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Abstract

Pattern formation is a fundamental morphogenetic process. Models based on genetic and 

epigenetic control have been proposed but remain controversial. Here we use feather 

morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first 

expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or 

inter-bud regions (de novo mode, appear later). They either activate or inhibit bud formation, but 

paradoxically co-localize in the bud. Using feather bud reconstitution, we showed that completely 

dissociated cells can reform periodic patterns without reference to previous positional codes. The 

patterning process has the characteristics of being self-organizing, dynamic and plastic. The final 

pattern is an equilibrium state reached by competition, and the number and size of buds can be 

altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital 

Hormone Model which consists of (1) competent cells without identity that move randomly in a 

space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and 

activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions 

manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged 

in dots or stripes. Thus genetic control provides combinational molecular information which 

defines the properties of the cells but not the final pattern. Epigenetic control governs interactions 

among cells and their environment based on physical-chemical rules (such as those described in 

the Digital Hormone Model). Complex integument patterning is the sum of these two components 

of control and that is why integument patterns are usually similar but non-identical. These 

principles may be shared by other pattern formation processes such as barb ridge formation, 

fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to 

swarming robot navigation, reaching intelligent automata and representing a self-re-configurable 

type of control rather than a follow-the-instruction type of control.
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The formation of each organ goes through induction, morphogenesis, and differentiation 

stages. During the morphogenesis stage, the shape, pattern, and size that constitute the 

functional form of an organ are laid down. Pattern formation is one of the fundamental 

processes that take place during the morphogenesis stage. The easiest patterns to observe are 

found on the integument (Bereiter-Hahn et al., 1986). The striking examples of Integument 

pattern formations are the avian plumages, leopard dots, tiger stripes, etc. In Fig. 1, we can 

appreciate examples of different integument patterns which grace our eyes that are produced 

by Nature.

How do these patterns form? Are they under strict genetic control? Then, why are many 

patterns similar but not identical. Are they under epigenetic control? Then why do patterns 

appear to be amazingly consistent in animals of the same species? In the past, many 

theoretical models have been developed for pattern formation, but they lack molecular and 

cellular foundations (summarized in Held, 1992). During the past decade, major molecular 

signaling pathways underlying development have been identified. Many laboratories using 

different experimental models have attempted to unlock the mechanisms underlying pattern 

formation. Results obtained from the Drosophila integument suggest that many patterns are 

under major genetic control (Simpson, 2002). However, are vertebrate integument patterns 

also under genetic control? Here we will first present a few general examples, then we will 

use the avian integument as the experimental model to study the mechanisms of pattern 

formation.

Patterns on the integument

Skin appendages

Hairs and feathers are regulated by morphogenesis factors which determine both the location 

and form of the follicles. Many of the theories pertaining to feather follicle formation have 

been applied toward hair follicle formation and patterning. Nagorcka and Mooney (1985) 

postulated that a reaction - diffusion mechanism could account for variations in hair 

distributions producing different patterns in different regions of an individual's skin, such as 

stripes and spots. These patterns are predicted to be interchanged by altering a single 

parameter. An example of regional specificity in patterning can be seen in the different 

feather types and pigmentation patterns present in different regions of the pheasant 

integument (Fig. 1A).

The development of hair, sweat glands and teeth can all be blocked by a pathway regulating 

anhidrotic ectodermal dysplasia (Headon et al., 2001). This pathway consists of Eda (Tabby 

in mice) and its receptor, Edar (downless in mice) (Pispa and Thesleff, 2003). Binding of 

Eda to Edar triggers epithelial appendage differentiation. While an understanding of the 

basic pathway is understood, details remain to be determined. These studies demonstrate a 

strong genetic component is involved in integument patterning.
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Hairs, feathers, sweat glands, etc. are all epithelial derivatives of epithelial - mesenchymal 

interactions (Chuong edit, 1998). The development of hair follicles have been described 

(Paus et al., 1999). In the mouse, the primary follicle was laid down first. They are followed 

by the secondary hair follicles (Botchkarev et al., 2002) that are positioned in between. In 

some animals, the arrangements appear random (e.g., human), while in others the 

arrangements appear to be regular and follow some pattern (e.g., sheep) (Moore et al., 

1998). Later rounds of initiation can produce compound hair follicles, where existing 

follicles become branched. Using sheep skin as a model, the follicle population density was 

found to inversely correlate with the follicle diameter. In general follicle size corresponded 

to dermal papilla size (Moore et al., 1998).

Fingerprints and skin ridges

It is said that no two people have the same fingerprints. Fingerprints develop early in fetal 

development and are complete by about 7 months after conception. They do not change after 

the configuration is set unless the finger sustains a wound. While similar genetic factors 

would tend towards identical patterns, local environmental factors within the amnion can 

influence the shape of fingerprints, so even identical twins have some identifiable variations 

that can be distinguished (Fig. 1C; Jain et al., 2002). Although all fingerprints contain 

similar elements (ridges which form arches, loops, whorls) they are arrayed differently in 

each individual. There can be variations in ridge thickness, inter-ridge distance, ridge depth, 

the number of ridges which comprise a given element, ridge anomalies, element placement 

and orientation.

How do these papillary ridges develop with such distinct morphologies? The fact that even 

identical monozygotic twins have some differences in their fingerprints indicates that 

fingerprints are distinct because they are formed following rules dictated by reaction - 

diffusion rather than through a pre-patterning mechanism. Hence, each individual develops 

fingerprints, but the arrangements come from competition between cellular properties and 

the local micro-environment.

What purpose do they serve? Papillary ridges are more pronounced in evolutionary 

ancestors than they are today. They probably aided in grasping and climbing trees as well as 

tactile perception. There are a range of papillary ridges and their characteristics play an 

important role in an organism's ability to adapt to its ecological niche. Nowhere is this more 

evident than on the variety of skin ridges found on some marsupials (Hamrick, 2003). 

Climbing didelphid marsupials, such as the philander opossum, have prominent and 

elongated papillary ridges on their digits, which presumably have helped them to adapt to 

their arboreal habitats. Swimming didelphid marsupials, such as the chironectes, have 

epidermal projections which extend radially from the rounded papillary ridges on their 

forelimbs and rounded papillary ridges without epidermal projections in the hind limbs. 

Chironectes feed under water. The shape of the papillary ridges on their forelimbs 

presumably helps with the detection of sensory stimulation from each direction.

Another example of skin ridges are those present on dolphins. These become evident at the 

level of the blow hole and eyes and continue back to the dorsal fin. These circumferential 

bands are oriented perpendicular to the long body axis. Their spacing is about equal to the 
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distribution of the underlying dermal papillae (Fig. 1D). Their distribution suggests cell 

lineage may play a role in forming the dolphin integument. These ridges may aid 

hydrodynamics during swimming. Dolphin skin is sensitive to pressure on its surface. 

Muscles underlying the skin are believed to produce microvibrations on the skin surface, 

reducing drag and turbulence and enabling these fleet animals to move quickly through the 

water (Ridgway and Carder, 1993). The amazing hydrodynamically arranged lines suggest 

that their formation may be the result of interactions between the skin and the environment. 

It would be most interesting if we can study the developmental formation of these lines from 

newborn dolphins.

Pigment patterns

In addition to the regional specific integument phenotypes and appendage distribution 

patterns, there are striking color patterns on the integument (Fig. 1 A,B). Leopards have 

spots and zebras have stripes. How are these pigmentation patterns determined? Research on 

pigmentation in fish has shown that as the fish continue to grow new spots are produced 

between the existing spots (Asai et al., 1999). New stripes also form between existing 

stripes. Stripes have branch points which migrate over time (Kondo and Asai, 1995). These 

patterns are consistent with the reaction - diffusion model (Prum and Williamson, 2002). 

Using zebrafish, investigators have begun to identify some of the molecules that may be 

responsible for pigmentation patterns. Wildtype zebrafish are striped. Using different 

mutations of the leopard gene, which affects melanocyte patterns, there was a breakdown of 

the stripes into spots (Asai et al., 1999). Mutations of genes that affect pigment cell 

differentiation also affect pigmentation patterns (Parichy and Johnson, 2001). Striped and 

spotted pigment patterns are seen in the integument of many species (Fig. 1 A,B).

Migrating striped pigmentation patterns were observed in mice carrying a mutant allele 

similar to that found in nude mice (Foxn1) (Suzuki et al., 2003). This mutation terminates 

hair follicle development just after pigmentation begins to accumulate. The terminated hair 

follicle is then replaced by a new hair follicle which goes through the same process. 

Pigmentation develops in a broad swath of the skin which separates into two bands 

migrating in opposite directions. The ensuing patterns resemble those reported by Belousov 

for oscillating chemical waves (reviewed in Winfree, 1994). It actually reflects the 

oscillation of hair cycles.

Pigment patterns from two adjacent feathers have similar basic patterns, but the specific 

patterns can differ slightly. Each of the feathers in Fig. 1E has a striped side and a flecked 

side. The width of the stripes and spacing between the stripes is fairly well conserved. The 

patterns on the flecked side are similar but not identical, yet these are adjacent feathers and 

therefore, the genetics are identical. This finding suggests that genetics sets up a basic 

pattern, but that lineage and local interactions carry out the patterning process.

