface is mapped to a common table where the joins between 

CTEs facilitate logical ANDs and the inner-expression within each CTE facilitates logical 

ORs and NOTs by using nested leftjoins. Left-join predicates capture additional constraints 
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such as dates, frequency, concept modifiers, and can be used to support additional query 

features such as lab value constraints, provider details, and text searches.

Fig. 4 shows a query that has 3 panels, where the first panel is a logical OR upon two 

different diabetes-related concepts and the second panel simply selects the hypertension 

concept. The last panel is slightly more complicated; it is the logical OR between those 

patients who had a visit at an age of less than 9 years, or between 10–17 years, or older than 

65 years today. This panel is also negated, so only those patients who are outside of those 

age ranges will be selected. We show the corresponding CTE-based SQL query below the 

panel diagram. To conserve space, sub-queries for concept children in the ontology have 

been replaced by placeholders. We use a special table of inter-concept hierarchical 

relationships to help manage our ontology so that child concepts can be returned quickly. In 

short, this mapping generates a single SQL statement that can be completed in one 

transaction with minimal need for temporary disk space or logging.

The CTE-based approach described above is in stark contrast to the procedural approach, 

which generates multiple SQL statements. In turn these statements invoke costly inserts, 

updates, and hard-disk temporary table commits which require disk space and are limited by 

disk-access speeds. Additionally, the multiple statement procedural approach prevents the 

SQL optimizer from generating an optimal join strategy due to its limited knowledge of the 

overall query sequence. In contrast, our relational approach presents the optimizer with a 

single query that can be optimized effectively.

The left outer-join provides an elegant method for performing both the logical OR and NOT 

operations by using a compound WHERE predicate with the help of the NOT operand. For 

example, when a panel contains two or more concepts from different tables, a new alias or1, 

or2, …, orN is added to each table in subsequent joins. The final WHERE predicate for a 

panel then looks like WHERE not (or1.patient_num is NULL AND or2.patient_num is NULL 

… AND orN.patient_num is NULL).

Note that this will return patients where at least one of the concepts in the OR panel returns 

true. The logical NOT of a panel is found simply by removing the NOT keyword before the 

compound WHERE predicate. That is, the left join will then only return those patient 

records that fail to return null for all of the concepts in the OR list. The records that match at 

least one of the concepts will be excluded. The modified query generator also combines all 

exclusion panels into one CTE, where it is logically consistent to do so.

For any query that can be logically composed in the i2b2 user interface, the query generator 

can construct a corresponding CTE-based query. Although lab values were not present in 

our CDW at the time of this testing, the current version of the software supports searching 

for explicitly entered values such as glucose >126 mg/dL. We also support the use of patient 

sets or previous queries as a panel concept. Additionally, it is feasible to expand 

functionality to support queries with temporal relationships between panels such as before, 

after, or within a certain number of days, by retrieving the encounter date to further refine 

the joins between common tables.
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B. Experiments

We created a random query generator to generate randomized XML request messages that 

the CRC cell would have normally received from the user interface. The query generators 

processed these XML messages so that they could translate the user supplied i2b2 query into 

actual SQL queries that can be run on the warehouse. We chose to generate random queries 

because our i2b2 user-base is small and may not accurately represent the usage at other 

institutions. For example, the occurrence constraint might be used more at institutions with 

large longitudinal datasets as opposed to institutions with smaller datasets with transient 

populations. The goal was to stress test i2b2 by capturing every possible type of query that 

users might design; we determined that there were 16 types of queries possible by having 

binary choices on the four user interface constraints (date, frequency, negation/exclusion, 

and whether the concepts occurred in the same encounter) (See Table I). For each of the 16 

types of queries, 40 queries were randomly selected. Each of these 40 random queries had 

between one and four panels, each of which had randomized constraints and contained 

between one and three randomly chosen concepts. Concepts that did not appear in the 

dataset were not considered to prevent trivial empty set calculations. Here concepts are 

arbitrary placeholders that represent sets of patients, allowing us to focus on how each query 

generator interprets the logical constraints to construct a resulting aggregate patient set. This 

approach to test query formulation might not represent clinical reality, but does represent 

faithfully the effort it would take to logically combine sets of these sizes for each generator. 

