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Abstract

Recently, fMRI researchers have begun to realize that the brain's intrinsic network patterns may 

undergo substantial changes during a single resting state (RS) scan. However, despite the growing 

interest in brain dynamics, metrics that can quantify the variability of network patterns are still 

quite limited. Here, we first introduce various quantification metrics based on the extension of co-

activation pattern (CAP) analysis, a recently proposed point-process analysis that tracks state 

alternations at each individual time frame and relies on very few assumptions; then apply these 

proposed metrics to quantify changes of brain dynamics during a sustained 2-back working 

memory (WM) task compared to rest. We focus on the functional connectivity of two prominent 

RS networks, the default-mode network (DMN) and executive control network (ECN). We first 

demonstrate less variability of global Pearson correlations with respect to the two chosen networks 

using a sliding-window approach during WM task compared to rest; then we show that the 

macroscopic decrease in variations in correlations during a WM task is also well characterized by 

the combined effect of a reduced number of dominant CAPs, increased spatial consistency across 

CAPs, and increased fractional contributions of a few dominant CAPs. These CAP metrics may 

provide alternative and more straightforward quantitative means of characterizing brain network 

dynamics than time-windowed correlation analyses.
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1 Introduction

Intrinsic networks observed in the resting state (RS) have been intensively explored in the 

past two decades (for reviews, see (Biswal, 2012; van den Heuvel and Hulshoff Pol, 2010)), 

and have contributed enormously to the understanding of brain function. Until recently, all 

such studies have relied on the key assumption of temporal constancy. However, it was 

recently observed that RS network patterns may exhibit substantial changes across a single 

scan (Allen et al., 2014; Chang and Glover, 2010; Smith et al., 2012), and investigations on 

anesthetized animals (Hutchison et al., 2013b; Keilholz et al., 2013; Majeed et al., 2011) 

further demonstrated the functional relevance of such phenomena. Complementary to the 

conventional approaches, which integrate time series signals across the entire scan, the 

wealth of information carried by widely observed brain dynamics has great potential to 

unveil new understanding in cognitive and clinical applications (Holtzheimer and Mayberg, 

2011; Rubinov and Sporns, 2011; Sakoglu et al., 2010).

Despite the growing interest in resting brain dynamics, analysis strategies and metrics to 

quantify the temporal variations are still quite limited. The most common approaches focus 

on the temporal changes of different quantification measures in a sliding sequence of 

truncated time windows (Chang and Glover, 2010; Handwerker et al., 2012; Hutchison et 

al., 2013b; Jones et al., 2012). However, sliding window methods always suffer from 

tradeoffs between the statistical significance achievable in a short duration window (e.g. 

there are approximately 10 time points in a 20s window with conventional TR sampling 

rate) and the reduction in high frequency content obtained as the window duration is 

increased (for a review, see (Hutchison et al., 2013a)). As for other multivariate approaches 

such as temporal independent component analysis (ICA) (Smith et al., 2012), due to the 

nature of model assumptions (sub-components are non-Gaussian) and lack of clear 

interpretations of network behavior (the correspondence between temporally independent 

components and the repertoire of brain states is not verified yet), it is not straightforward 

and requires caution to summarize the associated results for use in routine investigations of 

brain dynamics.

Very recently, some studies looking at resting state functional connectivity have begun to 

focus on those time frames when the spontaneous BOLD signal in a voxel or region exhibits 

relatively large amplitude. By deconvolving the task hemodynamic response function from 

the rest data, (Petridou et al., 2013) have identified a series of ‘spontaneous events’ and 

demonstrated the contribution of these events to the correlation strength and power spectra 

of the slow spontaneous fluctuations. Furthermore, (Tagliazucchi et al., 2012) have shown 

that using such spontaneous events allows one to recover those resting-state networks 

computed with continuous slow fluctuations across the whole scan. More elegantly, (Liu and 

Duyn, 2013) proposed co-activation pattern (CAP) analysis, which offers an alternative to 

the conventional linear correlation analysis and novel insights into the dynamic changes of 

the on-going network patterns. Briefly, the authors suggested that conventional linear 

correlation results (seed-voxel based whole brain correlation) can be computed by 

temporally averaging the whole brain spatial maps at a few critical time points when the 

seed signal intensity surpasses a certain threshold, and demonstrated that multiple stable 

spatial patterns (referred to as co-activation patterns, or CAPs) can be obtained by temporal 
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decomposition (clustering) of these critical time frames. Compared to the sliding-window 

approach and other multivariate approaches, e.g. temporal ICA, CAP analysis promises the 

examination of state alternations closer to the temporal resolution of individual time frames 

but relies on very few model assumptions. Furthermore, the variations of different spatial 

patterns and their associated fractional scan time durations (number of samples of a CAP / 

total number of TRs), or temporal fractions (Liu et al., 2013) provide richer quantification 

measures of brain dynamics that are inherently simple to interpret.

Promising as it may seem, several technical concerns potentially prevent CAPs from 

facilitating routine examination/quantification of brain dynamics: the enormous feature 

dimension (total number of gray matter voxels) in temporal clustering imposes intensive 

computational load and may not support data acquisitions at higher temporal/spatial 

resolutions; the spatial patterns and temporal fractions of the resolved CAPs are sensitive to 

the choice of temporal clustering numbers.

The primary focus of the current study is therefore to extend and synthesize information 

inherent in the CAP concepts, and provide a framework to quantify brain dynamics in 

routine neuroimaging investigations. To demonstrate that the proposed metrics based on 

CAPs can reveal more elaborate changes in brain repertoire than is shown by sliding-

window correlation analysis, we apply both approaches to compare the variability of 

functional connectivity of two RS networks (the default-mode network (DMN) and 

executive control network (ECN)) at rest to that of a sustained 2-back working memory 

(WM) task. As the WM task enforces a control state with more engaged cognitive 

processing than that of rest, where uncontrolled changes in vigilance may cause significant 

state fluctuations (Chang et al., 2013; Wong, 2013), we anticipate that prominent differences 

in brain dynamics will be observed between the two mental conditions, thereby affording a 

means to demonstrate the value of the proposed metrics.

2 Material and Methods

2.1 Extension of CAP analysis

2.1.1 A brief introduction of CAP analysis—In conventional seed-based correlation 

analysis, the network patterns associated with a given seed are typically estimated by the 

linear correlation between the time series of each gray matter voxel and the referenced seed. 

The CAP method (Liu and Duyn, 2013) demonstrates that identical network patterns can be 

obtained by voxel-wise averaging the spatial maps of those time frames when the seed 

signal intensity surpasses a certain threshold (see Fig. 1A for illustration). Temporal 

clustering of those extracted time frames based on their spatial similarity can yield multiple 

spatial patterns (Fig. 1B), which are conjectured to be functionally relevant and reflect co-

activation patterns (CAPs) across the whole brain at each individual time frame.