Human Blaschko lines

The lines of Blaschko reflect the distribution of acquired skin diseases and were described 

over 100 years ago (Fig. 1F; Happle, 1985). In some areas the lines are straight; in others 

they follow large swirls. Skin diseases have been found to be isolated to half or one quarter 
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of the body. While the mechanism underlying the source of these patterns remains unknown, 

it appears as though they represent somatic mutations which occur in particular lineages of 

migrating cells from early stages of skin morphogenesis. The migration would be dependent 

on interactions with neighboring cell lineages and so the general structure of the pattern 

would be specified, but the specific details of the pattern would be determined by local 

cellular interactions.

The formation of feather patterns

The avian integument, an organ made up of epidermis, dermis, appendages, muscles, nerves, 

etc. have been used as a major model in developmental biology (Sengel, 1976; Yu et al., 

2004). The avian integument includes feathers, scales claws, beaks, and combs. They offer 

distinct patterns at various stages of development and are accessible to analysis using state 

of the art technology (Widelitz et al., 2003). Although many genes are implicated in the 

growth and differentiation of the feather buds, little is known about how the discrete pattern 

of the feather array is formed (Crowe et al. 1998) and how the location, number and size of 

these repetitive elements are determined (Jiang et al., 1999). In birds, the main appendages 

are the feathers and the foot scales. In chick embryos, the feather buds arise in a distinct 

spatial and temporal pattern. The formation of periodic patterns is of fundamental 

importance in embryonic development. In this review, we will focus on the feathers to 

describe the pattern formation.

Feather pattern formation is a complex morphogenic phenomenon. Its formation results 

from a series of inductive events between the ectoderm and the subectodermal mesoderm 

derivatives, involving many fundamental cellular processes that are widely studied by basic 

scientists. The distinct pattern and form of feathers provide an excellent biological case 

study that can be appreciated by scientists of different disciplines to learn how nature uses 

different strategies to produce simple forms first, and then integrate them to form complex 

patterns. The study of the avian integument and pattern formation will lead to a better 

understanding of basic developmental mechanisms.

In summary, the integument shows a hierarchy of patterning. First, genetics regulates the 

capabilities of the epithelium and mesenchyme. Second, cell lineage influences the 

placement of cells, their interactions and local environment which can influence skin 

appendage phenotype. Labeling the chicken epithelial precursor cells near the spinal column 

with a LacZ construct demonstrated their migration out in parallel lines perpendicular to the 

spinal column (Fig. 2E; Chuong et al., 1998) following similar patterns as the lines of 

Blaschko found in humans (Happle, 1985). Third, a propagation wave is frequently seen in 

vivo. This must be coupled with periodic patterning in some way, but is driven by a global 

force sweeping across the integument to set up skin regions (tracts). Fourth, stochastic 

events which regulate periodic patterning and the distribution of individual skin appendages 

take place within the tract field.

Macro-patterning: feather tracts

How does integument patterning occur? Regions of the skin first are separated into distinct 

tracts (Fig. 2 C,F). Skin appendages within a tract will grow with characteristic 
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arrangements, including their size, shape, length, orientation, etc. which may differ from 

those found in neighboring tracts. The chicken integument contains about 20 tracts separated 

by apteric (naked) regions (Mayerson and Fallon, 1985; Lucas and Stettenheim, 1972). 

Fractionating the integument into domains promotes the formation of diverse structures with 

expanded functional capabilities distributed with regional specificity.

How are different tracts formed? Tracts form by the migration of epidermal and dermal 

precursor cells. The precursors for different tracts are derived from different regions. In the 

spinal tract the dermis originates from the dermatome of the somite. The migration and 

survival of these dermal precursors involve Wnt1 signaling (Olivera-Martinez et al., 2001, 

2002). Once in the spinal tract, these cells proliferate and form a dense dermis which signals 

to its overlying competent ectoderm to form a feather tract. NCAM expression (Chuong and 

Edelman, 1985a) is up regulated in the dense dermis. β-catenin expression marks the 

competent epithelium (Fig. 2C; Widelitz et al., 2000). Different Wnt members play distinct 

roles at these different hierarchical levels (Chang et al., 2004a). These molecules are not just 

early markers, but also confer essential properties to these cells (Fig. 3).

Micropatterning: individual feather buds

Once the tract has formed, when a threshold of dermal cell density in the tract field is 

reached, a self-organizing process forms periodically-arranged dermal condensations 

subdividing the originally homogenous feather field into bud domains and interbud domains 

(Jiang et al., 1999).

The message to form a feather primordium initiates from the dermis. Through epithelial - 

mesenchymal signaling, dermal condensations followed by epithelial placodes are formed 

(Sengel, 1976). The placement of dermal condensations determines the location of induced 

feather primordia (Jiang et al., 1999). In each tract field, the feather primordia form in a 

relatively specific sequence (Mayerson and Fallon, 1985), reflecting the progressive 

maturation of the dermis and responding epithelium. Feathers first form a primary row along 

a longitudinal line. Feathers then form spreading unilaterally (ie, femoral tract) or bilaterally 

(ie, dorsal tract) and propagate at a rate of roughly 6-8 hours per row (Jung, et al. 1998a, b). 

The buds in the lateral row usually appear at a level midway between two existing buds of 

the previous row. Subsequent rows repeat this alternating arrangement. Thus feather 

primordia appear in an orderly sequence up to the borders of each tract and form a pattern.

Models of pattern formation

Although repeated patterns are observed in feather formation, the mechanism underlying 

their formation remains controversial. These repeated structural patterns (Fig. 1A) have 

inspired scientists to think about how such regular patterns arise. Here we just summarize 

these models. For more details into the intricacies of patterning models see Held, 1992.

Code based models

Some scientists thought embryonic patterning might be based upon positional information in 

the form chemical, physical and genetic characteristics. Cells within an organism 

presumably have similar genetic characteristics, but their physical and chemical attributes as 
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well as the genes they express, would be influenced by morphogens. These extracellular 

factors would be distributed throughout the body to provide each spatial entity with a unique 

molecular signature (Wolpert, 1971). This could be accomplished if there were several 

diffusible morphogens arrayed as intersecting gradients. Cells could sense the molecular 

concentration gradients perhaps by discerning higher concentrations on one side than the 

other or by detecting changes in the concentration as they moved in any given direction. 

This would then guide these immature cells toward specific routes of differentiation. The 

discovery of graded and overlapping distributions of homeobox proteins supported the 

notion of a molecular code.

Template based models

Some wrote mathematical models to show that sequential formation is important and that the 

lateral rows are formed using the medial rows as templates (Murray et al., 1983; Oster et al., 

1983; Harris et al., 1984; Cruywagen, 1992). In the dorsal skin the initial feather primordia 

form along the midline. Then through a morphogenetic determination wave feathers sites are 

established row by row to the lateral margin (Davidson, 1983). This might occur because as 

cells move they distort the surface of cells and the extracellular matrix over which they 

move. Since the extracellular matrix is in mechanical equilibrium, cell migration creates 

mechanical traction forces that extend beyond the regions in direct contact with the 

migrating cells. This causes locally low/high concentrations of adherent extracellular matrix. 

The cells will preferentially bind to the highest concentrations of extracellular matrix and 

hence an extracellular matrix gradient is interpreted as localized pockets of cells. This 

further deforms the extracellular matrix and places tension at distant sites which guides 

additional cells toward the cell cluster and toward the sites of future cell clusters posterior 

and lateral to the initial feather primordia. Hence existing periodic patterns with specific 

intervals can act as a template and direct the formation of future periodic patterns.

Determination wave models

These models are based on a signal released from an organizer region which propagates. The 

signals can be in the form of chemicals passed by diffusion or by direct contact from cell to 

cell. In some models the cell state oscillates in a constant state of flux, but becomes fixed by 

the determination signal (clock and wavefront model; Cooke and Zeeman, 1976). This can 

only be used to explain the one dimensional formation of somites (Pourquie, 2003). Many of 

these models incorporate the concept of a competence wave where there is a narrow 

response window in which tissues can respond to the determination wave.

Equilibrium based models

A reaction - diffusion mechanism (Turing, 1952; Giere and Meinhardt, 1972; Nagorcka and 

Mooney, 1985; Moore et al., 1998; Jung and Chuong, 1998) has been used to describe 

periodic patterning in inanimate objects as well as in living systems. This mechanism can 

account for pattern formation through self-organization. In reaction - diffusion, random 

fluctuations in molecular expression become amplified to form peaks and valleys. These 

however are unstable. The peaks and valleys were later postulated to be maintained and 

propagated through chemical interactions or mechanical forces. Meinhardt and Gierer (1974, 
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2000) proposed that some molecules distributed by a reaction - diffusion mechanism might 

stimulate the production of the periodic structures (activators) while some suppress their 

synthesis (inhibitors) through auto - and cross -catalysis. Activators also have the ability to 

further stimulate the production of activators as well as induce the production of inhibitors. 

Activators were postulated to act upon a narrow band of competent epithelium (Ede, 1972). 

Inhibitors suppress the production of activators, leading to lateral inhibition. Lateral 

inhibition was first suggested to regulate the patterning of bristles by Wigglesworth (1940). 

This model was applied to feather patterning in which inhibition would produce a circular 

inhibitory zone around each forming feather bud (Ede, 1972). Lateral inhibition has since 

been found in Drosophila sensory bristle patterning. Here, cells capable of forming neurons 

express Delta which binds to its Notch receptor on neighboring cells and leads to a block of 

their further neurogenesis (Collier et al., 1996; Artavanis-Tsakonas et al., 1995). Generally, 

it has been found that activators have a narrower distribution than inhibitors. The relative 

concentration of activator versus inhibitor at any given location determines whether that 

region becomes the repeated unit or space between the units.

