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Abstract

Recently, Fine and Gray (1999) proposed a semi-parametric proportional regression model for the 

subdistribution hazard function which has been used extensively for analyzing competing risks 

data. However, failure of model adequacy could lead to severe bias in parameter estimation, and 

only a limited contribution has been made to check the model assumptions. In this paper, we 

present a class of analytical methods and graphical approaches for checking the assumptions of 

Fine and Gray’s model. The proposed goodness-of-fit test procedures are based on the cumulative 

sums of residuals, which validate the model in three aspects: (1) proportionality of hazard ratio, 

(2) the linear functional form and (3) the link function. For each assumption testing, we provide a 

p-values and a visualized plot against the null hypothesis using a simulation-based approach. We 

also consider an omnibus test for overall evaluation against any model misspecification. The 

proposed tests perform well in simulation studies and are illustrated with two real data examples.
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1 Introduction

Competing risks data arise in medical studies where patients may experience failure from 

multiple causes, and failure from one cause precludes observation of failure from the other 

causes. Fine and Gray (1999) proposed a semi-parametric proportional subdistribution 

hazards model (FG model). It can be applied to evaluate the effects of covariates on the 

cumulative incidence function directly. The FG model has been using extensively in cancer 

studies, epidemiological studies, and many other biomedical studies (Scrucca et al, 2007; 

Wolbers et al, 2009; Kim, 2007; Lau et al, 2009). Similarly to the Cox regression model for 

the regular time to event data (Lin et al, 1993), the FG model may also fail in three ways: (1) 

the proportional hazards assumption does not hold, i.e. the subdistribution hazard ratio is 

time-variant; (2) the functional forms of individual covariates in the exponent of the model 
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are misspecified; (3) the link function, i.e. the exponential form for the subdistribution 

hazard ratio is not appropriate. It is well known that violation of any one of these three 

model assumptions, required for the Cox proportional hazards model, may lead to severely 

biased effect for the statistical inference (Lin et al, 1993).

Although it is important to validate the FG model, only limited contributions have been 

made to check the model assumptions. For checking the proportionality assumption, Zhou et 

al (2013) proposed a simple goodness-of-fit test by adding a time dependent covariate, and 

showed through a simulation study that this simple test performed well. However, the power 

of this simple test may depend on the specific pattern of the covariate effect over time, under 

the alternative models. Scheike and Zhang (2008) considered a goodness-of-fit test by 

estimating the regression effect nonparametrically over time based on their direct binomial 

modeling approach. In general, such nonparametric goodness-of-fit tests may have lower 

power compared to the specific alternative model based test. Perme and Andersen (2008) 

proposed using a pseudo-value approach to test the proportionality assumption and a linear 

functional form of individual covariates for right censored competing risks data. Pseudo-

observations are often calculated for a pre-fixed set of time-points. Some computation issues 

may occur when one needs to calculate the pseudo-observations for a large set of time 

points. Pseudo-value based goodness-of-fit tests may be difficult to employ when the 

censoring distribution depends on some continuous covariates.

Martingale residual based goodness-of-fit test has been well developed for checking the Cox 

model (Andersen et al, 1993). Alternatively, Lin et al (1993) proposed a goodness-of-fit test 

based on cumulative sums of martingale residuals to check the proportionality assumption, 

functional forms of covariates effect, and the link function in the Cox model for right 

censored survival data. In this paper, we extend their approach (Lin et al, 1993) to the right 

censored competing risks data, using the cumulative sums of residuals to check the FG 

model. For checking the proportionality assumption, we propose using the score process, 

which is a special case of the cumulative sums of residuals on time. Compared to the 

approach of adding a time-dependent variable (Zhou et al, 2013), our proposed test has a 

better performance when the trend of the covariate effect is not modeled correctly over time. 

We also propose using the cumulative sums of residuals on covariates values to check the 

linearity and the link function assumption of the FG model. All tests proposed in this study 

are based on a simulation based approach for the null limiting distribution of the test 

process. Besides the numerical results, we provide each test with a diagnostic plot for the 

visual checking. An omnibus test accumulating the residuals on time and covariate value 

simultaneously, is considered to evaluate the validation of FG model in an overall view.