2.1.2 ROI-wise CAPs—The CAPs demonstrated by (Liu and Duyn, 2013) were obtained 

from maps based on correlations between a seed and every voxel. However, as shown in 

Fig.1, those CAPs exhibit identifiable structures that are regionally homogeneous, 

motivating the use of an “ROI-wise” CAPs analysis, wherein the brain is parcellated into 

multiple fixed ROIs, and the average signal intensity of all the voxels within each ROI 

Chen et al. Page 3

Neuroimage. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(instead of the raw signal intensity of each voxel) is taken as the feature set for K-means 

temporal clustering.

In contrast to the original voxel-wise CAPs, ROI-wise CAPs can provide increased spatial 

signal to noise ratio (SNR) in local brain regions, and more importantly, enhance the overall 

computational efficiency (the feature size has been reduced from # of whole gray matter 

voxels to # of ROIs used), which is essential for extension into larger datasets. With a 

surrogate dataset, we demonstrate that a whole brain ROI-wise CAP analysis provides 

similar results to a voxel-wise CAP analysis (section 2.2.7 CAP analysis and supplementary 

Fig. S1, S2).

2.1.3 Quantifiable metrics of brain dynamics in CAPs

2.1.3.1 Information in the spatial patterns of CAPs: The spatial patterns of CAPs 

explicitly reflect the repertoire of brain states across the whole scan. The spatial similarity 

between different CAPs and the quantity of CAPs that actually dominate the brain repertoire 

reflect the extent of network changes incurred by a switch from one state to another, and can 

therefore be utilized as metrics to quantify brain dynamics.

Unfortunately, in common with other data-driven approaches, e.g. ICA, the derived spatial 

patterns are dependent on the choice of cluster number k in the CAP analysis. To eliminate 

the bias from choosing specific k s, we introduce the concept of “overall dominant CAP-

set”, which is a set of CAPs synthesized across the results from different choices of k s and 

is representative of brain repertoires across the whole scan.

Specifically, the “overall dominant CAP-set” can be extracted in a two-stage hierarchical 

procedure. First, the “dominant CAP-set” associated with each cluster number k (see Fig. 2) 

is generated. Briefly, after re-ranking the CAPs by their temporal fractions (TF) in 

descending orders – CAP1, CAP2, ... CAPk, we calculate the series of temporal frame 

averages {Sm}1≤m≤k as:

Eqn. (1)

where SMi is the spatial map of CAPi. The spatial similarity (linear Pearson correlation 

between the spatial patterns, i.e. the intensity patterns across all the gray matter voxels) of 

{Sm}1≤m≤k with the overall time frame average (Sk , i.e. the spatial map generated by 

averaging all the extracted time frames for CAP analysis) is further calculated as 

. The dominant CAP-set of cluster number k is chosen as the set of CAPs 

{CAPj}1≤j≤n with  (where rthress is a fixed 

threshold to remove miscellaneous CAPs with relatively low temporal fractions, or signal 

intensities that do not contribute much to the overall network pattern, and I denotes the 

indicator function, i.e. I = 1 when , 0 otherwise). At the second stage, the most 

reproducible pattern (the quantity of CAPs and spatial similarity) among all the dominant 

CAP-sets (for different k s) derived from the first stage is chosen as the “overall dominant 

CAP-set”.
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As a synthesized measure, the number of overall dominant CAPs reflects the diversity of 

network patterns (the fewer number of CAPs, the sparser the dictionary of network patterns), 

while the spatial consistency across different CAPs indirectly quantifies the uniformity of 

brain dynamics during CAP alternations (the higher spatial consistency, the less extreme 

dynamics that state alternations may incur).

2.1.3.2 Information in the temporal patterns of CAPs: In addition to the spatial patterns, 

the accompanying temporal information may also quantify the strength of brain dynamics. A 

first metric involves the temporal fractions (TF) of different CAPs, which quantify the 

number of different brain functional modes during the scan. A skewed distribution of CAP 

TFs, particularly with one (or a few) CAP(s) of overwhelming TF(s), may correspond to a 

state with more consistent network patterns (less dynamic) compared to those with more 

equally distributed CAP TFs. A second metric is the frequency of state alternations (FA) in 

CAPs. Because every abrupt switch of brain state may contribute considerable variation to 

the observed correlation values, a state with more frequent state alternations may likely be 

more dynamic compared to those with fewer alternations of states. Thus, FA can also serve 

as an informative metric to reveal the relative strength of brain dynamics.

Unfortunately, unlike the spatial patterns of dominant CAPs that are more consistent across 

different cluster number k s, the TFs and FAs of dominant CAPs depend significantly on the 

choice of specific cluster numbers. It is therefore hard to quantify the results simply, as we 

do for spatial patterns. A less optimum way is to employ extra criteria, e.g. silhouette score 

(a measure of how well a member fits in a cluster (Rousseeuw, 1987)), to select the most 

representative cluster number that can characterize the structure of the data, and estimate TF 

and FA under the specific case.

2.2 Experiments and Analysis

2.2.1 Subjects—Twenty one healthy subjects (10 females, aged 31±10 years) recruited 

from the Stanford community participated in the current study. All subjects provided 

written, informed consent, using a protocol approved by the Stanford Institutional Review 

Board.

2.2.2 Imaging parameters—FMRI data were collected at a 3T scanner with an 8-channel 

radio frequency coil (GE Discovery 750, Milwaukee, WI). Thirty-one oblique axial slices 

were acquired with 4-mm slice thickness, 1mm-skip. T2-weighted fast spin echo structural 

images (TR = 3000 ms, TE = 68 ms, ETL = 12, FOV = 22cm, matrix 192×256) were 

acquired for anatomical reference. A gradient echo spiral-in/out pulse sequence (Glover and 

Law, 2001) was used for T2*-weighted functional imaging (TR = 2000 ms, TE = 30 ms, flip 

angle = 77°, matrix 64×64, FOV = 22 cm, same slice prescription as the anatomical image). 

Subjects’ motions were minimized with a bite bar (the average of root mean square 

translations were less than 70 microns across all scans). Respiration and cardiac (pulse 

oximetry) data were recorded using the scanner's built-in physiological monitoring system.

2.2.3 Task paradigm—All subjects underwent (1) an 8-min rest scan, for which they 

were instructed to remain awake, devoid of systematic thinking, and keep eyes closed; (2) a 
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2-back working memory (WM) task scan, during which they were instructed to judge 

whether a currently-present letter was identical to the one presented two letters back during 

the task condition (see supplementary Fig. S3). The WM task scan has two parts: the first of 

which is a block design (to target brain regions activated during WM tasks, block duration 

48s, 7 blocks); the second part is an 8-min continuous WM task (inter-stimulus interval (ISI) 

= 3s, for comparison with rest data). The block design and continuous task were separated 

by a 30s rest period (see supplementary Fig. S3 for detailed scheme). To prevent 

interference from the prior cognitive load on the ensuing resting-state spontaneous activity, 

the task scans were performed after rest scans for all the subjects.