If the reaction - diffusion mechanism is at work, it is possible that all of the theories put 

forth are true to a degree depending on which model system is used to test them. Starting 

from a pool of equivalent cells, the reaction - diffusion model fits the observation. The other 

type is a set of rules categorized as cellular automata (Wolfram, 2002). Cells change state 

depending on the states of its neighbors. It is also based on randomness and stochastic and 

can generate different unexpected patterns. However, it lacks the movable cells and 

diffusible substances that are more close to biological questions (Shen et al., 2004). Our 

Digital Hormone Model tries to integrate these important ingredients (see ahead).

In a post-induction skin explant in which initial patterns are set, mechanical or chemical 

signaling can then take place and set up template based mechanisms or positional 

information deposition. These mechanisms may be right, but they describe later phenomena, 

not the initial patterning events.

Experimental data on feather pattern development

Classical data

Which of the above models fits the experimental data? The border of a feather tract is 

dynamic. A tract may already be formed and stabilized on one edge but still progressing on 

another front. When the spinal cord and somite were removed surgically or the embryos 

were treated with glucocorticoid, the spinal tract was interrupted and the femoral tract 

enlarged in compensation (Zust, 1971; reviewed in Sengel, 1976). The fusion of femoral 

tracts or the fact that scapular tracts became adjacent following the absence of a part of the 

spinal tract was studied by Olivera-Martinez et al., 2001. This work shows that embryonic 

epithelial cells have the ability to become part of either tract or apteric regions and that the 

“territory” of feather tracts are plastic. That is they are not pre-mapped strictly but can be re-

adjusted depending on wounding or developing conditions. Thus, the apteric zones that form 

between two tracts is the result of competition and balance, not a predetermined border.
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Feather patterning also has been studied using skin explant cultures in classical studies and 

epithelial - mesenchymal reconstitution assays (Jiang et al., 1999). These experimental 

models provide an opportunity to modify experimental factors in order to examine the 

possible mechanisms regulating feather tract formation

To determine where the organizer was during regulating feather pattern formation, 

longitudinal incisions were made at three locations in skin explant cultures. The first was 

along the first lateral row of feathers. The second excised the mid-dorsal initial row entirely. 

The third was along the mid-dorsal line and bisected the mid-dorsal rudiments. When the 

mid-dorsal row was either eliminated or damaged, explants made from younger skin 

reorganized and formed a feather pattern. This indicates that the skin was capable of self-

organizing into feathers at a location corresponding to a primary morphogenetic zone. This 

morphogenetic wave then spreads to lateral regions as development progresses. The 

observed hexagonal feather pattern was not predetermined since the position of each feather 

rudiment was not pre-established (Sengel, 1978; Linsenmayer, 1972; Novel, 1973). Rather, 

all dermal cells could participate in the construction of a condensation.

How do dermal cells form an organized pattern during development? Dermo-epidermal 

recombination cultures were used to analyze the influence of the epithelium on dermal 

condensation formation. The epidermis and dermis were separated and then replaced aligned 

at 90° or 180° with respect to each other. In explants whose epidermis and dermis 

maintained the original alignment, new feathers formed along the midline and then 

subsequent rows formed lateral to the primary row (Novel, 1973). However, when the 

components were aligned after 90° or 180° rotation the formation of the new primary row 

depended upon the stage of the epidermis and the dermis. If recombinations were performed 

using material from early developmental stages (E6.5) the epithelial - mesenchymal 

interactions are reset and the primary row forms along the orientation of the dermis. Hence 

signals from early stage dermis can determine the location of the feather primordia at non-

predetermined locations. However, the epidermis determines the anterior-posterior polarity. 

Similar results were shown in studies recombining feather forming epithelium and 

mesenchyme from E7 chicken embryos (Chuong et al, 1996). At later stages (E7.5), the 

primary row was already established and was maintained relative to the midline of the 

epidermis. Recombinations of scale forming epithelium and mesenchyme from E10-13 

chicken embryos also could induce skin appendages whose shape was determined by the 

dermis but the overlap was determined by the epidermis (Sullivan, 1972).

The capabilities of the epithelium and mesenchyme were further tested using hetero- animal 

class recombination experiments involving reptiles vs. birds, reptiles vs. mammals and birds 

vs. mammals (Dhouailly, 1975). Here chick dorsal dermis induced scale primordia or hair 

buds from the lizard or mouse epidermis respectively, but they are distributed according to 

the feather pattern. Chick scale forming dermis induced scales and hair follicles from the 

lizard or mouse epidermis respectively, but they are arranged like avian scales. Dorsal 

mouse dermis induced large and small scales, feather filaments or hair follicles from chicken 

and mouse epidermis, but they are in hair distribution pattern. The upper lip mouse dermis 

induced enlarged scales, feather filaments, or whisker follicles distributed in a typical 

vibrissa pattern. Dorsal and ventral lizard dermis induced a dorsal and ventral arrangement 
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of scales, respectively. Only lizard dermis could not effectively induce skin appendage 

patterns from chicken or mouse epidermis. These experiments demonstrated that skin 

appendage patterning was determined by the dermis and the message can be “understood” 

among birds, mammals and reptiles.

Restrictive versus de novo modes of molecular expression

We now know that tissue interactions are mediated by underlying molecular interactions. 

Changes in molecular expression often precede the appearance of physical changes. Several 

laboratories have sought to establish molecular expression patterns within the developing 

feather tracts and feather primordia using in situ hybridization and immunostaining (Chuong 

et al., 1996; Jung et al. 1998a, Noramly and Morgan, 1998; Crowe et al., 1998; Viallet et 

al., 1998). In general two expression patterns have been identified. Some molecules are 

initially expressed at moderate levels throughout a feather tract and the expression is later up 

regulated within feather primordia and down regulated in interprimordia or vice versa. This 

expression pattern is termed the restrictive mode. Other molecules are expressed at later 

developmental stages, but appear within structures that have already formed. This 

expression pattern is termed the de novo mode. Wnt-7a, follistatin and β-catenin are among 

the molecules expressed in a restrictive mode (Fig. 2H; Widelitz et al., 1999; Widelitz et al., 

2000; Patel et al., 1999). Sonic hedgehog, Delta-1, Notch-1, L-fringe, R-fringe and Eph-A4 

are expressed following the de novo mode (Fig. 2H; Ting-Berreth and Chuong, 1996a; Chen 

et al., 1997; Crowe et al., 1998; Viallet et al., 1998; Patel et al., 1999; Chen and Chuong, 

2000). What roles do these molecules play in feather formation? How does the expression 

mode influence the effect of molecules?

Positive and negative regulators of periodic patterning

Retroviral mediated gene expression has been employed to test molecular function in vivo. 

The replication competent avian sarcoma virus (RCAS) has been an effective vector for the 

delivery of genes for ectopic expression in living chickens. Some proteins are thought to 

function as morphogens in developing embryos by forming concentration gradients. 

Concentration gradients can be mimicked from purified proteins by applying them to tissues 

from coated beads (Fig. 3A). In this way the tested agents are released over time and form a 

concentration gradient with the highest concentration present at the location of the bead. 

These tools have been used to test the function of several molecules. Some molecules have 

been found to enhance the formation of feather buds and are termed activators. Some 

suppress the formation of feather buds and are termed inhibitors (Fig. 3B; Noveen et al., 

1995a, b; Ting-Berreth and Chuong, 1996a, b; Noramly and Morgan, 1998; Crowe et al., 

1998; Viallet et al., 1998; Song et al., 1996; Widelitz et al., 1996; Patel et al., 1999). Sonic 

hedgehog, FGF4, Noggin, follistatin, and others have been found to serve as activators. 

BMP2, BMP4, activators of protein kinase C and others function as inhibitors.

A balance of activator and inhibitor activity must regulate periodic patterning (reviewed in 

Held, 1992), as was found for lung morphogenesis (Hogan, 1999). One might expect that the 

activators are expressed in the feather primordia, while the inhibitors are expressed in the 

interbud regions. This was not the case. Activators and inhibitors were both expressed 

within feather primordia (Jung et al., 1998). Hence, it is unlikely that feather patterning 

Jiang et al. Page 10

Int J Dev Biol. Author manuscript; available in PMC 2015 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results from prepatterning. The activator and inhibitor expression patterns are more 

consistent with a model based on the reaction -diffusion model (Turing, 1952; Giere and 

Meinhardt, 1972).

These activators and inhibitors follow the tenets of reaction - diffusion. Activators (FGF4 

and Shh) induce the expression of inhibitors (BMP-2, -4), while inhibitors (BMP-2, -4) 

suppress the activators (FGF4 and Shh) (Jung et. al., 1998; Jiang et al., 1999). Furthermore, 

follistatin, an antagonist of BMP, was also induced within the feather primordia (Patel et al., 

1999). By implanting coated beads to embryonic skin, we demonstrated that activators have 

the ability to induce both activators and inhibitors, while inhibitors can block the release of 

activators (Jung et al., 1998).

Self-organization and competitive equilibrium operate at the cellular level

Reconstitution of feather buds

Since many of the activators and inhibitors which affect pattern formation are expressed in a 

restrictive mode, it is very important to examine their effects using an experimental system 

in which all cells have the same probability of becoming primordia or interprimordia, and in 

which the size and number of feather primordia are not irreversibly predetermined. A model 

that starts from a homogeneous state is needed. After trying several approaches, we 

developed an in vitro reconstitution system (Fig. 4A, Widelitz et al., 1999; Jiang et al., 

1999) in which all mesenchymal cells are reset to an equivalent state and have the same 

probability to become primordia or interprimordia. In this assay, the epithelium of stage 

29-35 chicken embryo dorsal skin is separated from the mesenchyme (Fig. 4B). The 

mesenchyme is then dissociated to form a single cell suspension (Fig. 4C). This disrupts all 

prior cellular interactions and resets molecular expression to a primitive state. The 

mesenchymal cells are centrifuged and re-suspended to high cell density suspension. The 

cells are then plated on a culture insert dish and allowed to form aggregates. The epithelium 

was then placed on top of the mesenchyme.