In all our queries, each of the four possible constraints of query timing, exclusion, date, and 

occurrence (frequency) need only apply to at least one panel in the query to be considered 

that query type. Date ranges were randomly assigned. The start date and end date of a date 

range was restricted to exist between the minimum and maximum date of our dataset, and 

the end date was required to be after the start date. Of these 640 queries, a small number 

were unable to be correctly processed due to erroneous SQL being generated by the stock 

query generator.

The requested result type was restricted to a simple patient count. The dataset used for this 

testing contains 10 years of Kentucky State Medicaid claims data, covering 1.8 million 

patients across 160 million encounters with 660 million facts. The Medicaid data contains 

only demographics, diagnosis billing codes (excluding procedures), and visit details such as 

age at visit, length of stay, and visit type. For comparison purposes, the i2b2 environment at 

the University of Kentucky is housed on SQL Server 2008 R2 on a Dell PowerEdge M910 

blade server with 32 processor cores and 128GB RAM; storage is provided by a EMC 

CX3-40 SAN housing four 7.2K RPM hard drives with 4Gbps transfer capacity. Version 

1.6.04 of i2b2 was used during the testing process. Both generators had access to the pre-

calculated frequency of each concept. This allows the panels to be ordered starting with the 

smallest first, since an intersection is no larger than its smallest member.

IV. Results and Discussion

Because i2b2 users’ queries are placed into a processing queue, we note that the stress test 

results based on our query types are especially important in a multiple-client setting. 

Excessive delays incurred by poorly formed queries from novice users can affect the 
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usability of i2b2 for other more experienced users. With the development and launch of 

SHRINE [7], query response times should be consistent and have as little impact on the 

server’s resources as possible, which also improves the local user’s experience.

Table I shows the mean and standard deviation of time in seconds for each of the 16 query 

types discussed in the previous section. Bolded values indicate the approach that provided 

the best performance in either average query response time or standard deviation. Table II 

shows the global average response time if all executed queries are considered. This gives an 

indication of the resources both techniques might use when deployed. In addition to these 

summary statistics, we chose to plot our testing results in a box plot to illustrate the variance 

in performance within and across all 16 query types. Fig. 5 shows the 16 query types by the 

four variables discussed in the last section: query encounter timing, exclusion, date, and 

occurrence (frequency) constraints.

The modified queries perform fairly consistently across all 16 query types and only show a 

large variance within a population of queries in three cases: (1) a query with both an 

exclusion and frequency constraint where the concepts must occur in the same encounter, 

(2) a query with both an exclusion and frequency constraint where the concepts do not have 

to occur in the same encounter, and (3) a query with exclusion, date, and frequency 

constraints where the concepts must occur in the same encounter. In all three cases, the CTE 

queries performed better on average. The variation seen in these queries is relatively small 

(10–20 seconds) when compared to the stock query generator’s largest variation (293–516 

seconds).

As Fig. 5 shows, the stock queries performed very inconsistently with highly varying 

minima, medians, and maxima. Furthermore, the inter-quartile range for the stock queries is 

much higher (almost twice the size) than those for CTE-based queries in 15 of the 16 types 

of queries. A non-parametric binomial test of proportions shows that significantly more than 

half (59%, p<0.0001) of the queries required less computing time for our modified 

approach; for these queries, the mean difference between stock and modified execution 

times was 125.66 seconds (s.d. 297.61), which indicates a significant, positive change in 

user experience. For the queries where stock outperformed our modified generator, the mean 

difference of execution times was only 1.21 seconds (s.d. 5.54).

The testing also reveals several use-cases in which the stock procedural approach performs 

much more poorly than to be expected, such as a query with same encounter timing paired 

with an exclusion constraint. We feel this is a typical use case that many users are interested 

in. For example, this could be a query that is looking for patients who have diabetes but are 

not recorded to have hypertension in the same encounter. This test case and a few others in 

the same encounter timing query types present a great deal of variance and represent an 

unpredictable impact on server resources and the user’s experience.

