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Abstract

This special issue contains 12 papers that report on new understanding of arsenic
hydrogeochemistry, performance of household well water treatment systems, and testing and
treatment behaviors of well users in several states of the northeastern region of the United States
and Nova Scotia, Canada. The responsibility to ensure water safety of private wells falls on well
owners. In the U.S., 43 million Americans, mostly from rural areas, use private wells. In order to
reduce As exposure in rural populations that rely on private wells for drinking water, risk
assessment, which includes estimation of population at risk of exposure to As above the EPA
Maximum Contaminant Level, is helpful but insufficient because it does not identify individual
households at risk. Persistent optimism bias among well owners against testing and barriers such
as cost of treatment mean that a large percentage of the population will not act to reduce their
exposure to harmful substances such as As. If households are in areas with known As occurrence,
a potentially large percentage of well owners will remain unaware of their exposure. To ensure
that everyone, including vulnerable populations such as low income families with children and
pregnant women, is not exposed to arsenic in their drinking water, alternative action will be
required and warrants further research.
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1 INTRODUCTION

Exposure to geogenic arsenic (As) in groundwater, the dominant source of drinking water
for rural populations that rely on private wells, has been recognized as a widespread global
public health concern (Ravenscroft et al., 2009). In the U.S., testing for As in private well
water is the responsibility of the well owner because there is essentially no regulation of the
quality of the well water, as there is for public drinking water supplies, which are regulated
under the Safe Drinking Water Act. It is estimated that there are over 13 million private
wells in the U.S. (Hutcheson et al., 1995), and that about 15 percent of the U.S. population,
or over 43 million people, rely on private wells for their drinking water (Hutson et al.,
2004). To what extent households in the U.S. have tested their private wells for water
quality, including As, and have employed a household water treatment method to ensure
drinking water safety if necessary, has not been evaluated systematically (DeSimone et al.,
2009). This is a public health concern because there is widespread groundwater As
occurrence in several regions of the U.S. (Ryker, 2001), including the northeastern United
States (Ayotte et al., 2003; Flanagan et al., 2012) and the adjoining Atlantic Canadian
provinces (Grantham and Jones, 1977). The U.S. Geological Survey National Water-
Quality Assessment Program, through testing of 1,774 private wells from 48 states
representing 30 of the 62 principal aquifers of the United States, has reported that 6.8% of
the samples contain concentrations of As > 10 pg/L, the EPA’s maximum contaminant level
(MCL), and that more than 10% of wells contain concentrations of As > 10 ug/L in
crystalline-bedrock aquifers in New England, basin-fill aquifers in the western and south-
central U.S., and a basaltic-rock aquifer in Idaho (DeSimone et al., 2009). Testing of
individual private well water for As is the only way to determine the concentration of As in
the water and to assess whether the water is safe to consume. This is because spatial
distribution of groundwater As is highly variable at local and regional scales (Peters et al.,
1999; Yang et al., 2009), and risk assessment models do not currently have the capability to
predict As level for individual wells (Ayotte et al., 2006; Yang et al., 2012).

In response to the EPA’s request to update the toxicological assessment of inorganic As to
include cancer and non-cancer effects, the National Research Council convened a committee
on inorganic As in 2012. An interim report released on Nov. 7, 2013 (NRC, 2013), reviews
expanded epidemiologic studies of the associations between exposure to As in drinking
water and a variety of adverse health outcomes, including cardiovascular disease, diabetes,
neoplastic respiratory changes, skin lesions, pregnancy outcomes, child development, skin
cancers, bladder cancers, and lung cancers. The report notes that the studies increasingly
characterize risks at low to moderate As exposure (10 to 100 pg/L As). Recognizing that
extrapolations in the EPA process of quantitative dose-response analysis are among the most
controversial aspects of As risk assessment, the committee recommends that health effects
from early-life exposure be considered in the dose-response assessment because early-life
exposure to As, even at low concentrations, increases the risk of adverse health effects and
impairs development in infancy, childhood and later in life. Susceptibility due to pre-
existing disease is also an important consideration because As has been shown to increase
the risk of several major diseases prevalent in the United States (e.g., diabetes,
cardiovascular diseases). Because adverse health effects of inorganic As are likely to be
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greater for susceptible groups than for the general population, reduction to As exposure in
the U.S. population will require simultaneously identifying households with elevated well-
water As and vulnerable groups, such as pregnant women, families with young children, and
perhaps persons with diabetes and cardiovascular diseases.