2.2.4 Preprocessing—Datasets from both rest and WM task scans were preprocessed 

using custom C and Matlab routines. The first 10 frames of each scan were discarded to 

allow the MR signal to achieve T1 equilibration. Standard preprocessing included slice-time 

correction, physiological noise correction with both RETROICOR (Glover et al., 2000) and 

RVHRCOR (Chang et al., 2009), and nuisance regression of scan drifts (linear and quadratic 

trends), six head motion parameters, signals extracted from white matter and CSF (3-mm 

radius spheres centered at MNI (26, -12, 35) and (19, -33, 18), renormalized to each 

subject's native space using SPM5 (Wellcome Department of Cognitive Neurology, 

London)). Subjects’ behavioral time series (reaction time sequence convolved with the 

hemodynamic response function) (Chen et al., 2013) were also regressed out of the WM task 

data. Datasets were further spatially smoothed using a 3D Gaussian kernel (FWHM = 4mm). 

Both the rest and WM task datasets were low-pass filtered to remove frequencies above 0.1 

Hz.

2.2.5 Defining network regions of interest

2.2.5.1 Default-mode network: A 6mm-radius sphere (MNI (-6, -58, 28)) in the posterior 

cingulate cortex (PCC) was selected as the primary ROI for the DMN. The coordinate was 

first reported by a meta-analysis study of task-based co-activation with DMN regions (Toro 

et al., 2008), and verified in our datasets to produce robust positive correlations within DMN 

and negative correlations between DMN and task-positive networks (see Fig. 3A).

2.2.5.2 Executive-control network: A 6mm-radius sphere (MNI (34, -54, 46)) in the right 

angular gyrus was adopted as the primary ROI for the ECN. The center coordinate was a 

local maxima in the group-level activation map from the random-effects analysis of the 

block-stimulus part of the WM task (see Fig. 3B).

2.2.6 Sliding-window correlation analysis—The sliding-window correlations estimate 

the time-varying linear correlation between two time series (x and y) in a sequence of 

truncated temporal windows:

Eqn. (2)

where w is the window size,  and  denote the portion of the time series from 

time t to t+w-1, and corr() denotes computation of the linear Pearson correlation coefficient 

(Chang and Glover, 2010). This approach was carried out with window durations of 1-min 
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and 2-min, and step size 4-s. Standard deviations of the windowed correlation sequences 

with respect to DMN/ECN seeds (see 2.2.5 defining network regions of interest) were 

compared across states to evaluate the macroscopic changes of brain dynamics in these two 

networks.

2.2.7 CAP analysis—Datasets from all 21 subjects were normalized to the MNI template 

and transformed to z-score (the time series of each voxel was demeaned and normalized by 

its temporal standard deviation). Time frames with network seed signal intensity amongst 

the top 31% (72 time frames) of each subject were selected and temporally concatenated to 

make a rest scan set and a WM task scan set for ROI-wise CAP analysis.

Two functional ROI sets with disparate extents of cortex coverage were heuristically 

selected for comparisons: (1) ‘ROI90’, 90 RS network ROIs reported in (Shirer et al., 2012); 

(2) ‘ROI499’, 499 ROIs with whole grey matter coverage (see supplementary Material S1 for 

the description of 499 ROIs, and Fig. S1 for the ROI atlas). For the rest of the paper, results 

derived from 90/499w ROIs are prefixed with ‘ROI90/499w’. ‘w’ here indicates that the 

signal intensity within each ROI is weighted by the ROI size so that the results associated 

with ‘ROI499w’ can serve as a good approximation to those generated with voxel-wise CAP 

analysis (see Appendix distance measures of ‘ROI90/499w’ in K-means clustering and 

supplementary Fig. S2 for demonstration).

To extract the overall dominant CAPs, we varied the number of clusters in K-means 

clustering from 2 to 16, and set  (see above 2.1.3.1 Information in the spatial 

patterns of CAPs). To account for the instability of single trial clustering result, for each 

cluster number k, we repeated K-means clustering 1000 times, then synthesized the 1000 

classification results into one via the Normalized-cut method (http://www.cis.upenn.edu/

~jshi/software/), in which the weighting between two time frames i and j is defined as:

Eqn. (3)

where I is the indicator function (i.e. I = 1 when {i,j ∈ same cluster}, I = 0 otherwise), n is 

the nth trial of the K-means clustering. “Overall dominant CAP-set” was extracted from the 

results with clustering number k varying from 2 to 16,  (see above 2.1.3.1 

Information in the spatial patterns of CAPs).

To choose the most representative cluster number, i.e. the number k that can best reflect the 

intrinsic structure of the datasets, we used silhouette score (see supplementary material M2) 

to evaluate the partition results for comparison of TF and FA in CAPs across states 

(Rousseeuw, 1987).

The inclusion of two functional ROI sets with disparate extents of cortex coverage was 

intended to alleviate the potential concern in temporal clustering: if the percentage of 

‘informative’ metrics that help differentiate different CAPs are overwhelmed by ‘noisy’ 

metrics that are common across CAPs and contribute none to the classification, the 

reliability of the clustering results would be significantly degraded. This may be the case for 

voxel-wise CAPs because of the large number of voxels. As revealed in Liu's study, CAPs 
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associated with specific seeds (PCC and intraparietal sulcus) had significant overlap in wide 

ranges of cortical areas, implying that regions pivotal in differentiating different CAPs might 

only account for a relatively small fraction of the features entered into the K-means 

clustering, and that the inclusion of additional voxels may not add new information that can 

disambiguate CAPs. As will be seen later in the results section, different ROI sets did reach 

at inconsistent clustering results (see 3.2 WM task vs. rest: perspectives from CAPs), even 

different implications about changes in brain dynamics (see 3.2.2 Temporal fractions of the 

1st dominant CAP).

The upper bound of examined cluster number k was set to be 16, based on the hypothesis 

that the dimension of dominant CAPs with respect to the chosen networks should be far 

smaller than the whole set of spontaneous states the brain may exhibit (in a prior study 

decomposing spontaneous CAPs of the whole brain volumes (Liu et al., 2013), cluster 

number k = 30 was considered as a good choice for whole brain CAPs (the complete set of 

brain spontaneous activation patterns, in contrast to those associated with a specific cortical 

region/network, e.g. DMN/ECN-CAPs here)). Similarly, in another temporal ICA study, 

(Smith et al., 2012) identified 21 whole brain temporal functional modes at rest. Therefore, 

in our study 16 was adequate to include the dimension of dominant CAPs associated with a 

specific network, which includes significantly fewer voxels and time frames than the whole 

brain analyses discussed above.

The threshold of spatial similarity  to extract dominant CAP-sets was heuristically set 

to be 0.95, a value high enough to demonstrate identical spatial pattern of the overall frame 

average (95 percentile of the distributions of between-CAP similarities were only ~0.25). To 

explore whether 0.95 was a reasonable  in current datasets, two post-hoc analyses were 

performed after resolving the “overall dominant CAP-sets”: (1) we also counted the number 

of dominant CAP-sets (for k varying from 2 to 16) that contained the “overall dominant 

CAP-sets” (selected with 0.95) as the leading subsets; (2) we ranked individual CAPs by 

their reproducibility across different choices of k s, and checked whether those within the 

“overall dominant CAP-sets” themselves were among the most reproducible patterns.

