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Abstract

In 2007 African swine fever (ASF) entered Georgia and in the same year the disease entered the 

Russian Federation. From 2007 to 2012 ASF spread throughout the southern region of the Russian 

Federation. At the same time several cases of ASF were detected in the central and northern 

regions of the Russian Federation, forming a northern cluster of outbreaks in 2011. This northern 

cluster is of concern because of its proximity to mainland Europe.

The aim of this study was to use details of recorded ASF outbreaks and human and swine 

population details to estimate the spatial distribution of ASF risk in the southern region of the 

European part of the Russian Federation. Our model of ASF risk was comprised of two 

components. The first was an estimate of ASF suitability scores calculated using maximum 

entropy methods. The second was an estimate of ASF risk as a function of Euclidean distance 

from index cases.

An exponential distribution fitted to a frequency histogram of the Euclidean distance between 

consecutive ASF cases had a mean value of 156 km, a distance greater than the surveillance zone 

radius of 100–150 km stated in the ASF control regulations for the Russian Federation. We show 

that the spatial and temporal risk of ASF expansion is related to the suitability of the area of 

potential expansion, which is in turn a function of socio-economic and geographic variables. We 

propose that the methodology presented in this paper provides a useful tool to optimize 

surveillance for ASF in affected areas.
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1. Introduction

African swine fever is a viral disease of wild and domestic pigs. The causative agent of ASF 

is an Asfivirus, the only member of the Asfarviridae family. ASF is transmitted by direct 

contact of infected and susceptible pigs or by ingestion of contaminated feed. Ornithodoros 

ticks can also act as vectors for ASF.

ASF disease is endemic in wild and domestic pigs in most countries of Central and Southern 

Africa as well as on the islands of Sardinia and Madagascar (FAO, 2007). Large-scale 

outbreaks of ASF were recorded from 1930 to 1980 in Europe (Spain and Portugal) and 

Central America (Cuba and the Dominican Republic). The outbreak of ASF that occurred in 

Spain in 1960 took 35 years to eradicate (Penrith and Vosloo, 2009).

In 2007 ASF entered Georgia and spread throughout the country (Chapman et al., 2011). In 

the same year the virus entered the Russian Federation. Wild boar were affected initially, 

with disease spilling over to domestic swine populations in 2008 (FAO, 2008). From 2007 

to 2012 ASF spread throughout the southern region of the Russian Federation forming an 

endemic zone of approximately 600 000 square kilometers. More than 300 outbreaks were 

identified in domestic swine and wild boar (Sus scrofa) herds within this zone. At the same 

time several cases of ASF were detected in the central and northern regions of the Russian 

Federation, forming a northern cluster in 2011. The presence of this northern cluster is of 

concern because of its proximity to mainland Europe (Costard et al., 2013).

Disease can be acute, sub-acute or, in rare cases, chronic. In the acute form mortality rates 

are high, approaching 100%. There is no vaccine against ASF and in affected countries ASF 

outbreaks can have substantial economic impacts arising from the implementation of bans 

on the transportation of pigs and product associated with pigs in addition to depopulation of 

affected premises (Anonymous, 1980). In the Russian Federation in 2010 and 2011 it was 

estimated that the cost of ASF was in the order of 56.8 million Euros (Dudnikov et al., 

2012).

Analysis of the sequence of ASF outbreaks in the Russian Federation for the period 2007–

2012 has shown that cases occur in close proximity as well as at distances of several 

hundred kilometers (Gulenkin et al., 2011; Oganesyan et al., 2013; Khomenko et al., 2013). 

Time intervals between case detection vary from zero to a few weeks. Acknowledging that 

the spatial and temporal characteristics of ASF spread are dependent on the physical features 

of an affected area as well as the geographic distribution of the domestic and wild animal 

populations at risk and the frequency of contact between them, we propose a probabilistic 

approach for estimating the likely location of subsequent ASF outbreaks following detection 

of index cases. This provides a method for defining the boundaries of surveillance areas that 

better reflect the spatial distribution of disease risk at a given point in time. Appropriate 

surveillance area boundaries increase the likelihood that effective disease control measures 

will be applied when and where they are required. In turn, this increases the probability that 

disease control and eradication strategies will be successful.
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2. Materials and methods

2.1. Data

Details of the location and date of detection of ASF cases that occurred in the southern 

region of the European part of the Russian Federation for the period 2007–2012 were 

provided by Center for Veterinary Medicine (Moscow) and the State Research Institute of 

Veterinary Virology and Microbiology (Rosselkhoznadzor, 2013).