In section 2, we briefly introduce the background of FG model and some techniques which 

will be used for the model checking. In section 3, we examine the performance of the 

proposed method through simulation studies. In the simulation studies, we test against each 

of the assumptions with some commonly seen alternatives. We show the application of the 

proposed approach to two real datasets in section 4 and conclude with discussion in section 

5.
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2 Model checking techniques

Let T and C be the underlying time to event and censoring, and X = T ∧ C. Δ =  {T ≤ C} is 

the non-censoring indicator, and 3 represents cause of failure. We usually observe i.i.d. (Xi, 

Δi, Δi εi), where Δiεi contains the information of both censoring and cause of failure. For the 

competing risk data, one quantity of interest is the cumulative incidence function, the 

probability of failure due to one specific cause (assuming to be cause 1),

where S(t) is the overall survival function and Λ1 (t) is the cumulative cause-specific hazard 

for cause 1. Fine and Gray (1999) proposed a semi-parametric proportional regression model 

for the subdistribution hazard function

(1)

where  is the baseline subdistribution hazard, β are the covariates effect for Z. Let 

 be the cause specific counting process,  is the 

risk set associated with the subdistribution hazard. When the right censoring is present, 

 and  will not be fully observed. Recently, Fine and Gray (1999) proposed using 

the inverse probability of censoring weighting technique (IPCW) with a time-dependent 

weight function wi(t, Gc) = ri(t)Gc(t)/Gc(Ti ∧ t), where ri(t) = {Ci ≤ Ti ∧ t} and Gc(t) is the 

survival function for the censoring distribution. It is easy to see both  and 

 are computable for all time t. IPCW can be generalized to allow the 

dependency between C and Z as suggested in Fine and Gray (1999). In this study, we 

estimate Gc(t) nonparametrically using the Kaplan-Meier estimator, denoted as Ĝc(t), or Ĝc 

for simplicity. The score equation and information matrix can be obtained by taking the first 

and negative second derivative of the partial likelihood:

where ⊗ denotes the Kronecker product and

The β is estimated by solving the score equation U(β̂) = 0, and the cumulative baseline 

subdistribution function,  is estimated by
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Under the null hypothesis of FG model, the differences between the weighted counting 

processes and their respective intensity functions are

(2)

Most importantly,  is a zero-mean Gaussian process. The residuals are 

defined as

(3)

2.1 Checking the proportional hazards assumption

We use the observed score process U(β̂, t) for checking the proportional hazards assumption. 

It can be shown that the score process equals to a special form of the cumulative sums of 

residuals over time:

Under the null hypothesis that FG model is valid, by involving the equation (2) and (3) we 

obtain

By the Taylor expansions of U(β̂, t) at β0 and some arguments, the observed score process is 

shown to be asymptotically equivalent to the summation of n independent and identically 

distributed random processes,

where the explicit form of  and a detailed derivation of the limiting distribution 

under the FG model can be found in the Appendix. The limiting distributional of 

 is asymptotically equivalent to the limiting distribution of 
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, where  is the observed counting process and Vi, i = 1, …, 

n, are i.i.d. standard normal variables (Lin et al, 1993). Therefore,  is replaced by the 

product of  and a normal variable Vi, where  is a plug-in estimator for .

To check the proportionality assumption for the jth covariate, we consider the score process

where Uj and  are the jth element and jth diagonal element of U and I−1, respectively, 

and m is the total number of covariates. Under the FG model,  is, asymptotically, a 

zero-mean Gaussian process and has the same limiting distributions as

and  is the jth element of . Resampling techniques can be used 

for the supremum test over a fixed time interval. Let

where K is the total number of realizations. The p-value of proposed test can be 

approximated by

We can also plot the observed score process  versus the follow-up time. Under the 

null hypothesis,  asymptotically equals to a zero-mean Gaussian process, which 

fluctuates randomly around zero. To access how unusual the observed process is, we may 

plot it along with a few simulated limiting processes under FG model. If the proportionality 

assumption is invalid, the observed process will be isolated above or below those simulated 

processes for some time periods.

To evaluate the overall proportionality assumption, we consider
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The overall plot and the p-value of the supremum test can be generated exactly the same as 

we check the proportionality for a single covariate.

2.2 Checking the functional form and the link function

To check the functional form of jth covariate, we consider

and to check the link function, we consider

Both processes are cumulative sums of residuals with respect to the covariate values. For the 

linear functional form, we focus on the change of each single covariate value. For the link 

function, we catch the value change of all covariates simultaneously by (β̂TZ), which reflects 

on the adequacy of link function. Similarly as the process proposed for checking the 

proportionality of subdistribution hazards, we can show that, under the FG model, these two 

processes asymptotically equals to zero-mean Gaussian processes. The limiting processes 

can be simulated as well (see Appendix for details). Resampling techniques can be used to 

estimate the p-values the supremum tests. Plotting the observed process and a few simulated 

limiting processes under the FG model versus the covariate values can be used for visually 

checking the linearity of functional form and the link function.