Using this model, several surprising findings were revealed. 1) Feather primordia could still 

form (Fig. 4D), showing that periodic patterning of feather primordia is a self-organizing 

process, and the information required for patterning is sufficiently stored in dissociated and 

scrambled competent mesenchymal cells. Neither pre-existing order nor cues from the 

extracellular matrix are required for patterning and the cells can regenerate this information. 

2) All the feather primordia appeared simultaneously at 24 hours, rather than the sequential 

pattern seen in vivo. This suggests that neither a primary row nor the sequential propagation 

is a prerequisite for the periodic pattern formation of feather buds. It is an additional global 

event superimposed on the local periodic patterning process in vivo. 3) To test whether the 

feather primordia mesenchyme has memory or is different to start with, we labeled the 

primordia mesenchymal cells with DiI and then performed the reconstitution procedure. 

After reconstitution, the DiI positive cells were randomly distributed within and outside the 

primordia, suggesting that, in this model, all competent mesenchymal cells are indeed reset 

to an equivalent state and have the same probability of becoming either part of the primordia 

or part of the inter-primordial regions. 4) To test whether the placode is the primordia 

organizing center, we labeled placodal cells with DiI and performed the procedure. If the 
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placode is organizing the primordia, all the newly formed primordia should be under the 

original, DiI labeled placode. The results showed that new primordia can form without 

regard to the position of the original placode.

Those findings uncoupled periodic patterning from sequential propagation in vivo. The 

problem with some of the previous models may not be that they are wrong, but that they 

used experimental models that did not represent the most initial homogenous state. Disparate 

position information (Wolpert, 1971) and differential adhesion (Steinberg, 1975) are likely 

to play a role in development, but these apply only after molecules expressed in the de novo 

mode (see above) are established.

Although feather buds formed simultaneously in the reconstituted skin explant experiments 

described above, during normal development a wave of morphogenetic activity moves 

unidirectionally or bidirectionally from a primary row. Hence, it appears that a 

morphogenetic wave is superimposed on the inherent ability of cells to self-organize. By 

staining for β-catenin it was found that feather primordia once formed, initially were 

surrounded by a ring lacking β-catenin expression (Fig. 2C). When two adjacent feathers 

formed the distance between them was equivalent to a single ring. As development 

progressed and the skin expanded, the size of the space between the feather buds increased 

until it equaled the space of two β-catenin negative rings (Widelitz et al., 2000).

The number, size and position of feather buds

While periodic patterning processes can produce individual primordia elements, we 

wondered how the size, number, and spacing of feather primordia were regulated (Jiang et 

al., 1999). The feather reconstitution model offered an opportunity to test this, because it 

allowed us to recombine a fixed sized epithelium with different numbers of mesenchymal 

cells. When increasing numbers of mesenchymal cells were used, we could expect either the 

same number of primordia with gradually increasing size or increasing numbers of 

primordia with a constant size (Fig. 4E). The results showed that for mesenchymal cells 

derived from the same region, the feather primordia were always the same size. The way the 

number of primordia increased also provided us with insight to feather patterning. At low 

numbers of mesenchymal cells, no primordia formed. As mesenchymal cells gradually 

increased, more feather buds formed, each with a lateral inhibitory zone. At lower density, 

primordia were distributed at random, not as aborted rows of a hexagonal lattice. As more 

cells were used, the number of primordia increased until it reached a maximal packing 

density, and feathers appeared to be arranged in a hexagonal pattern (Fig. 2A). However, 

this hexagonal pattern is a result of maximal packaging, not a consequence of preset 

molecular codes or positional values.

The size of the feather primordia can be different from one feather tract to another. How 

does this happen? The reaction-diffusion model predicts that the ratio of activator and 

inhibitor will determine the size (the diameter) of the element (feather primordia). In this 

case, the ratio is dependent upon the concentration of activator or inhibitor ligands, the 

number of their receptors, and the number of downstream signaling molecules induced by 

their activity. If this model is correct, we should be able to modulate the size of primordia by 

changing these parameters (Fig. 4G). Indeed, when the number of BMP receptors is 

Jiang et al. Page 12

Int J Dev Biol. Author manuscript; available in PMC 2015 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased, feather primordia became smaller. And when Noggin, a BMP inhibitor, was 

increased in the system, feather primordia became bigger (Fig. 4F; Jiang et. al., 1999).

Thus periodic patterning within a feather tract field is a self-organizing process leading to 

the formation of individual feather primordia with characteristic size and numbers, 

depending on the properties of the cells (number of ligands, receptors of signaling activators 

or inhibitors) and the environment. It is a process where the competent mesenchymal cells 

compete for the available and limited piece of the competent epidermis. The final stable 

pattern results from competition and equilibrium and is not based on a predetermined code. 

The size and number of each element can be modulated by altering the parameters that affect 

the reaction diffusion and competition processes.

Cell adhesive interactions

Furthermore we have examined the cellular events occurring during the restrictive phase and 

found that the most initial events may be driven simply by cell adhesion when the mildly 

adhesive cells reach a threshold density. We found that the homogenous mesenchymal cells 

then form many small cellular aggregates (10-25 cells). These microaggregates can 

condense into larger aggregates, but the adhesions are reversible at this stage and the 

aggregates are unstable. As condensed aggregates get bigger, the above activator/inhibitor 

mechanism is initiated and the formation of the dermal condensations is consolidated. These 

condensations then can send the “1st dermal message” to the epidermis to form the placode 

(Fig. 5E; Dhouailly, 1977; Hardy, 1992; Chuong et al., 1996).

For this to happen, cells must express cell - cell adhesion molecules that recognize and 

specifically bind to each other. Such molecular recognition and binding bring cells together 

during development to form specific organs. Several families of cell adhesion molecules 

have been localized in the developing chick skin. Although their exact functions during skin 

and feather development are not completely known, some intriguing information has 

emerged in recent investigations. NCAM and cadherins are cell - cell adhesion molecules 

which have been found to play important roles in feather patterning (Fig. 5A; Jiang et al., 

1999; Noramly et al., 1999). Unstable mesenchymal cell aggregates initially form, but once 

aggregates of 10 - 20 cells appear they stabilize express higher levels of NCAM and attract 

neighboring cells and cell aggregates (Fig. 5B). Regions surrounding the aggregates stop 

expressing NCAM (Fig. 5C). Cell–substrate binding is also important for feather formation. 

Cell attachment to extracellular matrix often requires integrin binding to laminin or 

fibronectin, adhesion proteins found localized in extracellular matrix and through molecular 

cascades may trigger focal adhesions or contacts.

Digital Hormone Model

The basics

From these studies we can appreciate that at the level of cell interactions, a set of rules 

different from strict genetics rules are in operation. While the information to form feathers is 

coded in the avian genome, the final arrangement is not directly coded in the genome. The 

genome specifies combinatorial protein profiles that are expressed on the cell membrane, as 

well as the extra-cellular micro-environment made of diffusible signaling molecules and 
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matrix molecules. At this level, cells sense and interpret the environment and then make a 

response to it. It is not as precise as genetic control in which information flows from the top 

down and aberrant mutations will be eliminated. The cell interactions are now governed by 

physico-chemical rules that flow from the bottom up (local), stochastic, and probabilistic. 

The reaction finally reaches an equilibrium, and the pattern we observe is this equilibrated 

state, not due to coordinate information directly encoded in DNA. In invertebrates or other 

species, patterning may be under dominant genetic control. At least in feather bud formation 

and likely in many other higher levels of organization, the epigenetic rules appear to have 

more control.

How can we describe cell behaviors at this level? Turing has proposed the reaction diffusion 

mechanism in which two factors interact locally and diffuse randomly to form distinct 

patterns (Turing, 1952) Giere and Meinhardt developed it further to interpret biological 

patterning (Giere and Meinhardt, 1972; Meinhardt and Gierer, 1974, 2000). Our feather 

reconstitution data are consistent with these theories. At the beginning of reconstitution, 

cells are reset to a homogeneous state (Fig. 6A). Whether a cell becomes part of a cell 

cluster or remains dissociated is due to competitive equilibrium. This equilibrium is 

modulated by adhesive properties of cell membranes (a sum of cell adhesion molecules on 

that cell), activity of activators/inhibitors (concentration of ligands and their antagonists, the 

amount of receptors on that cell), properties of extracellular matrix (diffusion rate of 

signaling molecules, adhesiveness for cell migration), and the dimension of the field. The 

sum of these factors in an equilibrated state produces small dots, large dots, or stripes. The 

system is self-organizing because the cells will start to reorganize themselves once 

dissociated and placed in culture (Fig. 4). The system is plastic, since the size and number of 

cell clusters can be changed by adjusting variables (ratio of activators/inhibitors, and 

available cell numbers, respectively). The system is not pre-coded since the final patterns of 

replicate samples are similar but non-identical. The system is random since in replicate 

samples different cells are incorporated into cell clusters.