The threshold for choosing the time frames extracted for analysis should be considered 

carefully, as the time frames included for temporal clustering are impacted. In (Liu and 

Duyn, 2013), the authors found that using as few as the top 15% of frames replicated the 

average linear correlation pattern well. However, because we focused on the dynamic 

variability instead of the static correlation pattern here, we set a lower threshold (31%, 72 

frames per scan) to establish a better correspondence to the sliding window approach, which 

integrates signals across the full intensity range and all time frames. To explore how 

sensitive current results were to the intensity threshold, DMN-CAPs with ROI90 were also 

tested with threshold 21% (48 frames per scan) and 42% (96 frames per scan).

3 Results

3.1 Variability of sliding-window correlations with respect to DMN and ECN

Fig. 4A shows the variability (standard deviations) over the sequence of 1-min sliding-

window correlations between each brain voxel and the two network seeds, averaged across 
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21 subjects. As revealed by the group mean map, a wide range of cortical areas exhibited 

reduced correlation variability during sustained WM task compared to rest; however in most 

of these regions the differences failed to reach statistical significance in a voxel-wise 

Wilcoxon sign-rank test withα= 0.05. To allow for inconsistent patterns of reduced 

correlation variability across the examined subjects, further analysis was carried out by 

counting the percentage of gray matter voxels that showed larger standard deviations during 

(rest > WM task) directly, and compared it against the count for (WM task > rest). Here, 

only voxels with absolute difference in standard deviations of the sliding-window 

correlation sequence |rest – WM task| surpassing a threshold of 0.1 were included. For both 

networks, most subjects showed overwhelming percentages of cortical regions with higher 

correlation variations during rest (Fig. 4B). The results remained significant (p < 0.05, 

paired t test) when the threshold of the absolute difference was varied from 0 to 0.3 for the 

DMN case, and 0 to 0.25 for the ECN case. The results of 2-min sliding-window were 

quantitatively similar – the rest state exhibited higher correlation variations with 

overwhelming percentages of cortical regions (see supplementary Fig. S4).

Identical sliding-window correlation analyses were also performed on the WM task datasets 

without projecting out the behavioral data (see 2.2.4 Preprocessing), global reduction of 

correlation variability as shown in Fig. 4A still persisted, suggesting that the reduced 

correlation variability in WM task datasets is not attributable to the extra regression of 

behavioral data.

3.2 WM task vs. rest: perspectives from CAPs

3.2.1 Dominant REST-CAP-sets and WM-CAP-sets—Fig. 5 shows the “overall 

dominant CAP-sets” associated with the DMN. Dominant CAP-sets derived from ROI90 and 

ROI499w contained consistent sub-CAPs (see Table 1, REST90 vs. REST499w, WM90 vs. 

WM499w). However, as the features for the temporal clustering were not identical, we 

observed subtle differences in the spatial profiles between REST90 and REST499, including 

dorsal lateral prefrontal cortex, parahippocampus gyrus, and superior parietal lobe, indicated 

with white arrows. WM90-CAP 1 was probably split into two separate clusters (WM499w-

CAP 2 and WM499w-CAP 4) using ROI499w. In the between-scan comparison, the number 

of overall dominant CAPs reduced from 4 (rest) to 3 (WM task) in the ROI90 case, and the 

change was replaced by increased spatial similarity across WM-CAPs compared to rest in 

the ROI499 case.

Surprisingly, we were also able to see good correspondence between dominant REST-CAP-

sets and WM-CAP-sets (see Table 1, REST90 vs. WM90, REST499w vs. WM499w). Closer 

examination revealed that these pairs did not share identical spatial patterns, but had subtle 

differences in particular areas, including angular gyrus, precentral gyrus, inferior parietal 

lobe, i.e. in brain regions actively involved in the working memory task, indicated with 

yellow arrows.

Fig. 6 shows the “overall dominant CAP-sets” associated with the ECN. In common with 

the case of DMN, CAP-sets generated with ROI90 and ROI499w contained common sub-

CAPs (see Table 2, REST90 vs. REST499w, WM90 vs. WM499w). Again, these patterns were 
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not entirely identical (REST90-CAP 3/5 did not have matched equivalents in REST499w-

CAPs, and WM90-CAP 2 was probably a mixed cluster from subsets in WM499w-CAP 1/3).

Likewise, certain CAPs appeared in both scans (see Table 2, REST90 vs. WM90, REST499w 

vs. WM499w), with minor deformation in the anterior part of the middle cingulate gyrus, 

precentral gyrus, lingual gyrus, indicated with yellow arrows in Figs. 5 and 6.

All the spatial similarities across different CAP-sets discussed above were quantitatively 

reflected in the covariance matrixes (Fig. 5A/B, Fig. 6A/B).

The “overall dominant CAP-sets” were generally associated with cluster number k ranging 

from 5 to 11 in most cases (see Table 3), further confirming that the selected range of k s 

(from 2 to 16) is reasonable in this study.

We did note that slight tuning of the heuristically selected threshold  in the 

extraction of “overall dominant CAP-set” may change the quantity of the extracted 

dominant CAPs at certain cluster numbers. Results of the post-hoc analyses (see section 

2.2.7 CAP analysis) alleviated concerns that threshold choice was critical: (1) the number of 

dominant CAP-sets that contained the “overall dominant CAP-sets” (selected with 0.95) as 

the leading subsets were listed in Table 3 (numbers in parenthesis), the selected patterns still 

dominated; (2) those CAPs contained in the “overall dominant CAP-sets” themselves were 

still among the most repeatable spatial patterns (not shown). Hence, 0.95 appears to be a 

reasonable choice in our dataset.

In the results of DMN-CAPs derived from ROI90, sub-patterns of the “overall dominant 

CAP-sets” (31%) were observable for the majority of k s at threshold 21%/42%. Moreover, 

the dominant CAP-set itself as an entirety also persisted in certain k s (see supplementary 

Table S1), and dominant CAPs associated with other k s did not resemble the dominant 

CAP-set (31%): they generally varied in ways of either (one cluster split into two clusters 

with high spatial similarity) or (index reallocation within clusters), thus posing no violation 

to the conclusions drawn from threshold 31% (as will be discussed later in 4.2.1 Information 

in the “overall dominant CAP-sets”). Furthermore, 31% gave the most consistent dominant 

CAPs across different cluster numbers, as reflected in supplementary Table S1 for our 

datasets. These observations, together with the comparison of ROI90 and ROI499w suggest 

that the CAPs may possess a very skewed distribution, with a portion of subsets much closer 

in similarity to one another than the others, which makes it hard to find a clear division 

between different clusters (Liu et al., 2013).