In the Russian Federation, when a herd manager suspects a case of ASF in wild or domestic 

pigs he or she notifies the regional veterinary service. A tentative diagnosis of ASF is then 

made with samples forwarded to the State Research Institute of Veterinary Virology and 

Microbiology for confirmation. Following conformation the Federal Service for Veterinary 

and Phytosanitary Surveillance is notified. Notification details include the name of the 

populated place in which the infected herd is located, an estimate of the total number of 

animals at risk, the number of animals with clinical signs at the time of diagnosis, the 

number dead, and the date of onset of clinical signs (if known) and the date on which 

disease was confirmed. The Federal Service for Veterinary and Phytosanitary Surveillance 

maintains a database of incident case details including the longitude and latitude of the 

centroid of the populated place of diagnosis. These details are reported to the Office 

International des Epizooties (OIE) at regular intervals.

The geographical area of interest for this study was the south European region of the 

Russian Federation, as shown in Figs. 1 and 2. Incident cases of ASF in domestic pigs 

identified between 1 January 2007 and 31 December 2012 (n = 211) were selected for 

analysis.

Digital maps of primary and secondary roads and location details of populated places 

(including cities, urban settlements, rural settlements and villages) within the Russian 

Federation were obtained from the Environmental Systems Research Institute for the 

Commonwealth of Independent States (ESRI-CIS, 2014). We assumed that rural settlements 

and villages were places where privately owned, backyard pig populations were (or had the 

potential to be) kept. Data on human and domestic pig populations in the Russian Federation 

were obtained from the Russian Federal State Statistics Service (Federal State Statistics 

Service, 2013). Human population counts were classified as either urban or rural. Urban 

populations were assumed to reside in cities and urban settlements whereas rural populations 

were assumed to reside in villages and rural settlements.

Estimates of the domestic pig population were based data collected by the Federal State 

Statistics Service (Anonymous, 2013). Domestic pigs were categorized into three main sub-

populations: (a) backyard and small-scale enterprises, generally considered to have low 

biosecurity measures; (b) medium size enterprises, again considered to have low biosecurity 

measures; and (c) large, state-owned farms with high biosecurity measures (Oganesyan et 

al., 2013). The location of large, state-owned pig farms were georeferenced using data 

collected by the National Alliance of Pig Breeders.
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2.2. Statistical analyses

Statistical analyses were carried out in two stages. For the first stage a raster map of ASF 

suitability scores was developed using combinations of geographic and human-animal 

demographic factors. Based on the findings of Gulenkin et al. (2011) variables hypothesized 

to be associated with ASF outbreak risk included human population density in rural and 

urban areas, settlement density, city density, primary and secondary road network density, 

the density of backyard, medium sized and large, state-owned pig enterprises and total pig 

population density. Raster maps were developed providing an estimate of the number of 

individuals (in the case of the human and pig population data) or objects (in the case of 

settlements, cities, road networks and pig enterprises) per square kilometer using the kernel 

density estimation function in the Spatial Analyst Toolbox in the Geographic Information 

System ArcGIS version 10.2 (ESRI, Redlands, CA, USA). Estimates of the number of 

humans and the number of swine at each point location were assigned to each point location 

and analyses were carried out using a regular grid of 1000 × 1000 m and a Gaussian kernel 

of radius (bandwidth) 100 km.

Maximum entropy methods (Phillips et al., 2006; Phillips and Dudik, 2008) were used to 

create a raster map of ASF suitability scores. Maximum entropy methods have most 

frequently been used in ecology to model wildlife presence-only data (Elith et al., 2011; 

Mischler et al., 2012). In an ecological context the technique compares a set of known 

locations of a particular species of interest against a set of environmental and climatic 

factors represented by continuous or categorical variables. An output of the model is the 

probability that a given grid cell will contain the outcome of interest, calculated as a 

function of the environmental and climatic factors within each cell. Predictive accuracy of 

the model can be assessed by calculating the area under a receiver operating characteristic 

curve (Greiner et al., 2000) computed using predictions from the model.