2.3 An omnibus test for each covariate

Summing up the residuals, with respect to t and z simultaneously, would offer a global 

checking of the model. Consider

Since B(o)(t, z) is, asymptotically, a zero-mean Gaussian process under the null hypothesis 

of the FG model (see Appendix for details), we can construct a lack of fit test based on 

resampling techniques as well. Plotting the observed process over t and z simultaneously 

would give an omnibus view on model adequacy. But since it is a high-dimensional plot, 

some technical issues need to be considered, which are not pursued in this study.
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3 Simulation study

We evaluated the performance of the proposed approaches by simulation studies. The 

simulation studies were designed in two aspects: first, we tested the proportional hazards 

assumption, which used the cumulative residuals with respect to time; second, we tested the 

linear functional form and the link function, which used the cumulative residual with respect 

to covariate values (note that only continuous covariate will be considered here). All 

simulation studies were designed for 15% and 30% censoring, with total sample sizes of 50, 

100 and 300, respectively. All censoring time were generated independently from a uniform 

random variable, U(0, τ], where τ was used to adjust the censoring rate. For each setting, we 

replicated 5000 repeated samples for the type I error rate and 2000 samples for the power of 

the proposed tests. Significance level α was set at 0.05 throughout the simulation study 

unless otherwise specified.

3.1 proportional hazards assumption

Suppose we have two groups in a univariate model with the only covariate Z. Half of the 

subjects belong to group 1 (Z = 1) and the other half belong to group 2(Z = 0). The type I 

error rate was evaluated under the null hypothesis with the data generated from the FG 

model. Respectively, the cumulative incidence functions for cause 1 and cause 2 are:

where p1 = F1(∞|Z = 0) is the cumulative incidence probability of cause 1 for Z = 0 as t 

goes to infinity, and it was set to be 0.66, and β was set to be 0.2 with F1(∞|Z = 1) = 0.73. 

We first determined the cause of event by generating a uniform variable ui ~ U[0, 1]. If ui ≤ 

F1(∞|zi), then the cause of failure was set εi = 1, and the failure time was generated from 

F1(t|zi)/F1(∞|zi) using inverse distribution method; otherwise, the failure time was 

generated from F2(t|zi)/F2(∞|zi). The Table 1 shows the type I error under the null 

hypothesis. The type I error rates were consistently close to the nominal level when the 

sample sizes were getting large.

Under the alternative hypothesis, the proportional hazards assumption does not hold. We 

consider following alternative subdistribution hazards for the cause 1,

(4)

where β(t) counts the time-varying treatment effect. To study the power of our proposed test, 

we generated data from two types of β(t). We assume the treatment effect has a linear 

function of time t, i.e. β(t) = β + θt. The baseline subdistribution hazard function in model 

(4) was set to
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A uniform variable u was generated from U(0, 1) to determine the cause of event, and we 

fixed the probability of cause 1 at 0.66, for simplicity. If u ≤ 0.66, the failure time was 

generated from F1(t|Z); otherwise, the failure time was generated from F2(t|Z). The 

cumulative incidence function of cause 1 equals to

The failure time of cause 2 was generated from an exponential distribution with rate 

exp(αZ), given F2(∞|Z) = 1 − F1(∞|Z). Here we set β = 0, θ = −8, ρ = −5, α = 2 and α = 

−0.5. In parallel to the proposed approach, we also fitted the same data using Fine and 

Gray’s model with β(t) = t, log(t), and t2 (Zhou et al, 2013). Table 2 shows that when the 

treatment has a linear time-varying effect, fitting time-varying Fine and Gray’s model with 

linear effect gave the highest power. The proposed test and the other two time-varying effect 

models performed slightly worse than the liner effect model, but all had very reasonable 

power. From the results, we can see that if the form of treatment effect is correctly specified, 

it would have the largest power. But when the treatment effect is misspecified, our test 

would give a comparable and even better power.

In practice, the treatment effect may have a more complicated relationship with time. For 

example, the treatment has two different effects before and after time t0, where t0 is 

unknown. To evaluate the performance of proposed test under this situation, the data were 

generated from model (4) with treatment effect β(t) = β1 (t ≤ t0) + β2 (t > t0). For 

simplicity, we assume , therefore

The treatment effects, β1 and β2 were set as 1 and 0.2, respectively, and t0 was set as 0.5. 