3.2.2 Temporal fractions of the 1st dominant CAP—As shown in Fig. 7, for both 

states (rest and WM task) and both networks (DMN and ECN), k = 2 gave the highest 

clustering score, which is consistent with the observations reported by (Liu and Duyn, 2013) 

that the REST-CAPs can generally be divided into two main categories based on their 

spatial resemblance.

Given the results in Fig. 7, further comparisons of temporal fractions therefore concentrated 

on the case when k = 2. The CAP with temporal fraction (TF) larger than 50% was defined 

as the 1st dominant CAP, and the other was defined as the 2nd dominant CAP. The spatial 
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patterns of CAPs derived using ROI90 and ROI499w were remarkably consistent (spatial 

similarity higher than 0.95 for both networks and both 1st/2nd CAPs), while the 

corresponding temporal fractions were significantly ROI-dependent: The ROI90 yielded 

significantly higher TF of the 1st dominant CAP during sustained WM task compared to rest 

for both networks (DMN p = 0.013, ECN p = 3.5×10−5); the ROI499w yielded no statistically 

significant differences in TF for either network (DMN p = 0.763, ECN p = 0.074) in paired 

t-test,α= 0.05 (see Table 4, Fig. 8A).

Given the distinct results regarding statistical significance described above, a post-hoc 

examination was performed to assess the potential effects that the number of ROIs (or 

involved cortical areas) utilized might exert on the resulting statistical significance. We first 

ranked all the 499 ROIs by their importance as features to differentiate the 1st and 2nd 

dominant CAPs as follows: (1) we derived subject-specific 1st dominant CAPs by projecting 

the ROI499w clustering indexes back to each subject's native temporal regime and averaging 

frames assigned to the 1st dominant CAPs; (2) we then used a group-level paired-t test to 

compare differences between the spatial patterns of the 1st and 2nd dominant CAPs (as 

shown in Fig. 7B, corresponding dominant CAPs in both states exhibited very high spatial 

similarity, the spatial patterns of both states were hence combined and entered into a single 

paired-t test), and further ranked the 499 ROIs by the absolute t-values averaged within each 

ROI atlas. Although the subject-specific CAPs and the t-value of each ROI was generated 

from atlas ROI499w, we argue that using clustering index derived with atlas ROI90 would 

yield no significant difference since the spatial patterns of the 1st/2nd CAPs were nearly 

identical for ROI90 and ROI499w cases.

Fig. 8B shows the statistical significance (p values) for paired t-tests (temporal fractions of 

the 1st dominant CAP during rest against WM task) as a function of ROI numbers (in 

descending order of absolute t values) involved in the K-means classifications. At the 

beginning stage, p value decreased as more and more ‘informative’ (high |t|-value) ROIs 

were employed as features for clustering, while at the later stage, p values started to increase 

as more ‘noisy’ (low |t|-value) ROIs were included and obscured the classifications. Because 

the ROIs are ranked in descending order of absolute t-value, i.e. descending importance as 

the features to differentiate the 1st and 2nd dominant CAPs, we therefore argue that the p 

values which are below 0.05 at the beginning stage are most trustworthy, and indicate 

significantly higher temporal fractions of the 1st dominant CAPs (more consistent brain 

states) during WM task compared to rest in both networks.

3.2.3 Alternation frequencies of CAPs—A group-level paired t-test was performed to 

test whether the frequency of alternation of the CAPs (the frequency at which the brain state 

shifted from the current CAP to a different CAP) was significantly lower during WM task 

than rest and contributed to the overall reduction of correlation variations. However, no 

results reached statistical significance in a paired-t test withα = 0.05 for both networks, see 

Table 4. Supplementary Fig. S5 shows examples of a few subjects for k = 2, in which the 

alternation frequency appears to be independent from the distribution of temporal fractions 

associated with different CAPs.
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4 Discussion

4.1 General findings

In the present study, we introduced various metrics to quantify brain dynamics based on the 

extension of CAP analysis, and demonstrated the values of the proposed metrics by 

characterizing the changes of DMN and ECN patterns during a WM task compared to rest. 

Complementary to the conventional sliding-window correlation approach, which revealed 

more consistent network patterns in a macroscopic manner through decreased variability of 

linear correlations (see Fig. 4), the proposed metrics can shed additional light on the changes 

in the brain repertoire, including reduced number of dominant CAPs, increased spatial 

consistency across CAPs, and increased fractional contributions from a few dominant CAPs 

during WM task compared with rest.

4.2 Quantifiable metrics of brain dynamics in CAPs

Through examination of distinct spatial patterns that each time frame was assigned to, we 

are able to track the state alternations at each individual time frame. These variations of 

different CAPs and their associated temporal fractions can accommodate richer 

quantification measures of brain dynamics and therefore provide diversified metrics 

describing changes in the brain repertoire.

4.2.1 Information in the “overall dominant CAP-sets”—The concept of “overall 

dominant CAP-set” helps mitigate the sensitivity of results on specific cluster numbers in K-

means clustering, and make CAPs robustly able to quantify brain dynamics. Specifically, the 

quantity of overall dominant CAPs reflects the diversity of network patterns (the fewer 

number of CAPs, the sparser the dictionary of network patterns) and the spatial consistency 

across different CAPs indirectly reveals the dynamics incurred by state alternations (the 

higher spatial consistency, the less extreme dynamics that state alternations may incur). 

Although the two aspects of information carried by the dominant CAPs (number of 

dominant CAPs and their spatial similarity) relate to different interpretations of brain 

network behavior, they are not distinguishable from the methodological perspective: in the 

K-means implementation, one single cluster can split into two clusters with neighboring 

centroids due to noise. In this case, the extracted network patterns within a CAP would not 

necessarily have perfect similarity with each other. If the neural origin of CAPs is indeed 

large-scale neuronal avalanching activity as proposed in (Liu and Duyn, 2013; Tagliazucchi 

et al., 2012), CAPs associated with a specific ROI may be contaminated by propagated 

fluctuations initiated at other brain regions.

At present, a useful view towards CAP analysis would be – it offers additional dimensions 

to characterize the key dynamic structures inherent in the network patterns, given that the 

spatial patterns of different time frames vary in a continuous manner. Table 5 summarizes 

the changes of “overall dominant CAP-sets” during WM task compared to rest. In line with 

the discussion above, the pattern of changes fell arbitrarily into either ‘reduced number of 

dominant CAPs’ or ‘increased spatial consistency across different CAPs’. Both 

interpretations demonstrate more parsimonious brain states, i.e. more consistent network 

patterns, during sustained WM task compared to rest.
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Apart from contributing new perspectives to quantify the extent of brain dynamics, the 

spatial patterns of the dominant CAP-set also offer more intuitive views (in contrast to 

bewildering results associated with different choices of cluster numbers) towards the 

changes of brain repertoire across states. In the present datasets, we surprisingly observed 

that certain REST-CAPs and WM-CAPs exhibited substantial spatial similarity (see Fig. 5/6 

for dominant CAP-sets, Fig. 7 for CAPs under k = 2), and that subtle differences between 

these CAPs resided in brain regions typically active in a WM task. Some of the consistent 

CAPs across states may be induced by the bite bar or other aspects of the scan environment 

that cause mental discomfort or even incite head motion, although very little head motion 

was observed in the datasets. They may also come from other types of motion, e.g. finger 

movements, which can induce actual neural activation. However, the observed consistency 

of CAPs can not be explained by motion alone, as similar findings have been reported in 

recent animal studies (Liang et al., 2014; Liu et al., 2014), where certain CAPs are 

consistent across awake and anesthetized states in both rats and macaques. Therefore, we 

hypothesize that there may be a limited number of CAPs that can be considered universal 

across different tasks, rest states and subjects and even animals, so that, like the DMN itself, 

deformations of these CAPs may be relevant as biomarkers.