When it comes to the reduction of exposure to As through drinking private well water in the
U.S. to prevent adverse health outcomes, we are at a crossroads. Since the 1990s,
hydrogeochemical and biomedical research has greatly improved our understandings of
factors influencing groundwater As occurrence at regional spatial scales and adverse health
impacts for vulnerable populations at low to moderate doses. However, little is known about
what actions households with private wells may have taken to reduce exposure to As in their
drinking water and the reasons for taking such actions (Severtson et al., 2006; Shaw et al.,
2005). There are also many issues with the performance of household As treatment units in
real-world situations, one of which is failure of household reverse-osmosis systems when
levels of As in raw well waters are high and dominated by trivalent As(111) (Walker et al.,
2008). Efforts to promote As testing and treatment can benefit from closing these knowledge
gaps. Therefore, this special issue “Arsenic in Groundwater of the Northeast United States
and Atlantic Canada” includes not only articles that further investigate hydrogeological and
biogeochemical characteristics of As-rich groundwater in northeast North America (section
2), but also articles that explore the behaviors of households in response to elevated As in
private well water (section 3). We conclude with a discussion of possible solutions to reduce
As exposure from drinking water in private wells (section 4).

2 RISKS FROM ARSENIC IN PRIVATE WELL WATER OF NORTHEAST
UNITED STATES

Ayotte (in press) reviewed the arsenic hazard in groundwater and associated health risks in 6
states of New England, United States. Arsenic was first identified in New England
groundwater in the 1980s (Boudette et al., 1985; Zuena and Keane, 1985) and in Nova
Scotia groundwater in the 1970s (Grantham and Jones, 1977). A key research finding is the
association between occurrence of elevated concentrations of As in groundwater and the
geology of the eastern New England region (Ayotte et al., 1999; Peters et al., 1999; Ayotte
et al., 2003). This finding was aided by an alternative characterization of the geologic
formations that reclassifies the bedrock geologic formations into “lithogeochemical” units
(Robinson and Kapo, 2003). The reclassified “calcareous metasedimentary rock units” host
bedrock aquifers where well waters frequently contain elevated concentrations of As (As >
10 pg/L) in a band throughout central Maine, southern New Hampshire, central
Massachusetts and Connecticut (Ayotte et al., 2003; Ayotte et al., 1999; Colman, 2011;
Moore, 2004; Peters and Blum, 2003; Peters et al., 1999; Yang et al., 2009). In such
aquifers, which are common in eastern New England (Fig. 1), about 40% of groundwater
samples characterized by pH > 7 and very little dissolved oxygen (< 1 mg/L) were found to
contain > 10 pg/L As, compared to about 10% of groundwater samples that are characterized
by acidic and oxic chemistry (Ayotte, in press). Furthermore, Ayotte et al. (2003)
determined that over 100,000 people in this region are likely to have wells with arsenic > 10

ci Total Environ. Author manuscript; available in PMC 2016 February 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zheng and Ayotte

Page 4

ug/L, but this number may be low because more recent testing has revealed higher
occurrence rates of As in some parts of the region (Flanagan et al., 2012).