For this application we used maximum entropy methods to model the distribution of ASF-

affected locations throughout the study area. Locations of ASF outbreaks in domestic swine 

in the southern region of the Russian Federation for the period 1 January 2007 to 31 

December 2012 were treated as the points of known events (presence data). The raster maps 

of geographic and human-animal demographic factors described earlier were used as 

explanatory variables for the model. Analyses were carried out using Maxent version 3.3.3 

(Phillips et al., 2006; Phillips and Dudik, 2008).

At the outset, all hypothesized explanatory variables were included in the model. Jackknife 

statistics were used to quantify the relative contribution of each variable on the estimated 

probability estimate. Explanatory variables that contributed less than 1% were removed 

from the model. One hundred Monte Carlo replications were used to obtain means and 95% 

confidence intervals for response curves characterizing the association between each of the 

geographic and human-animal demographic factors and the probability of a grid cell being 

ASF positive. The model was trained by selecting half of the number of points and running 

the model on the remaining number of observations. Output of the maximum entropy 

procedure is a raster surface that corresponds to the median probability distribution of ASF 

outbreaks in the study area, which we term RS.
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For the second stage of our analyses, the distributions of Euclidean distances and time 

intervals between consecutive ASF outbreaks were calculated and plotted as frequency 

histograms. A parametric probability distribution was fitted to each plot using the BestFit 

procedure implemented in the spreadsheet add-in @RISK (Palisade Corporation, Ithaca, 

NY, USA). To model the likely location of future ASF outbreaks we chose the most recent 

(i.e. the ‘last’) case of ASF in a recorded case series, defining it as the index case. Using the 

probability distribution of distances we constructed a functional distance surface (termed 

RD) with the maximum value of 1 at the location of the index case and decreasing to zero as 

distance from the index case increases. Conditional on a subsequent case of ASF occurring 

following the identified index case, the RD surface provides an estimate of the likely 

location of the subsequent case, dependent on proximity to the index case.

To obtain a final risk estimate of ASF (RF) the raster map of ASF suitability scores (RS) was 

multiplied by the raster map of functional distance estimates (RD):

(1)

Internal validation of the model was performed by taking a random sample of 10% of index 

cases from the dataset comprised of 211 ASF outbreaks. The model was built for each of the 

selected cases and an RF surface produced. A mean and a 95% confidence interval were 

calculated for the RF surfaces.

3. Results

The following explanatory variables explained most of the variation in ASF risk: density of 

the rural population (59%), pig population density in the low-biosecurity sector (23%), 

density of rural settlements (15%) and density of secondary roads (4%). In Fig. 3 the 

estimated suitability surface RS is superimposed over a map of the study region and the 

point location of ASF outbreaks for the period January 1997 to 31 December 2012. This 

surface reflects the suitability of a given area for the occurrence of ASF, based on the values 

of the explanatory variables used to develop the model. Based 100 replications of the data 

the mean area under the receiver operating characteristic curve was 0.934 with a standard 

deviation of 0.015.

An exponential distribution was fitted to the frequency distribution of Euclidean distance 

estimates. A mean of μD = 156 (range 4–576) km provided the best fit to the data. An 

exponential distribution was fitted to the frequency distribution of time intervals between 

consecutive outbreaks, with a mean μT = 7.5 (range 0–28) days providing the best fit to the 

data.

To illustrate our technique the last case in the sequence of recorded ASF cases with the 

geographical coordinates of 56.91°N and 40.97°E was selected as the index case (Fig. 4). A 

raster map of functional distance estimates RD = exp(−x/μD) was constructed with the 

maximum value of one equal to the location of the index case. Here, x represents the 

distance from the index case (in kilometers) and μD = 156 km. This surface provides a 
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measure of the risk of a new ASF case occurring as a function of distance from the index 

case (Fig. 4).

The raster map of final ASF risk (that is, the product of RS and RD) is shown in Fig. 5.

The resulting risk surface RF was normalized by dividing all values by the maximum in 

order to fit the range [0, 1]. This surface shows the spatial distribution of ASF risk at given 

scales of distance from a prescribed index case.

Validation of the model showed that for 21 randomly selected index cases the next 

outbreaks occurred in locations with a (relatively high) mean RF value of 0.63 with standard 

deviance of 0.28.