4.2.2 Temporal fractions (TF) of CAPs—The temporal fractions of different CAPs can 

be used to quantify the number of different brain states during the scan. During rest, the 

occurrence rates associated with different CAPs were nearly equally distributed. By contrast, 

during a sustained WM task, the assumed primary focus of subjects’ attention was to react to 

the on-going WM task-trials, and it was natural to expect that the CAP tightly related to the 

task modulation was the most repeated spatial pattern and dominated the brain repertoire, 

which further led to macroscopic observations of reduced brain dynamics as well. Indeed, 

we were able to demonstrate significantly higher temporal fractions of the 1st dominant CAP 

during WM task compared to that for rest, which also exhibited increased spatial similarity 

with the WM task activation pattern (see Fig. 3B) – the spatial similarity rs increased from 

0.53 during WM task to 0.62 (negative correlation) at rest in the DMN case, and from 0.13 

to 0.51 in the ECN case.

Here, we only reported the comparison of temporal fractions associated with the clustering 

number selected by silhouette scores. For certain choices of k other than silhouette score, 

similar comparisons result (Chen et al., 2014), although the validity of applying identical 

clustering numbers across states is still under debate. However, in the particular application 

of temporal fractions in quantifying brain dynamics, the spatial similarity between CAPs 

should always be considered as well, particularly in cases where certain resolved CAPs 

exhibit very similar structure patterns, i.e., a state switch between these CAPs may 

contribute a negligible increase in brain dynamics. Indeed, CAPs with similar spatial maps 

always engender a higher chance of misclassification. Therefore, using silhouette score, or 

other clustering criteria, to choose the number of clusters may better demonstrate the spatial 

similarity between CAPs by maximizing the relative ratio of inter- and intra-cluster distance.

4.2.3 Frequency of state alternations (FA) in CAPs—An abrupt switch of brain state 

may contribute considerable variations to the observed correlation values, so the frequency 
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of state alternations in CAPs can be taken as another informative metric to quantify the 

strength of brain dynamics. Although in our datasets we failed to see significantly reduced 

frequency of alternations during sustained WM task compared to rest despite trends towards 

reduced FA, this is not yet conclusive as such analysis demands strict precision of CAP 

allocation at every time frame, which may be compromised by SNR in a time frame and 

uncertainty relating to CAP estimation. For instance, in the result of subject 8 with cluster 

number k = 2 at rest (see supplementary Fig. S5), we note that one frame of interest was 

classified as the 1st dominant CAP (green color, indicated with red arrows) although its 

neighboring frames were identified as the 2nd dominant CAP (blue color), and this one 

instance contributed an additional two alternations to the count. Closer examination of the 

spatial pattern was unable to differentiate whether it was a misclassification or an accurate 

reflection of the on-going cognitive state. In future analyses, the precision may be improved 

via integration of the preceding few CAP allocations, or invoking versatile regularization 

constraints that can enforce reasonable state alternations based on empirical data. We also 

anticipate that the SNR per frame would be proportionally improved in higher field strength, 

e.g. 7T, and that with the growth of explorations into CAPs, deeper understanding of CAPs 

could guide more accurate classification of different CAPs, e.g. employing dual regression 

with a set of well characterized CAP templates. As discussed above, however, the timing of 

state alternations has great potential to characterize brain dynamics beyond alternation 

frequency, e.g. transition patterns across different CAPs, and may facilitate in-depth 

understanding towards the ordered rhythms of intrinsic spontaneous activity.

4.2.4 Interdependence of CAP metrics—Although the new metrics introduced in this 

study – the quantity of and spatial similarity within the overall dominant CAP-set, the 

distribution of temporal fractions, and the frequency of alternations in CAPs – each provide 

a new dimension to quantify brain dynamics, they are not independent by nature. As 

discussed above (4.2.1 Information in the “overall dominant CAP-sets”), the spatial patterns 

of the extracted time frames for CAP analysis vary in a continuous manner, but CAPs 

“aggressively” attempt to cluster these time frames into discrete sets, so the quantity of 

overall dominant CAPs and the spatial consistency across CAPs are not strictly separable. If 

two CAPs contained in the overall dominant set have very high spatial similarity, they may 

likely be classified in the same CAP under k selected by the silhouette score and contribute 

to a skewed distribution of TFs. In this regard, spatial similarity within the “overall 

dominant CAP-set” shares common information with the distribution of TFs.

We also note that these metrics taken separately may not fully describe brain dynamics, 

although in the rest vs. WM task case, all the metrics suggest more consistent network 

patterns (reduced dynamics) during the WM task. Imagine an extreme and simple 

comparison of two scans: scan A consisting of a “task 1” block followed by a “task 2” 

block, while scan B consists of “task 1” and “task 2” trials alternating in an interleaved 

fashion. Ideally, these two scans will result in two dominant CAPs corresponding to “task 1” 

and “task 2” respectively, and scan A will have a similar number of TFs as scan B but a less 

intensive FA in CAPs. Therefore, the distribution of TFs infers no difference of brain 

dynamics for the two scans while FA in CAPs reflects less dynamic network patterns in scan 

A compared to B.
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From the foregoing discussion, it may appear difficult to quantify the relative importance of 

the different metrics. Fundamentally, the study of brain dynamics is still at quite an 

exploratory stage, with very little known about its projection onto the proposed 

quantification dimensions. However, such uncertainty again demonstrates the necessity of 

more elaborate perspectives in studying brain dynamics. Given the limited knowledge about 

brain dynamics at present, we suggest all the proposed metrics be combined to offer a more 

comprehensive view towards the changes of brain repertoire.