The results in Table 3 show the power of our proposed test and the tests based on fitting 

Fine and Gray’s model with three different time-varying effects. In this case, our proposed 

test produced better power than any of the tests based on a pre-specified alternative form of 

the covariate effect.

3.2 Linear functional form and link function

We use the cumulative sums of residuals over covariate values for testing both the linear 

functional form and the link function. The former sums up the values for each individual 

covariate, while the latter sums up the combination of all covariates. To study the type I 

error rate, the data were generated from model (1) with a single covariate Z, where Z = {0, 

⋯, 9}, with equal proportions. Here we set β = 0.2. Table 4 shows that the type I error rates 

were consistently close to the nominal level.
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The linear functional form fails when the covariates do not linearly correspond to the log of 

the subdistribution hazard ratio. To test the validation of functional form, the failure time of 

cause 1 was generated from

(5)

with β1 = 0.8 and β2 = −0.1. Failure times of cause 2 were generated from the exponential 

distribution with the rate of exp(−0.5). The rate of cause 1 was pre-set at 0.6. We fitted the 

data using FG model (1) with the covariate Z. Table 4 shows that our proposed test for the 

validation of the linear functional form has sufficient power and that the power increases 

when the sample size increases.

The misspecification of the link function means the exponential form in model (1) is 

inappropriate. For example, if the data is from an additive model, the test should give strong 

evidence of model misspecification. We generated the failure time of cause 1 from

(6)

For simplicity, we assume α(t) = 0.03, which is a constant, and Z = {0, ⋯, 9} with equal 

proportions. We set β = 0.5. The failure times of cause 2 were generated from an exponential 

distribution with the rate of exp(−0.5). The rate of cause 1 was pre-set at 0.6. We fitted the 

data to the FG model (1) with the covariate Z. It is clear that this model is misspecified. 

Table 4 shows the power of our proposed test for validation of the link function of the FG 

model. We can see the test is very reliable when sample size is getting large.

4 Real data example

We now apply the proposed testing approaches to two real data examples. The p-values of 

the supremum tests throughout this section are based on 1000 replications. In each graphical 

display, the observed process is indicated by a solid curve and the first 10 simulated 

processes are plotted in dash curves. Comparing to the simulated curves, we can distinguish 

the observed curve if the model assumption is not appropriate.

4.1 BMT data

We considered data from the Center for International Blood and Marrow Transplant 

Research (CIBMTR), on acute myeloid leukemia (AML) patients, who are older than 50 

years, and had alternative donor hematopoietic transplants in first complete remission 

(Weisdorf et al, 2013). The CIBMTR is comprised of clinical and basic scientists who share 

data on their blood and bone marrow transplant patients, with the CIBMTR Data Collection 

Center located at the Medical College of Wisconsin. The CIBMTR has a repository of 

information regarding the results of transplants at more than 450 transplant centers 

worldwide. For the illustrative purpose, the data set used for our example consists of patients 

who received a 8/8 HLA-matched unrelated donor transplant (URD: N=440) or an umbilical 

cord blood transplant (UCB: N=204). The two competing events are leukemia relapse and 

treatment-related mortality (TRM), which is defined as death without relapse. The CIBMTR 
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study (Weisdorf et al, 2013) identified that donor type had a time-varying effect on the 

TRM. The variables considered in this example are donor type (GP (main interest of the 

study): 1 for 8/8 URD versus 0 for UCB) and patient age (AGE: median=59 (range: 50 – 76) 

years old). We fit this BMT data to a Fine and Gray’s model for TRM with two covariates: 

GP and AGE. The parameter estimates are β̂(GP) = −0.287 (P = 0.054) and β̂(AGE) = 0.012 

(P = 0.346).

First, we checked the proportionality of two covariates GP and AGE. The p-values of the 

supremum test are < 0.001 and 0.118, respectively, which indicate that the proportional 

hazards assumption of AGE is reasonable, but the proportional hazards assumption of GP is 

strongly violated. Figure 1 displays the score process for the covariates of GP and AGE, 

respectively. For GP, the observed process severely departs from the simulated process in 

the early time period since transplant, which indicates that the donor type had a strong time-

varying effect on TRM. For the early time departure of the covariate effect (Figure 1), we 

suggest adding a time-varying covariate γ × log(t). Applying the crr() function in R-cmprsk 

package suggested by Zhou et al (2013), we obtained γ̂(GP) = 0.565 (P < 0.001). The 

observed score process of AGE sits well within the simulated score process which indicates 

that the proportional hazards assumption of AGE does not violate. Also, we noticed that the 

conclusion from the p-value and graphical approach are consistent. When the proportionality 

assumption of the FG model is violated, more flexible alternative regression models for the 

competing risks data need to be considered, which allow some covariates to have time-

varying effect (see Scheike et al (2008); Scheike and Zhang (2008)).