4. Discussion

The aim of this study was to develop a risk map to provide an indication of the spatial 

distribution of ASF risk using case details recorded up to a given point in time. In this model 

the risk of ASF occurrence is the product of two components. The first is an estimate of ASF 

suitability scores. The second is an estimate of ASF risk as a function of Euclidean distance 

from the most recent (‘index’) ASF case. The raster map of functional distance estimates 

was obtained by an analysis of the distribution of Euclidean distances between each two 

consecutive ASF outbreaks recorded in the Russian Federation during 2007–2012. The 

resulting mean value of the distribution equal to 156 km (with a 95% confidence interval of 

4–576 km) exceeds the conventional radius of surveillance zone set to 100 km. According to 

the current ASF control regulations in the Russian Federation (Anonymous, 1980) a 

surveillance zone of between 100 and 150 km should be set up around identified ASF 

outbreaks. In the usual situation the smaller value is routinely applied. Therefore, from the 

point of view of preventing virus from escaping from an infected site and ensuring that 

disease will be promptly detected if it has already spread from that site it is recommended 

that the veterinary service expand the radius of a surveillance zone to at least 150–160 km.

The average value of the time period between consecutive outbreaks was 7.5 (range 0–28) 

days suggests that ASF spreads rapidly among a susceptible population at risk. Gulenkin et 

al. (2011) showed that for an observation period of 15 days the average number of outbreaks 

varied from 2.25 to 2.83, which agrees with our data. It should be noted that often there is 

uncertainty in terms of the accuracy of the onset date of clinical signs with the presence of 

disease reported to authorities days or even weeks after the actual start of the outbreak 

(Oganesyan et al., 2013). This being the case, it is likely that the dates of onset reported in 

this study are, on average, overestimated and inferences should therefore be made using the 

25th quantile of the time between consecutive outbreaks, instead of the median.

The raster map of ASF suitability scores was based on the distribution of the rural 

population and agricultural activities carried out by those populations. This approach 

provides a means for delineating the spatial distribution of the population at risk that is not 

possible using a simple ring-based techniques.
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We can point to a number of constraints to the analytical approach presented in this paper. 

First, modeling was carried out using only those ASF cases identified in the south European 

region of the Russian Federation for the period 2007–2012. At the time the model was 

developed the number of cases in the central and northern regions of the Russian Federation 

were insufficient to develop reliable estimates of case-case distances. We caution that while 

the approach presented in this paper provides a rational methodology for estimating risk in 

the region in which data were collected, application of the model to regions outside of the 

study area of interest may lead to incorrect inferences.

Second, our model does not account for wild boar as a means for transmission of virus 

between domestic pig enterprises. We acknowledge that wild boar are likely to have an 

important impact on disease spread and an improvement to our methodology would be to 

include estimates of the spatial distribution of wild boar as an input for the maximum 

entropy model. Finally, while the agricultural census data provided a reasonable proxy for 

the swine population at risk precise details of the location of the domestic pig population in 

the south European region of the Russian Federation were not available for analysis. Similar 

to most developed countries, agricultural census details in the Russian Federation are 

collected at the individual enterprise level and livestock counts are aggregated (for 

reporting) to the district and/or regional level. It makes sense that census authorities should 

ensure that individual enterprise count and location details are recorded and stored, to better 

inform the models presented in this paper.

In conclusion, we show that the spatial and temporal risk of ASF expansion is related to the 

suitability of the area of potential expansion, which is in turn a function of socioeconomic 

and geographic variables. We propose that the methodology presented in this paper provides 

a useful tool to optimize surveillance for ASF in affected areas.
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Fig. 1. 
Map of the European part of the Russian Federation showing the location of ASF outbreaks 

recorded from 1 January 2007 to 31 December 2012. The rectangle delineates the borders of 

the study area.
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Fig. 2. 
Map of the south European region of the Russian Federation showing the location of 

detected ASF outbreaks in domestic pigs, 1 January 2007 to 31 December 2012.
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Fig. 3. 
Map of the south European region of the Russian Federation. Superimposed is a raster map 

of ASF suitability scores.
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Fig. 4. 
Map of the south European region of the Russian Federation. Superimposed is a raster map 

of the functional distance surface, computed using an index case at geographical coordinates 

of 56.91°N and 40.97°E.
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Fig. 5. 
Map of the south European region of the Russian Federation. Superimposed is a raster map 

of estimated ASF risk computed as the product of the raster map of ASF suitability scores 

(Fig. 3) and the raster map of functional distance (Fig. 4).
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