There are query types in which the stock approach outperformed the modified CTEs, such as 

the simplest case where no constraints are chosen at all. In these cases, both methods 

produced queries that finished in less than one or two seconds on average, likely resulting in 

no substantial difference in the user’s experience. Additionally, all of the modified CTEs 
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performed well under the 180 second timeout feature of the web-client user-interface, which 

would provide each user with a better experience in either concurrent-user systems or in 

systems that support i2b2 SHRINE.

Our solutions were implemented for Microsoft SQL Server, but i2b2 is released for both 

Microsoft and Oracle systems. Publishing an Oracle-compatible package is left as future 

work; common-table expressions and all other tuning features can be leveraged in an Oracle 

environment. We are confident we would see performance gains in a similar Oracle 

environment because there are principal differences in our query techniques. We generate 

relational queries that require only a single database transaction and thus are more friendly 

to the internal optimizer; this is partly why we see a high degree of parallelism. The stock 

technique generates procedural queries that require multiple transactions, which paralyzes 

the optimizer and inhibits parallelism. These philosophical differences in techniques are 

expected to carry performance differences regardless of architecture. We also acknowledge 

that testing across varying hardware configurations may provide insight into the relationship 

between memory and disk usage for these approaches. We currently use our approach in our 

production i2b2 environment and provide this as an open-source [21] proof of concept for 

SQL Server.

The key benefit of this work is that it can improve the users’ experience by reducing 

response times and ensuring consistent performance regardless of the logical constraints of 

their queries. In i2b2, this is demonstrated by our queries returning far more quickly than the 

default 180 seconds that queries are allowed to run in the user-interface. Because a queue for 

queries submitted by the users is used to delegate resources, returning result sets quickly is 

crucial. Otherwise, queries that take far too long to complete can block activity from other 

users, which would be especially critical to address in a federated query network such as 

SHRINE.

V. Conclusion

We have shown that stable and scalable Boolean queries can be constructed using common 

table expressions. This improvement is purely algorithmic and the result of elegant relational 

programming. Hardware improvements can also provide performance gains but require a 

costly investment. The improvements we have presented can be installed and integrated into 

an i2b2 system in a short amount of time and can provide performance gains with no 

investment of additional financial resources. Because of their low cost, these types of 

graceful programming solutions are crucial. Furthermore, without scalable algorithms, 

clinical and translational science cannot be performed at a national level. Translational work 

must ultimately bridge and transcend across individual institutions, which is only possible 

with truly scalable architecture. Our contribution enables efficient local querying, which in 

turn, enables efficient federated querying.

Our experiments also describe an evaluation methodology that provides a means of profiling 

and comparing CDW performance using one or more algorithmic approaches across a range 

of query types, and for tuning CDWs for the types of queries that are most common to local 

user needs. The process of enumerating the possible query types and randomly generating 
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queries per type gives a good indication of the global performance profile and may help 

avoid local institutional biases.
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Fig. 1. 
The general framework of a CTE containing N common tables that join N select statements. 

In each common table, a select statement determines the result set and previous common 

tables can be referenced in subsequent ones. The last SELECT statement dictates what the 

final result set will be.
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Fig. 2. 
Overview of the CTE-generation process. In stage 1, the incoming XML message containing 

the query definition is placed inside a table where groups of rows represent panels. Joined 

common tables are generated (stage 2) from generating SQL for panels (stage 3) by 

generating logically joined SQL for constraints (stage 4).
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Fig. 3. 
An example of stage 4 from Fig. 2 showing the logic needed to generate the SQL for a date 

constraint. This is conditionally based on the query definition’s values for the “to” and 

“from” of the date constraint received from the user interface; for example, if both values 

are present, a between clause is needed. This returns a SQL clause comparing “start_date”, 

which is found in the source database table.
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Fig. 4. 
An example of a patient-count query translated into common table expression.

Harris et al. Page 16

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Logarithmic-scale plot of the execution times of the randomly generated queries across the 

16 query combinations that were tested. The grey horizontal line represents the default 

amount of time (180 seconds) that the user interface allows queries to run before timing out.
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TABLE II

Average, maximum, and standard deviation of all query response times (in seconds).

Modified Query Gen. Stock Query Gen.

Avg. Time to Complete 2.03 75.82

Max. Time to Complete 89.48 2407.64

Standard Deviation 6.64 238.88
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