We also checked the adequacy of functional form and link function. Both linear functional 

form and link function are satisfied. We do not recommend testing the functional form for 

the donor type, since it only has 2 levels and discussing the linearity is not very meaningful. 

Table 5 gives a summary of the p-values for checking each assumption based on the 

supremum test.

4.2 PBC data

Next, we looked at an example violates the linear functional form. Mayo Clinic developed a 

database for patients with primary biliary cirrhosis (PBC) of the liver conducted between 

1974 and 1984. The data and the description of the PBC dataset were given in Appendix of 

Fleming and Harrington (1991). Of the 418 patients, 161 died, which was the main interest 

of the study. 25 patients had a liver transplantation, and 232 patients were censored at the 

end of the study (without a liver transplantation). This data were used by Dickson et al 

(1989) building a Cox model with five covariates, log(bilirubin), log(protime), log(albumin), 

age and odema. Treating a liver transplant and all others as censored observations. Lin et al 

(1993) demonstrated that the use of the untransformed bilirubin was inappropriate because 

the fitted model overestimated the hazard at low bilirubin values and suggested a log 

transformation. Since patients could die after the liver transplantation, and the liver 

transplant may be correlated with the death rate, we treat the liver transplantation as the 

competing event for illustrative purpose. In this section, we reanalyze the data in a 

competing risks setting by using Fine and Gray’s subdistribution hazards model, and 

checking the assumptions of the FG model.
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We first consider fitting the Fine and Gray’s model (1) with covariates bilirubin, 

log(protime), log(albumin), age and odema. The parameter estimates are 0.044, 0.966, 

0.109, −2.558 and 3.507 respectively, and all are significant, with P < 0.05. Figure 2 shows 

the plot of the cumulative residuals against bilirubin. The fitted model extremely 

overestimates the subdistribution hazard for the low bilirubin values with P < 0.001. The 

pattern of the plot suggests a log transformation is needed. Figure 3 shows the plot of the 

cumulative residuals against log(bilirubin), which is a much better functional form (P = 

0.114). Additional analysis indicates that the functional forms for the remaining covariates 

and the link function are appropriate (see Table 6).

Our proposed test shows that the proportional hazards assumption was not satisfied for 

oedema and log(protime) with P = 0.019 and 0.007, respectively (see Table 6). The plots of 

their score processes against time confirm our test conclusion as well (plots are omitted 

here). The p-value of overall proportional test is 0.006, which means the non-proportionality 

should be corrected. Again, we can consider fitting this PBC data with some more flexible 

alternative models, which allow some covariates to have time-varying effects (see Scheike et 

al (2008); Scheike and Zhang (2008)).

Lin et al (1993) checked the Cox model with cumulative sums of martingale-based residuals 

for the PBC data treating 25 liver transplantations as the censored subjects, and derived 

similar conclusions since it only counts 13% (25/186) of total events. This shows our 

proposed goodness-of-fit tests can be used for the model validation for the Fine and Gray’s 

proportional subdistribution hazards model.

5 Conclusion and discussion

In this paper, we presented a dynamic model diagnostics approach for checking the Fine and 

Gray’s model based on cumulative sums of residuals. Specifically, we checked the 

proportionality of the hazards function, the linearity of the functional form, and the link 

function. We proposed different test statistics for each specific testing purpose, and derived 

the asymptotic properties under the null hypothesis that the Fine and Gray’s model is valid. 

The three different test statistics were written into a general form, and more details of this 

were provided in the Appendix. For each proposed test, we also presented a graphical 

method for visually checking the model assumptions, which also provided some useful 

information on how the model assumption was violated.

When any one of the Fine and Gray model assumptions is violated, one needs to consider an 

alternative regression model. Only a limited goodness-of-fit test has been considered for 

these flexible models. Scheike et al (2008) and Scheike and Zhang (2008) proposed a class 

of flexible regression models which allow some covariates to have time-varying effects, and 

have some alternative link functions. In such situations an important issue would be to 

subsequently check the adequacy of the extended model. Actually some of the extended 

models could be also validated using the cumulative sums of residuals. For example, when 

proportional hazards assumption is invalid, we may consider the time-varying treatment 

effect as β(t) = β + θt. In this case, the cumulative sums of residuals would involve the time-
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varying term and the limiting distribution under the null hypothesis needs to be derived. This 

could be an extension of our current work and further studies are needed.