While we know these principles are involved, we do not have a model in which cells can 

follow a set of basic principles and self-organize into patterns. To have a model that closely 

simulates biological phenomena and has molecular activities/cellular events identifiable for 

its parameters, we have developed the Digital Hormone Model (DHM) (Fig. 6B; Shen et al., 

2004; Shen et al., 2002). Here the hormone indicates the local extra-cellular signaling 

molecules. This model consists of the basic activator/inhibitor concept (Meinhardt and 

Gierer, 1974), but also builds upon cell adhesion and cell density as essential elements. 

DHM consists of three basic components: 1) a self-reconfigurable set of cells, 2) a 

probabilistic function for individual cell behavior, and 3) a set of equations for hormone 

reaction, diffusion, and dissipation. Here we describe the model in non-jargon language. A 

more detailed version written in formal engineering language is in the appendix.

1) A self-reconfigurable set of networks—In the feather scenario, this is a set of 

competent cells participating in the morphogenetic process. On the surface of each cell, 

there is a combination of adhesion molecules that endows that cell with a certain level of 

adhesiveness (or connectors, in the engineering terms). This adhesiveness can change 

dynamically. All cells start from a homogenous average value, but they then increase or 
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decrease values following the rules described below. A cell communicates with its 

neighbors. Through these local interactions, cells can generate hormones or propagate 

hormones, adhere or de-adhere. The configuration (arrangement of all the cells) keeps on 

changing. It finally reaches a stable condition and this final configuration is the pattern we 

observe.

2) A probabilistic function for individual cell behavior—The choice of action to be 

taken by a cell is based on a probability function which is dependent on four local factors: 

the cell adhesiveness, the hormone concentration, the receptor activation, and the values of 

local variables. The probability function is local and homogenous for all cells. In the model, 

the probability function is programmed by the system initially, but it can change 

dynamically over time. Eventually, it influences the global behavior of cells within the field 

and can be used to predict and analyze global patterning.

3) A set of equations for hormone reaction, diffusion and dissipation—
Following Turing (1952) and Giere and Meinhardt (1972), we assume in the mathematical 

description that hormone reaction and diffusion occur through a two-dimensional medium, 

although analogous results can be derived from arbitrary dimensions. The concentration of 

each hormone is a function of position and time. Cells will then respond to the signals. The 

effects of each signal (increase adhesion, decrease adhesion) can be assigned.

4) How the model works—From the above, the DHM defines the response of a group of 

competent cells which move dynamically and randomly in a field. These cells interact with 

each other (manifested as cell adhesion) and extra-cellular signaling hormones whose 

distributions are controlled by reaction-diffusion. Cells respond to these signals with 

topological stochastic actions that can only be described in terms of their probability.

To demonstrate the DHM, we define a simple DHM0 shown in Fig. 6B. Here cells are 

shown as black dots and can move in a space of discrete grids. Each cell occupies one grid at 

a time and can secrete hormones (shown as the gray areas around a cell) to the neighboring 

grids to influence other cellsí behaviors. For simplicity, we assume for now that all cells 

synchronize their actions and the grids carry out the reaction and diffusion of hormones. A 

cell at a grid (a, b) can secrete two types of hormones, the activator A and the inhibitor I 

(More than two can be assigned). We assume that the hormone A has a positive value and 

the hormone I has a negative value. For a single isolated cell, the hormone concentration in 

its neighboring grids looks like three “colored rings” (see the lower-right corner in Fig. 6B). 

Because of differences in diffusion rates, we presume that the activator hormone dominates 

the inner ring; the inhibitor hormone dominates the outer ring; and the middle ring is neutral 

where the hormones of A and I have canceled the effects of each other. The reaction 

between two hormones in a grid is computed by summing up all present “A”s and “I”s in the 

grid. Cells do not have identities. When two or more cells are near each other, the hormones 

in the surrounding grids are summed up to compute the hormone strengths. In the upper part 

of Fig. 6B, we have illustrated the combined hormones around a single cell and around two 

nearby cells. Since the grids are discrete, the rings around the cells are shown as squares 

instead of circles.
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DHM can be used to investigate how hormones affect self-organization and whether they 

can enable locally interacting cells to form globally interesting patterns. They can be applied 

to in vivo situations such as feather reconstitution here, and we can study the molecular 

identity of each component. On the engineering side, they can also be applied to study the 

behaviors of swarming robots in which particular robot configurations can self-form.

Simulations

Here we would like to test whether the DHM can indeed simulate feather pattern formation 

in silico. We also can change the characteristics of these parameters, and observe and 

analyze the effects on global pattern formation. Our questions are listed as follows:

• Will the DHM enable cells to self-organize into patterns at all?

• Will the size of final cell clusters be invariant to the cell population density?

• Assuming that the hormone diffusion profiles are fixed, will the results match the 

observations made in the feather reconstitution experiments?

• How do the hormone diffusion profiles affect the size and shape of the final cell 

clusters as shown in the feather reconstitution experiments?

• Will an arbitrary profile enable self-organization and pattern formation?

To answer these questions, we have conducted two experiments. In the first experiment, we 

use the same hormone diffusion profile and run a set of simulations on a space of 100×100 

grids with different cell population densities ranging from 10% (∼1000 cells) through 50% 

(∼5000 cells). Starting with cells randomly distributed on the grids, each simulation runs up 

to 1,000 action steps, and records the configuration snapshots at steps of 0, 50, 500, and 

1,000. As we can see from the results in Fig. 7A, cells in all simulations indeed form clusters 

with approximately the same size. These results demonstrate that DHM does enable cells to 

form patterns. Furthermore, the results match the observations made in the biological 

experiments: the size of the final clusters (feather primordia) does not change with cell 

population density, but the number of clusters does (Jiang et al., 1999). Lower cell densities 

result in fewer final clusters, while higher densities form more clusters. They are of similar 

size (Fig. 4 E,G).

In the second set of experiments, we started with the same cell population density, but varied 

the hormone diffusion profiles by changing the parameters for Equation 4 and 5 (please see 

Appendix). We wanted to observe the effects of different hormone profiles on the results of 

pattern formation. As we can see in Fig. 7B, when a balanced profile of activator and 

inhibitor is given (see the second row), the cells will form final patterns as in the first set of 

experiments. As the ratio of activator over inhibitor increases, the size of final clusters also 

increases. These results are an exact match with the findings in the reported biological 

experiments (Jiang et al., 1999; Fig. 4 F,G). When the ratio of A/I becomes so high that 

there are only activators and no inhibitors, then cells will form larger and larger clusters, and 

eventually become a single connected cluster. On the other hand, when the ratio is so low 

that there is only inhibitor and no activator, then the cells will never form any patterns, 

regardless of how long the simulation runs. Some of the predictions are yet to be seen in 
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biological experiments, but they are consistent with the principles of hormone-regulated 

self-organization and thus qualified as meaningful predictions of cell self-organization by 

hormones.

In addition to changing the ratio of activator and inhibitor hormones, we can also change the 

shape of the field to accommodate different body surface regions (e.g., spinal tract, femoral 

tract, and remige feather tracts have different shapes) and evaluate their effects on the final 

patterns. For example, when we make the field into the shape of a plus, with two narrow 

lengths, the cells formed striped patterns as shown in Fig. 7C. This demonstrates that when 

cell's hormone diffusion patterns are anisotropic, we can predict that the global patterns will 

be anisotropic as well. This provides a hint that local action profiles can predict global 

network performance in a large scale.

The experimental results presented here not only demonstrate that the DHM is indeed an 

effective tool for simulating and analyzing self-organization and self-repairing phenomena, 

but that it is also capable of predicting global behaviors based on local hormone interaction 

profiles. The results suggest that hormones can play a critical role in regulating cell's 

behaviors because cells in the simulation can be viewed as autonomous and global patterns 

can form based on stochastic local actions and information exchanges. This provides a 

departure point for the development and testing of new hypotheses, theories, and 

experiments into self-organization. Since the model is mathematically adjustable, it is 

effective and efficient for researchers to design new experiments and verify new hypotheses 

in cell development.

Further patterning

Intra-bud patterning

We have discussed the initiation of feather buds from a flat piece of skin in the section on 

Micropatterning. Many studies have focused on the molecular signals involved in the 

initiation, proliferation and morphogenesis of feather primordia. However, the fundamental 

principles underlying the movement of epithelial and mesenchymal cells have not been 

clearly elucidated. How can they form a placode in a particular location? How are they 

guided to do so? Are these events independent or coupled with proliferation and 

differentiation? Are these cells recruited from the general vicinity of the forming feather 

primordia? How are the boundaries of recruitment zones between neighboring feather 

primordia established?

Some studies in frog and fish revealed a process called “convergent extension”, in which a 

tissue narrows along one axis and lengthens in a perpendicular axis (reviewed in 

Wallingford et al., 2002). The process can be observed in different cell behaviors; cell 

migration, radial intercalation, or cell rearrangement and may play an important role in early 

feather bud formation. During epithelial placode formation, the epithelium is probably 

rearranged in a process resembling convergent extension. The feather forms as an elongated 

bud with epithelium surrounding the mesenchymal cells in a cone-like structure. We have 

evidence that this formation is interrupted when several Wnts, Noggin, Sprouty, and Dkk are 

overexpressed.
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What are the molecular mechanisms that may govern this process? Non-canonical Wnt 

pathway members may be directly involved. Overexpression studies showed that Wnt4 and 

Wnt5a disrupt convergent extension (Moon et al., 1993; Ungar et al., 1995). Many Wnt 

pathway components were also shown to disrupt the process, including Dishevelled and 

frizzled (Sokol, 1996; Shi et al., 1998; Medina et al., 2000). In addition, studies in 

Drosophila showed that convergent extension was regulated by a different set of transducers, 

including Strabismus (Stbm), Prickle, and JNK (Darken et al., 2002). Other molecules 

acting upon cell migration or intercalation may also promote convergent extension in 

developing systems.