4.3 Voxel-wise vs. ROI-wise CAPs

In lieu of deriving CAPs based on thousands of individual voxels from the entire brain, we 

showed that an ROI-based analysis provided similar results. Apart from increasing the 

spatial SNR in local areas, another evident advantage of ROI-wise CAP analysis is that it 

greatly reduces the computational load involved in the clustering analysis, thus making 

analyses of larger datasets feasible, e.g. with higher temporal sampling rates. The rationale 

behind ROI-wise CAP analysis is based on the key assumption that the employed ROI atlas 

is able to capture intrinsic functional structures pertaining to the object of interest, i.e., 

regions pivotal in differentiating distinct CAPs are identifiable and occupy complete units in 

the proposed atlas; otherwise, averaged information across heterogeneous sub-regions 

within an ROI may result in reduced predictability/statistical power instead. Because ROI90 

and ROI499 utilized here employed a limited number of vigilance states for their delineation 

(4 subjectively-driven cognitive states, see (Shirer et al., 2012) for detailed descriptions), 

their validity as atlases for CAP analysis warrants examinations in broader mental states.

Another implication of the present findings is that metrics associated with CAPs (more 

fundamentally the clustering results) may vary as a function of cortical areas encompassed 

in the features of temporal clustering. Both results presented here and in (Liu and Duyn, 

2013) suggest that certain CAPs overlap in a wide range of grey matter regions, and further 

raise the concern that in cases where the vast majority of features are pure ‘noise’ (common 

neural information shared by different spatial patterns), the performance of temporal 

clustering may be degraded and yield spurious conclusions. The problem turns out to be 

more prominent in the temporal fractions (Fig. 8) compared to the spatial patterns of 

resolved CAPs (Fig. 5, 6, 7B), which may be explained by the fact that in the calculation of 

temporal fractions, well classified and misclassified temporal frames are taken equally; 

while in deriving the spatial patterns (frame average within the same cluster), well classified 

temporal frames typically exhibit higher contrast compared to misclassified temporal frames 

in cortical regions pivotal in distinguishing between different CAPs, which naturally 

suppress the influence from misclassified frames.

Collectively, further efforts will be required to focus on developing a case-specific CAP 

analysis scheme, which is potentially challenging without any prior knowledge of the 

question being addressed. Promising solutions might invoke concepts from hierarchical 

clustering, or combining ROI-wise and voxel-wise CAP analysis in a hybrid manner. 

Importantly, given that we cannot predict ahead of time whether one cortical region is 

‘informative’ or ‘noisy’ in clustering, a post-hoc examination of the CAP results as 
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performed herein (see results, temporal fraction of the 1st dominant CAP above) is highly 

recommended.

5 Conclusion

In the present study, we introduced four metrics to quantify brain dynamics based on CAP 

analysis, which can offer more elaborate descriptions of brain network dynamics than simple 

sliding-window correlation coefficients. Although here we focused on the functional 

connectivity with respect to two specific networks under sustained WM task and rest, the 

proposed framework of analysis and quantitative metrics of brain dynamics may be 

generalized to other brain networks and mental states.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Distance measures of ‘ROI90/499w’ in K-means clustering

ROI90

Let  and  denote the vectors of signal intensities 

averaged within each of 90 functional ROIs (ROI90) at temporal frame x and y respectively. 

Then the distance measure  between two temporal frames x and y in K-means temporal 

clustering is defined as 1 minus the linear Pearson correlation coefficient between vector 

and  .

ROI499w

Similarly, let  and  denote the vectors of signal 

intensities averaged within each of 499 functional ROIs (ROI499) at temporal frame x and y 

respectively, and let V = (v1 , v2 , ... , v499) denote the voxel volume of each ROI. We then 

generate two new sets of vectors:

The distance measure  between two temporal frames x and y in K-means clustering is 

defined as:
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Through a few simple transformations, one can demonstrate that  approximates the 

voxel-wise linear Pearson correlation (each gray matter voxel is taken as an individual 

feature/element) between temporal frame x and y, except that each voxel's intensity is now 

replaced by the mean value of the corresponding functional ROI.
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Highlights

• Utilize Co-Activation Patterns to develop detailed metrics of brain dynamics

• Compare brain dynamics during rest and sustained working memory with these 

metrics

• Demonstrate reduced brain dynamics during WM compared to rest

Chen et al. Page 19

Neuroimage. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Illustration of CAP analysis in (Liu and Duyn, 2013) with the resting state datasets in this 

study (see section 2.2 Experiments and Analysis). (A) Conventional seed-based correlation 

map can be replicated by averaging time frames when the seed signal exhibits relatively 

large BOLD contrasts; (B) The scheme to generate CAPs. Different colors indicate different 

CAPs in temporal clustering.
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Fig. 2. 
Steps to extract the dominant CAP-set for each cluster number k. (1) extract k CAPs, and 

their temporal occurrence fractions, ‘TF’; (2) reorder the k CAPs in descending TF as CAP1, 

CAP2, ... CAPk; (3) compute  , spatial similarity of the weighted (by TF) average 

of the top-ranked CAPs with the overall frame average. Top-ranked CAPs {CAPj}1≤j≤n 

with  &  (in red rectangle) comprise the dominant 

CAP-set at k.
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Fig. 3. 
(A) The group t-test result of the positive and negative correlations with respect to the 

DMN-seed at rest. (B) The group t-test result of the activation in response to the 2-back WM 

task. ECN-seed is a local maximum, indicated by white arrow.
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Fig. 4. 
(A) Variability (standard deviations) over the sequence of 1-min sliding-window 

correlations between each brain voxel and the DMN and ECN seeds, averaged across 21 

subjects; (B) Spatial extent of grey matter voxels with higher linear correlation variations 

during rest compared to WM task vs. the other way around for each subject (the difference 

of variability is thresholded at 0.1). ‘R’ stands for ‘rest’, ‘W’ stands for ‘WM task’. Each 

blue straight line connects the percentage values (‘R>W’ and ‘W>R’) of a single subject.
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Fig. 5. 
(A) The spatial profiles of the dominant CAP-sets associated with DMN. Numbers identify 

CAPs in each set, (*) denotes the overall frame average. (B) The spatial similarity 

covariance matrices between the overall dominant REST-CAP-set and WM-CAP-set for 

DMN, and within each dominant CAP-set. (C) The spatial similarity between the “overall 

dominant CAP-sets” derived with ROI90 and ROI499w.

Chen et al. Page 24

Neuroimage. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(A) The spatial profiles of the dominant CAP-sets associated with ECN. Numbers identify 

CAPs in each set, (*) denotes the overall frame average. (B) The spatial similarity 

covariance matrices between the overall dominant REST-CAP-set and WM-CAP-set for 

ECN, and within each dominant CAP-set. (C) The spatial similarity between the “overall 

dominant CAP-sets” derived with ROI90 and ROI499w.
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Fig. 7. 
(A) Silhouette scores as a function of cluster numbers. Higher silhouette scores correspond 

to higher similarity between cluster members, i.e. more appropriate clustering. Results 

indicate k = 2 is best for both DMN and ECN. (B) The spatial patterns of the 1st/2nd 

dominant CAPs derived from ROI90.
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Fig. 8. 
(A) Temporal fractions of the 1st dominant CAPs during sustained WM task compared to 

rest (p<0.05 *, p<0.00005 ***); (B) P values (group paired t-test, the temporal fraction of 

the 1st dominant CAP during WM task compared to rest) as a function of number of ROIs 

(in descending order of importance in differentiating two CAPs, see text 3.2.2 Temporal 

fractions of the 1st dominant CAP) included in the initial K-means clustering, where ‘-1000’ 

indicates the mean and standard deviation of t values associated with the 1000 K-means 

clustering results, and ‘combined’ indicates the t value of the synthesized clustering result 

from the 1000 K-means trials (see text 2.2.7 CAP analysis).
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Table 1

Summary of the correspondences between DMN-CAPs associated with different states (REST/WM task) and 

ROI sets (ROW90/ROL499w). See Fig. 5 for the spatial patterns of the corresponding CAPs.