Hydrogeological and biogeochemical studies of aquifers in the neighboring Canadian
provinces of New Brunswick and Nova Scotia, as well as in Vermont and the Newark Basin
of New Jersey and Pennsylvania in the United States, have added to the understanding of
lithogeochemical control of As occurrence in a broader northeast North American region
(Table 1). In Nova Scotia, samples from 642 wells in various gold mine districts indicate
that 13% of wells contained > 50 pg/L As, compared to 12% of wells with > 50 pg/L As
determined from 183 samples from non-gold mine districts (Grantham and Jones, 1977),
suggesting that As in groundwater is not limited to gold mine districts. The study was
motivated by the discovery of a human arsenic poisoning case from exposure to ~5,000 pg/L
As in well water in the Waverley area of Halifax County in February, 1976. Subsequently, a
survey of 94 wells in communities nearby found that 23% of wells contained > 250 pg/L As,
and only 5 samples had < 10 ug/L As (Meranger et al., 1984). Although gold mining can be
a source of As pollution of surface water and stream sediments, most of the wells with
elevated As concentrations in southern Nova Scotia are located in the fractured slate,
greywacke and quartzite of the Halifax and Goldenville Groups of the marine-deposited
Cambrian--Lower Ordovician Meguma Supergroup (Bottomley, 1984) with the presence of
arsenic-rich pyrite (Brooks et al., 1982). The four wells in the Meguma Supergroup with
groundwater As concentrations ranging from 18 to 365 ug/L have pH values greater than 7
and tend to be low in dissolved oxygen, with > 90% of the As present as As(l11) (Bottomley,
1984). In this special issue, a study of spatial patterns of well water As in Nova Scotia has
led to the development of a statistical model based on arsenic concentrations in 10,498
private wells that predicted not only concentrations of arsenic in well water from a set of
geological and environmental factors but also concentrations of arsenic in toenail samples
from study subjects (Dummer et al., this issue). The maximum As concentration from the
10,498 private wells in Nova Scotia was 3,900 ug/L, with 17% of the wells containing more
than 10 pg/L of As (Table 2). This large dataset unequivocally demonstrates that the highest
As levels in groundwater are associated with the sulfide or gold-bearing meta-sedimentary
rocks of the Meguma Super group (Table 1).

In Bennington and Rutland counties of southwestern Vermont (Fig. 1), 28% (50/176) of low
elevation wells (< 245 meters above sea level [masl]) exceed 10 pg/L As, whereas only 3%
(2/60) of higher-elevation wells (245-600 masl) exceed 10 pg/L As in a slate aquifer with
presence of arsenian pyrite (200-2,000 mg/kg As) (Ryan et al., 2013). Additionally,
geochemically reducing and slightly alkaline conditions (pH > 7) are associated with high
As values (Table 1). In north-central Vermont, phyllite (metamorphosed shales and
sandstones) and greenstone (metabasalt), but especially serpentinite and associated
ultramafic rocks with an average As concentration of 93 mg/kg, are suspected to be sources
of As to groundwater because nearly all wells with As > 10 pg/L are within 5 km of
ultramafic outcrops (Ryan et al., 2011).

In the Newark Basin in New Jersey and Pennsylvania, groundwater As occurs in Mesozoic
sedimentary strata composed of sandstone and red mudstone with inter-bedded gray shale
and gray to black siltstone and shale but not in diabase intrusions (Peters and Burkert, 2008;
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Serfes et al., 2005). In the Piedmont regions of the Newark Basin, 23% of 53 wells sampled
in Pennsylvania (Peters and Burkert, 2008) and 15% of 94 wells sampled in New Jersey
(Serfes et al., 2005) contained high (> 10 ug/L) concentrations of As. A dataset of 12,263
private wells tested for As between September 2002 and April 2007 through New Jersey’s
Private Well Testing Act Program identified 12% of tested wells as exceeding the New
Jersey MCL of 5 pg/L but over 40% of wells as exceeding 5 pg/L in certain Piedmont
regions (Spayd et al., this issue). The red, gray, and black mudstone and shale of Newark
Basin contained As concentrations of as much as 13, 50, and 240 mg/kg, respectively, with
pyrite (FeS,) in the black shale containing up to 40,000 mg/kg As (Serfes et al., 2005). Well
waters in New Jersey and Pennsylvania, like those in New England, with pH values that are
near or above 7 tend to contain elevated As, i.e., pH > 6.4 in Pennsylvania (Peters and
Burkert, 2008) and pH > 7.5 in New Jersey (Table 1). Water chemistry data from 5,023
groundwater samples collected from monitoring, domestic, public supply, commercial,
irrigation, and industrial wells between 1997 and 2007 in Pennsylvania show that the glacial
aquifer in the central lowland province in northwest Pennsylvania also has high rates (20%)
of samples with > 10 ug/l As (max As 293 ug/l), as do the Newark and Gettysburg Basins
(Gross and Low, 2013). Overall, a larger percentage of anoxic and high-pH waters contain
elevated concentrations of As than low-pH oxic groundwater does. Sediment pore waters
collected from streambeds of Six Mile Run and Pike Run (tributaries to the Millstone River
in the New Jersey Piedmont Physiographic Province) had distinctly different redox
conditions and microbial communities at the low and high As sites, suggesting that certain
microbes may promote geogenic As mobilization under reducing conditions, whereas others
do not (Mumford et al., this issue).