Therefore, to intensively study the contribution of convergent extension to feather 

morphogenesis, it must be approached from several different angles. Several molecular 

pathways thought to be involved (described above) should be perturbed to provide more 

insight into this process. Changes in the cytoskeleton associated with cell rearrangements 

should be visualized. Alterations of the direction or rate of cell motility can be traced using 

time-lapse microscopy.

When initially formed, the short buds are radially symmetric and proliferation takes place in 

the distal bud (Fig. 8A). The next level of morphogenesis occurs within the primordia where 

proliferation generates new cell mass (Desbiens et al., 1992) for subsequent molding and 

morphogenesis. They then acquire anterior-posterior asymmetry (A-P). This AP asymmetry 

interaction information resides in the epithelium at E7 as determined from epithelial - 

mesenchymal recombination studies (Novel, 1973; Chuong et al., 1996). However, the 

information is transferred later to the mesenchyme at E8 and it is possible to produce 

branched feather buds by recombining E and M in frame-shifted positions (Chen et al., 

1997). The molecular expression pattern also starts to become heterogeneous, reflecting 

these changes. Fig. 8A′ shows some examples with anterior or posterior localization of 

different molecules in the epithelium or mesenchyme. This is followed by the formation of 

proximal-distal asymmetries. There is more proliferation in the posterior bud (Fig. 8A; 

Desbiens et al., 1992; Chen et al., 1997) and lineage tracing showed that posterior buds 

contribute more to further development (Chuong et al., 1998). Some Hox genes and 

extracellular matrix molecules (collagen I, III, fibronectin) become AP polarized (Chuong et 

al., 1990; Mauger et al., 1982). However, anterior buds are essential as experiments showed 

that over-expression of Wnt 7a at this stage made buds posteriorized, and these buds could 

not elongate normally (Widelitz et al., 1999).

The primordia soon develop an AP (anterior - posterior) axis (Fig. 8A′) and later a PD 

(proximal-distal) axis (Fig. 8A). This is evident by the molecular expression pattern. Once 

molecules are expressed within the feather bud through the restrictive or de novo modes, 

they generally have a symmetric pattern in a solid circle, central dot, and stripe or ring 

pattern. Wnt-7a and follistatin are expressed with the solid circle pattern. Sonic hedgehog, 

BMP-2, Delta-1, R-fringe and Eph-A4 are expressed with the central dot pattern. R-fringe 

initiates with a ring pattern. The patterns change rapidly. For instance, Wnt-7a soon moves 

from the solid circle of expression to a ring pattern. Later as the feather buds begin to 

develop asymmetries, many genes are asymmetrically expressed. Some molecules, such as 

tenascin-C or BMP-2 are expressed in the anterior region of the feather buds. Others, such as 
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Wnt-7a, L-fringe and Eph-A4 are expressed in the posterior region of the feather buds. Still 

others, like Notch-1, are expressed as a central stripe which later takes on some posterior 

expression within the feather buds. At this time, Delta-1 is expressed in a complementary 

fashion within the boundaries of the Notch-1 expression domain. L-fringe is expressed 

toward the lateral edge of the feather bud. Hence the feather bud can be divided into a 

number of different regions with different molecular expression profiles (Fig. 8A′).

What are the molecules that control this AP asymmetry? As stated, orientation signaling 

originates from the epithelia at E6. Differential cell proliferation was examined and more 

BrdU-labeled cells were found in the posterior region (Desbiens et al., 1992, Chen et al., 

1997; Fig. 3B). When the feathers elongated, the posterior feather buds contributed more 

cells to the future feather bud (Chuong et al., 1998). What could be the molecular basis for 

this difference? In situ hybridization found enhanced expression of Delta-1 and Serrate-1 in 

the posterior feather bud (Chen et. al., 1997) and some FGF receptors were also enriched in 

the posterior feather buds (Noji et al., 1993). In contrast, the BMP4 and its receptor are 

localized on the anterior regions. However Delta-1 was in the mesenchyme. Furthermore, 

HB9, a homeobox gene, was also highly expressed in epidermal basal cells and dermal cells 

of placodes and feather buds but not in inter-placodes and inter-buds regions (Kosaka et al., 

2000). What molecule could be in the epithelium to cause these differences? We found 

Wnt-7a was in the posterior bud epithelium. Over-expression of Wnt-7a indeed caused 

feather buds to stop elongating and to become plateau-shaped appendages (Widelitz et al., 

1999). Cell proliferation was actually increased, but the whole appendage showed 

characteristics of posterior feather buds and lost AP asymmetry, such as occurred with over-

expression of Delta-1 (Viallet et al., 1998). As a result, no P-D axis formed.

Previously, we showed that activators for protein kinase A, such as cyclic-AMP, also 

arrested feather bud growth. But these arrested buds were morphologically different from 

those over-expressing Wnt-7a. In this case, the feather buds were small and round, and 

deficient in cell proliferation. Further analysis showed that these abnormal buds expressed 

characteristics of anterior feather buds, such as the loss of sonic hedgehog expression 

(Noveen et al., 1995b; 1996). Thus, the coexistence and interaction of juxtaposed anterior 

and posterior bud domains appear to be important for the generation of a new growth zone at 

their interface that will drive the growth of the P - D axis of feathers buds. This is 

reminiscent of the situation in Drosophila and chicken limb development (LeCuit and 

Cohen, 1997; Kengaku et al., 1998).

The continued elongation of feather buds depends on the generation of a proliferation center 

initiating in a distal region between the anterior and posterior feather bud domains. As they 

continue to proliferate, they become localized at the distal end of the feather bud, to a region 

enriched with SHH, NCAM, etc. The proximal-distal axis is generated when focal cell 

proliferation is formed in the distal bud growth zone. However, as feather primordia start to 

invaginate to form follicles, the proliferating cells come down to the collar epithelia, 

adjacent to the dermal papilla. At this time point, Wnt 14 and sfrp2 are coincidently 

expressed in the proliferation regions (Chodankar et al., 2003). This is in contrast to limb 

appendage development in which the growth zone, composed of the apical ectodermal ridge 

and the progress zone, remains in the distal end and eventually disappears, losing the ability 
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for further elongation or regeneration. Skin appendages, including feathers and hairs form 

follicles and keep the growth zone cells at the protected proximal end of the follicle. The 

continued interaction between the dermal papilla and collar epithelia produce sustained cell 

proliferation which drives proximal-distal elongation of the feather bud, and also allows 

future feather molting and cycling. During feather bud maturation, the initial radial 

symmetry placodes begin to specify anterior- posterior (A-P) asymmetry and then turn to 

growth in the proximal- distal (P-D) direction. That involves many cell behaviors such as 

proliferation, differentiation, and migration, which are regulated by the above genes and 

adhesion molecules. They control each side of the feather bud and build up the three 

dimensions of feather growth.

Periodic patterning of feather filaments: formation of branches

Feathers initially form as a cylinder (Fig. 8B, stage 0). At this stage the pulp epithelium (pe) 

surrounds the pulp and the feather epithelium (fe) surrounds the feather follicle. The feather 

then begins to invaginate to form the barb ridges (br) at stage 1. The size, number and 

spacing of barb ridges are specific in different feathers. Their molecular control remains 

much unknown other than that BMP favors fusion of barb ridges and noggin favors further 

branching of barb ridges (Yu et al., 2002). In radially symmetric downy feathers, all barb 

ridges form at about the same time. In bilaterally symmetric feathers, they take a sequential 

appearance order. New barbs are generated in the barb generative zone (posterior) and 

spread toward the rachis (anterior), the side that is more differentiated. This periodic 

patterning event takes place along the circular perimeter of the cylindrical feather filament 

epidermis. When the feather filaments elongate, new cells are added to the proximal end. 

Therefore an additional dimension is the time. The pulp epithelium extends out to connect 

with the feather epithelium at stage 2. The axial plate (ap), marginal plate (mp) and barb 

plate epithelium then form. The barb plate lives to become the feather barbs. The barbs can 

be visualized by staining with Shh (Fig. 8C). The axial plate later dies to release the 

proximal and distal sides of each feather barb. The marginal plate epithelium also dies to 

separate the barbs (Chang et al., 2004b). The pulp dies which enables the feathers to unfurl 

and assume their distinct shapes. We examined how cell lineage contributes to barb 

formation by labeling the somites with LacZ at E10. By E18, the cells had moved out into 

the skin (Fig. 2E) and become incorporated into the growing feather follicles (Fig. 8C). To 

our surprise the cell lineage did not correlate with the formation of the barb ridges. These 

cells were organized later into each of the feather structures. Molecular and cellular aspects 

of barb formation are described in more detail in Yu et al., 2004.

Conclusion

Through the experimental analysis of feather morphogenesis and the literature review of 

other integuments, we can conclude that there is both genetic and epigenetic control of 

integument pattern formation. The genetic control provides transcription and translational 

control of molecules. Specific sets of cell surface molecules and intra-cellular signaling are 

produced for particular cell types. The molecular information endows cells and their micro-

environment with particular properties. Based on these properties, cells interact in 

accordance to physical-chemical rules, and there are competition, equilibrium, randomness, 
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and stochastic events, at this cellular level. Epigenetic events appear to play important roles 

at the cellular level. The integument pattern we observe is the sum of these cell behaviors.