One issue for using the resampling techniques is the extensive computational time. We use 

1000 replicates in most of our studies, but some studies need more replicates to obtain 

reliable p-values for the supremum-type test (Lin et al, 1993). We implemented the most 

computational intensive calculation in C++ for its speed and wrapped it by R via the 

interface between R and C++ for its flexibility. The code implementing the analysis is 

available upon request, and a user-friendly R package is under development for future 

release.
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Appendix

Consider the following partial sums of residuals
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where f(x, Zi, v, p) = (v⊤Zi)p (v⊤Zi ≤ x). Here v is a vector with same dimension of 

covariates Z, and p = 0 or 1. Under the null hypothesis that the FG model is valid,

(7)

(8)

(9)

Taking the Taylor expansion of U(β̂, t) at β0, we can obtain

where Ω = limn→∞ I(β0)/n and asymptotically U(β0) can be expressed as the sum of n 

independent and identically distributed random variables, i.e. 

 (for explicit expressions of ηi and ψi see Fine 

and Gray (1999)). Since ηi contributes the majority of the variability, so we call ηi major 

term and ψi minor term. Both ηi and ψi are zero-mean Gaussian processes. Therefore

(10)

Recall that

therefore
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(11)

(12)

Further more, for (11), taking the Taylor expansion of 1/S0(β̂, u) at β0, we can obtain

(13)

For (12),

where

Plug (11) and (12) into (9) we have

(14)

(15)

(16)

Under the asymptotic regularity conditions:
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Exchange summation on (14) and combine with (7). When ,

where

Combine (8) and (15). When ,

where

Exchange summation on (16). When ,

where

So
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where

(17)

which can be consistently estimated by the plug-in estimators.

Test proportional subdistribution hazards assumption:

To check the proportional subdistribution hazards assumption, we consider the score process 

Uj (β̂, t) for each covariate, which can be written as

It is a special case of the general form B(t, x) with x = ∞, p = 1 and v has 1 in jth element 

and 0 elsewhere. Under the null hypothesis,

where s1j (β0, u) is the jth element of s1(β, u) and

In practice, we standardized the process by multiplying , and denoted 

 in the text.

Test linear functional form

To test the linear functional form for the jth covariate, we consider
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which is a special case of the general form B(t, x) when t = ∞, p = 0, and v has 1 in jth 

element and 0 elsewhere. Under the null hypothesis,

where

Test link function

To test the link function, we consider

In this case, t = ∞, p = 0 and v = β̂. Under the null hypothesis, the test statistic has exactly 

the same format as the test statistic in the linear functional form, except the indictor function 

is replaced by  {β̂⊤Zi ≤ x}. Note, if there is only one covariate, checking the function is 

equivalent to checking the functional form of the covariate.

Omnibus test

Here we consider

For the jth covariate is of interest for testing, the jth element in B(o)(t, x) is the statistic we 

look for,

which is a special case of the general form B(t, x) when p = 0 and and v has 1 in jth element 

and 0 elsewhere. The omnibus test also can be viewed as recording each linear function test 

through the time span. Under the null hypothesis,
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where
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Fig. 1. 
Plot of Standardized Score Process for GP and AGE in the BMT Data
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Fig. 2. 
Plot of Cumulative Residuals vs bilirubin in the PBC Data
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Fig. 3. 
Plot of Cumulative Residuals vs log(bilirubin) in the PBC Data
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Table 1

Type I Error for Testing the Proportional Hazards Assumption

n c(%) Type I

50 15 0.0624

50 30 0.0642

100 15 0.0606

100 30 0.0564

300 15 0.0536

300 30 0.0536
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Table 4

Type I Error and Estimated Power for Testing the Functional Form and the Link Function

n c(%) Type I Test Function Form Test Link Function

50 15 0.0568 0.1575 0.1325

50 30 0.0556 0.2055 0.1350

100 15 0.0514 0.2505 0.2240

100 30 0.0566 0.3945 0.2170

300 15 0.0478 0.6055 0.7210

300 30 0.0506 0.8645 0.6755
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Table 5

p -values of Checking Fine and Gray’s Model in BMT Data

GP AGE overall

Proportionality < 0.001 0.118 0.001

Functional form – 0.896 -

Link function - - 0.954
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