DMN-CAPs

REST90 ↔ REST499w WM90 ↔ WM499w REST90 ↔ WM90 REST499w ↔ WM499w

CAP1 ↔ CAP1 (
(*)) CAP1 ↔ CAP2 (

(**)) CAP1/3 ↔ CAP2 (
(*)/(*)) CAP1/3 ↔ CAP1((*)/(*))

CAP2 ↔ CAP2 (
(***)) CAP2 ↔ CAP1 (

(***)) CAP2 ↔ CAP1 (
(**)) CAP2 ↔ CAP2/4 (

(*))

CAP3 ↔ CAP3 (
(*)) CAP3 ↔ CAP3 (

(***)) CAP4 ↔ CAP3 (
(**)) CAP4 ↔ CAP3 (

(**))

CAP4 ↔ CAP4 (
(***))

Spatial similarity

(*)
r > 0.70

(**)
r > 0.80

(***)
r > 0.90

Neuroimage. Author manuscript; available in PMC 2016 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 29

Table 2

Summary of the correspondences between ECN-CAPs associated with different states (REST/WM task) and 

ROI sets (ROI90/ROI499w). See Fig. 6 for the spatial patterns of the corresponding CAPs.

ECN-CAPs

REST90 ↔ REST499w WM90 ↔ WM499w REST90 ↔ WM90 REST499w ↔ WM499w

CAP1 ↔ CAP4 (
(**)) CAP1 ↔ CAP1 (

(***)) CAP1 ↔ CAP1 (
(**)) CAP2/4 ↔ CAP1((**)/(*))

CAP2 ↔ CAP3 (
(**)) CAP3 ↔ CAP3 (

(***)) CAP2 ↔ CAP3 (
(*)) CAP2 ↔ CAP3 (

(*))

CAP4 ↔ CAP1 (
(**)) CAP4 ↔ CAP2 (

(***)) CAP4 ↔ CAP4 (
(*))

Spatial similarity

(*)
r > 0.70

(**)
r > 0.80

(***)
r > 0.90
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Table 3

Summary of k s (K-means clustering numbers, within 2 ~ 16) that yield the “overall dominant CAP-sets” (see 

Fig. 5A, 6A) associated with different brain states/networks.

Dominant CAPs rest WM task

PCC-ROI90 6,7,8,9,11, (10,14) 5,6,8,9, (NA)

PCC-ROI499w 5,6,7,9,13,14,15, (10) 7,8,9,10,11, (5,6)

ECN-ROI90 5,6,8, (11,13) 5,6,7,9,10,11, (8,12,13,14)

ECN-ROI499w 5,6,7, (11) 5,7,9, (8,12,13,15)

To alleviate the dependence of the results on the spatial similarity threshold 0.95 (see 2.2.7 CAP analysis), clustering numbers, of which the 
corresponding dominant CAP-set contains the “overall dominant CAP-set” as the leading subsets but with extended quantity of CAPs, are also 
listed (in the parenthesis, NA means ‘not found’). Using the CAP results of PCC-ROI90 at rest as an illustration (supplementary Fig. S6), k = 9 

gives the identical CAP-set as the “overall dominant CAP-set”, while k = 10 contains 5 CAPs, and the leading 4 CAPs are the same as the “overall 
dominant CAP-set”.
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Table 4

Summary of CAPs at k = 2. TF: temporal fractions of the 1st dominant CAP; AF: alternation frequencies 

between the 1st and 2nd dominant CAPs, expressed as number of switches. P values are calculated in paired-t 

tests.

Subject

PCC-ROI90 PCC-ROI499w ECN-ROI90 ECN-ROI499w

TF(%) 
(rest/WM

) p = 
0.013

AF 
(rest/W
M) p = 

0.13

TF(%) 
(rest/WM
) p = 0.76

AF 
(rest/W
M) p = 
0.065

TF(%) (rest/WM) p=3.5e-5 AF 
(rest/W
M) p = 

0.52

TF(%) 
(rest/WM

) p = 
0.074

AF (rest/WM) p=0.88

1 39/69 15/11 64/67 12/15 39/46 18/19 57/56 20/13

2 49/65 18/21 58/56 18/23 26/28 13/17 76/71 14/19

3 42/74 16/12 65/56 17/23 39/38 19/14 68/49 19/21

4 51/64 16/15 56/68 16/13 39/32 18/18 63/68 18/21

5 53/56 18/17 51/50 21/17 47/28 15/14 61/60 17/16

6 58/47 17/18 54/40 19/24 46/44 15/18 57/44 13/20

7 49/57 15/20 60/54 18/24 58/44 15/18 39/46 15/19

8 50/71 17/17 58/63 16/21 58/32 12/13 56/56 18/17

9 67/76 19/13 39/74 20/17 38/36 16/14 49/47 20/16

10 72/76 10/15 28/69 14/19 65/39 20/18 40/63 22/16

11 47/39 15/15 53/36 19/13 46/57 15/10 64/42 17/12

12 46/75 15/15 56/72 17/17 71/22 12/18 36/69 14/22

13 53/67 17/22 50/67 16/22 60/29 18/19 50/53 22/18

14 63/58 20/17 35/57 20/20 44/29 21/16 72/79 19/10

15 50/51 13/22 64/47 16/21 49/33 21/17 49/69 15/14

16 71/51 10/17 38/40 16/16 54/17 17/13 53/86 21/13

17 25/38 11/14 81/38 16/14 36/29 17/18 64/58 18/20

18 47/64 15/15 64/58 19/17 58/35 16/22 40/50 16/25

19 63/46 16/19 49/40 16/23 51/26 18/20 46/68 21/24

20 46/56 17/27 65/43 15/19 63/31 12/21 47/69 14/23

21 53/76 16/15 49/68 14/13 65/38 15/18 39/58 20/18
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Table 5

Summary of changes of the dominant CAP-sets during WM task compared to rest. Results associated with 

both networks (DMN/ECN) and both ROI sets (ROI90/ROI499w) demonstrated more consistent network 

patterns in the format of either ‘reduced number of dominant CAPs’ or ‘increased spatial similarity’ across 

different CAPs.

Changes of the dominant CAP-sets

Reduced # of CAPs Increased spatial similarity

DMN-ROI90 yes

DMN-ROI499w yes

ECN-ROI90 yes yes

ECN-ROI499w yes
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