Drawing on some of the aforementioned studies, a review of As in groundwater in the
Northern Appalachian Mountain belt highlighted the spatially heterogeneous groundwater
As patterns and the pH-dependent desorption reactions in mobilizing As from amorphous
iron minerals—the oxidized products of naturally occurring arsenic-rich pyrite in the
bedrock (Peters, 2008). Peters (2008) also proposed a tectonic framework that links the high
As region in the Northern Appalachian Mountain belt to crustal recycling of As as an
incompatible element during accretion of multiple terranes, especially the Avalonian and the
Central Maine Terrane.

In this special issue, advances in understanding of the lithogeochemistry and mineralogy of
such bedrocks are made. For example, arsenic is present at concentrations of up to 138
mg/kg in meta-sedimentary rocks of two adjacent formations in central Maine (O’Shea et
al., this issue), where about 40% of water samples from groundwater wells contained
elevated As levels (Yang et al., 2009). In addition to pyrite that contained up to 1,944 mg/kg
As in low grade metamorphic rocks of Waterville Formation with a mean As concentration
of 47.4 mg kg~1, other non-sulfide mineral hosts for As are most likely in higher grade
metamorphic rocks that have a mean As of 10.8 mg kg1 (p =0.012) (O'Shea et al., this
issue). That metamorphism is associated with high As concentration in rocks is also
observed in southwest Vermont, where the whole-rock As content is inversely related to
metamorphic grade, ranging from a mean of 26.9 mg kg~ in low-grade black shales and
slates to 13.8 mg kg1 in higher-grade black phyllites (p < 0.03) (Ryan et al., this issue). On
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the basis of a positive correlation between §34S and arsenic content in the pyrite in slates and
phyllites from southwest Vermont, it is hypothesized that an increasing amount of arsenic
was incorporated into pyrite as the marine sediment became more reducing; hence, the
origin of arsenic is sedimentary for these low grade metamorphic rocks (Mango and Ryan,
this issue). Both O’Shea et al. (this issue) and Mango and Ryan (this issue) observed that
with increasing degrees of metamorphism, As concentrations in pyrite were lowered,
possibly through a desulfidation reaction. Although further investigation is needed, the
concentration of As in the original protoliths appears to be a factor contributing to As in
groundwater. For example, in the Gettysburg Basin 18%-39% of rock samples have arsenic
concentrations greater than the crustal average of 2 mg/kg, whereas in the Newark Basin
concentrations in 73% to 95% of rock samples are above the crustal average (Blake and
Peters, this issue). Correspondingly, 8-39% of groundwater samples from the Gettysburg
Basin contain above 10 ug/L of As, compared to 24-54% of ground water samples from the
Newark Basin. It is also evident that the maximum concentrations of As observed in rocks
from these regions with elevated groundwater As (Table 1) are many orders of magnitude
greater than the upper crust abundance of As of 4.8 mg/kg (Rudnick and Gao, 2003). It
should be pointed out, however, that the variations in As concentrations in marine sediment
protoliths are substantial because of grain size and oxic versus anoxic depositional
environment and that hydrothermal fluid migration during metamorphism can further alter
the As distribution in the meta-sedimentary rock formations in the northeastern United
States and Atlantic Canada (Table 1).