Genetic control provides combinational molecular information that defines the properties of 

the cells but not the final pattern. Epigenetic control governs interactions among cells and 

their environment based on physical-chemical rules. Integument pattern is the sum of these 

two components of control and that is why they are usually similar but non-identical (Fig. 

9).
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Appendix

Digital Hormone Model

We developed a Digital Hormone Model (DHM) for simulating the self-organization 

phenomena observed in feather patterning. Another motivation is that this model can also be 

used to develop robots that can form different configurations (Shen et al., 2004; Shen et al., 

2002).

Mathematically speaking, the Digital Hormone Model consists of three components: 1) a 

self-reconfigurable network (or set) of cells, 2) a probabilistic function for individual cell 

behavior, and 3) a set of equations for hormone reaction, diffusion, and dissipation.

1) A self-reconfigurable network

This indicates a network (or set) of N autonomous cells that can form different 

configurations repetitively. Each cell has a set of connectors (adhesion molecules) through 

which the cell can dynamically connect to other cells to form edges for communication or 

physical (mechanical or chemical) coupling. The connectors are valuable and finite 

resources for cells. Because connectors can be joined and disjoined, they make the edges in 

a network dynamic, and the reconfiguration of network possible. Let Nt and Et denote all the 

cells and edges in a self-reconfigurable network at time t, then we denote

(Equation 1)

as the self-reconfigurable network at time t. Note that both Nt and Et can change 

dynamically because cells can autonomously join, leave, or be damaged. Edges can be 

formed and disconnected by the connectors of the cells. Different from classical simulation 

models, cells do not have unique identities. The number of cells and edges in the network is 

not known, and there is no global broadcast. A cell can only communicate with its current 

neighbors through its current edges. Through local communication, cells can either generate 

hormones or propagate hormones. By default, a generated hormone will be sent to all the 
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current edges of its generator, and a received hormone will be propagated to all the current 

edges except the one through which the hormone is received.

2) Specification of individual cell behavior

This is similar to the concept of “receptors”. A cell in the network can select its actions, B, 

based on a probability function, P, that is conditioned on four local factors: the connector 

information, C; the sensor information, S; the values of local variables, V; and the received 

hormones, H:

(Equation 2)

The actions, B, of a cell include the actions internal to a cell, as well as actions that change 

connectors and generate or propagate hormones. Different from most existing probabilistic 

models, the P function here considers not only sensor and state information S and V, but 

also topological information, C, and communication information, H. These allow the Digital 

Hormone Model to support dynamic reconfigurations and self-organization in network 

structures. The function P is local and homogenous for all cells, but can greatly influence the 

global behaviors of the network and predict and analyze the global network performance in 

the large. For example, in the simulation of feather formation, the characteristics of P can 

influence whether or not any global patterns can be formed. Biologically speaking, we 

believe that the function P partially simulates the hormone receptors and the control 

mechanisms found in biological cells. The P function is programmed by the system 

designers initially, but can be dynamically changed by the cells themselves through learning 

techniques.

3) Specification for hormone reaction, diffusion and dissipation

Following Turing (1952) and Giere and Meinhardt (1972), we assume in the mathematical 

description that hormone reaction and diffusion occur through a two-dimensional medium, 

although analogous results can be derived for arbitrary dimensions and some higher 

dimensions are indeed used in applications of self-reconfigurable cells. The concentration of 

each hormone is a function of position and of time. We denote the concentration function for 

a particular hormone by C(x, y), where x and y are 2D space dimensions. The reaction-

diffusion-dissipation equation governing the hormone is then given by:

(Equation 3)

The first term on the right is for diffusion, and a1 and a2 are constants that represent the rate 

of diffusion in x and y directions respectively. The function R is the reaction function 

governing C, which depends on all the other concentrations of hormones. The constant b is 

the rate for dissipation. The equation (3) is usually considered to be a part of an 

environmental function G responsible for the implementation of the dynamics of 

communication or other effects of actions. For example, if two cells send out signals at the 

same time, then G will be responsible for simulating the interference or synergistic effects 
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between the two signals. Although the G function is in principle a part of the environment, it 

can be simulated by the actions of the cells as described later.

4) Integration

As we can see from the above definitions, the Digital Hormone Model is an integration of 

dynamic network (Equation 1), topological stochastic action selection (Equation 2), and 

distributed control by hormone reaction-diffusion (Equation 3). This integration provides a 

very powerful coordination mechanism for dynamic networks of dissociated cells. The 

execution of DHM is very simple. All cells in the network asynchronously execute the basic 

control loop as follows: 1. Select actions by P(B|C,S,V,H); (2) Execute the selected actions 

in B; (3) Perform hormone generations and propagations; (4) Simulate hormones diffusion, 

reaction, and dissipation; (5) Go to Step (1).

To demonstrate the DHM, we define a simple DHM0 shown in Fig. 7A. In this simple 

model, cells are shown as black dots and can move in a torus space of discrete grids. Each 

cell occupies one grid at a time and can secrete hormones (shown as the gray areas around a 

cell) to the neighboring grids to influence other cellsí behaviors. For simplicity, we assume 

for now that all cells synchronize their actions and the grids carry out the reaction and 

diffusion of hormones. A cell at a grid (a, b) can secrete two types of hormones, the 

actiivator A and the inhibitor I. The diffusion of A and I at a surrounding grid (x, y) are 

given by the standard distribution functions:

(Equation 4)

(Equation 5)

where aA, aI, σ, and ρ are constants, and σ<ρ in order to satisfy the Turing stability condition 

that the diffusion rate of the inhibitor must be greater than that of the activator. Note that 

because σ<ρ, A has a sharper and narrower distribution than I, and these characteristics are 

similar to those observed in the biological experiments. We assume that the hormone A has 

the positive value and the hormone I has the negative value. For a single isolated cell, the 

hormone concentration in its neighboring grids looks like three “colored rings” (see the 

lower-right corner in Fig. 6A). The activator hormone dominates the inner ring; the inhibitor 

hormone dominates the outer ring; and the middle ring is neutral where the hormones of A 

and I have canceled each other. The reaction between two hormones in a grid is computed 

by summing up all present “A”s and “I”s in the grid:

(Equation 6)

When two or more cells are near each other, the hormones in the surrounding grids are 

summed up to compute the hormone strengths. In the upper part of Figure 6B, we have 
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illustrated the combined hormones around a single cell and around two nearby cells. Since 

the grids are discrete, the rings around the cells are shown as squares instead of circles.

When all cells are moving in synchronization, there may be a chance that multiple cells will 

“collide” in the same grid. The collision of cells is solved in a simple manner. All cells first 

“virtually” move to the grids they selected. If there are multiple cells in the same grid, then 

the extra cells will be randomly distributed to those immediate neighboring grids that are 

empty. This is an environmental function, not a cellular action. But this action will ensure 

that no grid is hosting more than one cell at any time.

For cell behaviors, DHM is governed by a function P0(B | C, S, V, H) defined as follows:

B: Each cell has ten actions. B0 for secreting the A and I hormones, and B1, …, B9 for moving into the nine 
neighboring grids: north, south, west, east, northeast, northwest, southeast, southwest, and self (the occupying 
grid);

C: Each cell has eight connectors in this simple model, one for each neighboring grid;

S: Each cell has nine hormone sensors, one for each of the neighboring grids;

V: Cells have no local variables in this model;

H: The nine hormone values sensed by the sensors.
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Fig. 1. Examples of integument patterns
(A) Feather stripes, patches and spots on feathers of a pheasant. There is regional variation 

in the color of the skin appendage markings. The stripes are brown on the tail feathers and 

white on the wing feathers. (B) Pigment stripes and spots on a cat. Stripes are present from 

the neck to the tail with a similar orientation. The stripes on the head have a different rostral-

caudal orientation. Some stripes are complete and some are partial. In some regions, stripes 

break into dots. (C) Fingerprints from the same finger of identical twins. Although 

genetically identical, epigenetic events during fingerprint formation lead to subtle variations 

between twins. From Jain et al. (2002). (D) Skin ridges on dolphin integument. Muscles 

underlying the skin can respond to environmental pressures causing microvibrations which 

reduce water turbulence, enabling the skin to respond to its environment. The remarkable 

orientations of the lines imply that the environment has an effect. From Ridge and Carder 

(1993). (E) Asymmetric pigmentation patterns in pheasant tail feathers. Stripes are present 

on one side of the vane and hash marks (flecks) are present on the other side. Two tail 

feathers are placed side by side and show pigmentation patterns that are similar but non-

identical. (F) Schematic diagram showing the human lines of Blaschko. These represent 

patterns of human skin diseases which may result from mutations which occur within a cell 

lineage during skin morphogenesis. The nature of these lines is cell lineage based. From 

Happle, (1985).
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Fig. 2. Different integument patterns can be revealed during feather morphogenesis
(A) Embryonic chicken skin showing feather buds arranged in hexagonal patterns and 

groups of buds distributed in feather tracts. Buds were visualized by in situ staining for Shh. 

(B) Feather arrays on the quail. Note the different array pattern between chicken and quail, 

even though the two species are closely related. The black color is due to melanocytes. (C) β 

-catenin marks the initial appearance of feather primordia. During development, the β-

catenin transcripts are first expressed in the whole tract field, before they become restricted 

to individual feather primordia. Each primordium is then surrounded by a region devoid of β 

-catenin expression (Widelitz et al., 2000). (D) Dermatome cell lineages. Quail somites were 

transplanted to the dorsal midline of chicken embryos. They can be seen to migrate out to 

populate certain regions of the dorsal lateral trunk. *This patch represents dermal cell 

lineages migrating out from specific somite regions. (E) Epithelial cell lineage. Epithelial 

precursor cells near the midline were transduced with LacZ as a lineage marker. The lineage 

of epithelial cells are distributed in horizontal lines. Note the similarity to the lines of 

Blaschko in Fig. 1F. From Chuong et al. (1998). (F) Schematic showing feather tracts. 

Tracts are shown as blue patches. The direction of progressive feather bud formation is 

shown by the arrow. (G) Modes of molecular expression. Genes are expressed with 

restrictive (left) or de novo (right) expression patterns. Both modes of expression can form 

bud or interbud expression patterns. (H) Examples of genes expressed with restrictive and 

de novo patterns. Expression patterns of L-CAM (Chuong and Edelman, 1985a), Eph A4 

(Patel et al., 1999), Shh (Ting-Berreth et al., 1996a), L-fringe (Chen and Chuong, 2000), 

gremlin (Ohyama et al., 2001) and collagen I are shown.
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Fig. 3. A model for feather periodic patterning involving reaction-diffusion and competitive 
equilibrium
(A) Through experimentation, some molecules are found to enhance feather formation 

(named activators) and some suppress feather formation (named inhibitors). Exemplary 

activators (FGF 4) and inhibitor (BMP 4) are shown. PMA increases the size of the interbud 

domain (inhibitor of bud formation) whereas Forskolin decreases the size of the interbud 

domain (activator of bud formation). (B) Data show that both activators and inhibitors of 

bud formation are located in the bud region, not in the bud and interbud, respectively. The 

activators induce both activators and inhibitors, while the inhibitors suppress the activators. 

Some growth factors promote or suppress interbud formation. Examples include Shh (Ting-

Berreth et al., 1996a), FGF (Widelitz et al., 1996; Song et al., 1996; Jung et al., 1998), PKA 

(Noveen et al., 1995b), follistatin (Patel et al., 1999), BMP (Jung et al., 1998), Delta-1 

(Crowe et al., 1998), retinoic acid (Chuong et al., 1992), EGF (Atit et al., 2003), PKC 

(Noveen et al., 1995b), Wnt 7a (Widelitz et al., 1997). These results favor the involvement 

of a reaction diffusion mechanism (Turing, 1952; Nagorcka and Mooney, 1985; Moore et 

al., 1998; Jiang et al., 1999).
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Fig. 4. A novel reconstitution assay which allows the study of periodic pattern formation from 
the ground state
(A) Embryonic day 6 chicken skin was dissected. (B) Epidermis (shown) was separated 

from the mesenchyme. (C) Mesenchyme was dissociated into single cells. (D) Mesenchymal 

cells were recombined with epithelium and plated. In 3 days, they self-organize into many 

feather buds simultaneously (Jiang et al., 1999). (E) Using the reconstitution model, we 

tested the relationship using a fixed size of epidermis while increasing the number of 

competent mesenchymal cells. Logically, either the number of buds or the size of the feather 

primordia could increase. We found that, using skin from a certain region, the size of the 

feather primordia is constant. At low density, buds did not form. At higher cell density, 

feather primordia started to appear randomly. The density of feather primordia gradually 

increased until they reached the highest packing density, which yields the hexagonal 

patterning (Jiang et al., 1999). Our results show that it increased the number of feather buds. 

We propose that competent cells are first distributed homogeneously in the field. These cells 

adhere randomly and this adhesion is reversible. When these small unstable aggregates 

surpass a threshold density, they become stable dermal condensations. (F) The size of each 

dermal condensation is dependent on the ratio of activator molecules (noggin, FGF, Shh, 

etc) to inhibitor molecules (BMPs). A higher activator to inhibitor ratio allows the formation 

of larger sized feather buds, while a higher inhibitor to activator ratio favors the formation of 

the interbud region (Jiang et al., 1999). (G) Schematic diagram showing that increasing 

mesenchymal cell number increases feather number at a constant size. The size of feather 

buds is influenced by activators (Noggin) and inhibitors (BMP).
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Fig. 5. Cell adhesion molecules act as mediators of patterning
(A) Immunostaining for NCAM in reconstituted explants or in dissociated mesenchymal 

cells (N-E) after 4, 10, 18 and 24 h. in culture. Scale bar, 200 μm. (B) Pseudocolor and high 

power views. (C) NCAM was expressed at moderate levels throughout the cultures and was 

upregulated in cell aggregates by 18 h. (arrow 1), but was expressed at basal levels in lower 

density aggregates (arrow 2) and not expressed where cells remained aggregate-free (arrow 

3). (D) Schematic drawing shows that cells are initially attached to their substrates, but 

through extracellular matrix molecules, cell-cell adhesion becomes greater than cell-

substrate adhesion leading to cell condensation formation. (E) Hence, during feather 

formation, global events help to form the tract field. Random unstable cell aggregates begin 

to form in the mesenchyme. Local events now begin to dominate the feather forming 

processes. Stable aggregates form and signal to the overlying epithelium to form a placode. 

This induces alterations of molecular expression. Through a reaction - diffusion mechanism, 

these molecular expression patterns are intensified into periodic patterns which shape and 

consolidate the forming feather primordia.

Jiang et al. Page 34

Int J Dev Biol. Author manuscript; available in PMC 2015 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Diagram of self-organizing models for pattern formation
(A) Homogenously distributed cells through random interactions form unstable aggregates. 

This forms random variations which are amplified above a threshold at which the patterns 

become set. Distinct patterns are formed by competition between intrinsic factors (properties 

of the membranes and extracellular matrix), concentrations of activators and inhibitors and 

the size of the primordial field. (B) Digital hormone model. Cells (black dots) can move 

within the grid. They secrete activators (red) and inhibitors (green) that influence 

neighboring cells which fall within their sphere of influence. Activators and inhibitors 

cancel each other out in the space between the red and green regions. In the lower portion of 

the figure, two cells are interacting through their hormones. If the activator/inhibitor ratio is 
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high (lower left figure) feather formation is highly favored. If the activator/inhibitor ratio is 

low (lower middle figure) feather formation is suppressed. If the activator/inhibitor ratio is 

balanced (lower right figure) feather buds and interbuds will form.
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Fig. 7. Simulation of feather patterning by the Digital Hormone Model
(A) Simulations of pattern formation with increasing mesenchymal cell densities (10%, 

25%, 50% of grids filled) in a fixed field size indicate that higher cell density favors more 

aggregates of similar size. The process was captured at step 0, 50, 500 and 1000 to see the 

dynamic flux of the cell movements. (B) The presence of hormone activators and inhibitors 

upon pattern formation. Starting with a uniformly dispersed cell population, inhibitors 

blocked the formation of aggregates. Activators led to the formation of aggregates. As the 

ratio of activator to inhibitor increased, the size of the cell aggregates increased. The 

dynamic cell sorting was captured at step 0, 50, 500 and 1000. (C) To test the influence of 

field shape on pattern formation we started with a field shaped like a plus sign. This caused 

the virtual cells to form stripes.
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Fig. 8. Further patterning of feather buds and feather filaments
Several factors influence the final shape of each feather. (A) As feathers elongate, a 

proximal-distal axis starts to develop and molecular differences are seen along this axis. 

Localized growth zones (LoGZ) are located at the tip of the feather during early 

development, but become localized near the feather base later. (A′) Tangential section of 

early buds show that the homogenous feather buds become heterogeneous following the 

development of the anterior -posterior axis. Examples shown include tenascin (Jiang and 

Chuong, 1992); Wnt 7a (Widelitz et al., 1997); Eph A4 (Patel et al., 1999), Notch (Chen et 

al., 1997) and Follistatin (Patel et al., 1999). (B) Cross sections of different levels of feather 

filament are shown schematically which also represent different developmental stages (distal 

is more mature). Stage 0: initiation of the stratified epithelial cylinder; the basal layer is 

beginning to form. Stage 1: barb ridge formation initates, the basal layer is well formed. 

Stage 2: barbule plates and marginal plates begin to form. Stage 3: axial plates are forming 

and barbule plates are well formed. Stage 4: keratinization is complete; barbs have 

separated. The numbers and sizes of each structure depicted are schematic and do not reflect 

the actual values (from Chuong and Edelman, 1985b). (C) Wholemount view of the 

elongated feather buds. The barb ridges alternate with the marginal plate which is 

highlighted by staining with Shh. Cell lineage was traced by injecting replication-defective 
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spleen necrosis virus directing the expression of β-galactosidase at E10 and analyzing 

expression at E18. The results indicate that it is not one clone - one marginal or barb plate. 

Instead each individual barb is polyclonal, containing some β-galactosidase positive and 

some β-galactosidase negative cells. ap, axial plate; br, barb ridge; fe, feather epithelium; 

mp, marginal plate; pe, pulp epithelium.
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Fig. 9. Schematic diagram depicting the genotype, the epigenetic events at different organization 
levels and the resultant phenotypes
While genetics (genome, transcriptome, proteome) provides the basic molecular 

composition, probability events and variations occur at the cell interaction level. Cell fate 

decisions are based on basic cellular interactions (proliferation, adhesion, migration, death 

and differentiation). They are ruled by physiochemical phenomena (stochastic randomness, 

competitive equilibrium, self-organization). These factors have been modeled by reaction 

diffusion, cellular automata and digital hormones.
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