Relevant to risk assessment is the degree of temporal variability of private well water As, a
topic not as well understood as the heterogeneous spatial distributions of well water As.
Concern for temporal and spatial variability is perhaps why governmental agencies in the
U.S. recommend that well owners regularly test their well water, although the recommended
interval for testing varies (Table 2). Like studies of temporal variability conducted
elsewhere, the degree of variability in arsenic concentration is usually low enough compared
to measurement uncertainties such that a single measurement is generally representative. In
central Maine, no significant difference was found when arsenic concentrations were
compared for the 36 private wells sampled in 2006 and 2007 (Yang et al., 2012) and 25
private wells sampled in 2006, 2007, and 2010 and again in 2013 (Flanagan et al., this issue-
a); and the pH, dissolved oxygen, and major ions concentrations were also comparable. In
this special issue, evaluation of temporal data of arsenic concentrations compiled for 1,245
public and private drinking water wells mostly from New England has found that increases
or decreases in concentrations of arsenic > +4 pug/L were observed for about 11% of all wells
(n=1,245) and for about 19% of a subset of wells with measurable (generally > 1 ug/L)
concentrations of As (n=710) (Ayotte et al., this issue). It is worth noting that the
concentrations of As from all private wells (n=616) are less variable than those from public
wells (n=629), suggesting that the frequency of regular monitoring recommended for private
wells by government agencies is likely to be sufficient for most wells, with a caveat that
water usage or pumping rates do not vary a great deal for individual households. This caveat
is because studies, including Yang et al. (this issue), found that total (un-filtered and
acidified) As concentrations in well water varied considerably when the borehole was
pumped over several hours, although the dissolved (filtered and acidified) As concentrations
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in well water varied little (Bottomley, 1984; Yang et al., this issue). Both studies suggest
that As sorbed to Fe precipitates in a borehole can account for differences in total and
dissolved well water As concentrations during pumping, with Yang et al. (this issue)
proposing a conceptual model invoking sorption control of As onto secondary Fe minerals
along a groundwater flow path following an oxic-suboxic(-anoxic)-suboxic-oxic gradient
from “recharge” to “discharge” into the borehole as a plausible mechanism.

3 IMPEDIMENTS TO ARSENIC RISK REDUCTION

Because As in water is tasteless and odorless, it is not possible for consumers to recognize
this hazard without testing. The lack of a perceived problem by private well owners in
Ontario, Canada, was found to be a significant barrier for regularly testing well water for
bacteria (Imgrund et al., 2011). Generally, aesthetics informs the perception people have
regarding water quality. This is consistent with “optimism bias” in public perception of
environmental risks, whereby people perceive that most pollution is caused by a specific
polluter and it is the government’s responsibility to mitigate. This understanding was
established through a series of studies on home radon testing behaviors. Studies in New
Jersey have shown that people who did not test for Rn tended to believe that they were less
at risk than their neighbors (Weinstein et al., 1988). This led the authors to suggest that
efforts to encourage health-protective behavior for naturally occurring environmental
hazards can benefit from acknowledgment of the prevalence of such optimistic tendencies—
the “precaution adoption process” model (Sandman and Weinstein, 1993; Weinstein and
Sandman, 1992).

Although home Rn and well water As are similar in that they are (1) geologically sourced
human-health hazards occurring in private homes and (2) the homeowners’ responsibility to
test and to mitigate, questions remain as to what extent the aforementioned understanding of
home Rn testing is applicable to well water As testing. One difference is that mitigation for
As can be more costly than mitigation for Rn and requires regular monitoring of treated
water to ensure safety. Studies of safe water consumption behavior have found that risk
perception is also a weak predictor of health behavior change and that additional factors,
such as attitudes, social norms, or self-regulation, may be influential. Severtson et al. (2006)
applied health behavior theory related to psychological processing to help understand how
people responded to information about As-contaminated well water and found that specific
well testing information may be incongruent with optimistic beliefs about drinking water
quality; about half of the surveyed private well users in Wisconsin with As levels exceeding
the MCL were not taking any action to reduce As exposure (Severtson et al., 2006). In rural
Bangladesh, other psychological-theory-based studies used the RANAS model (Risk,
Attitude, Norm, Ability, and Self-Regulation) (Mosler, 2012) to assess the behavioral
determinants behind the use of water sources and found that the strongest predictors of the
use of neighboring As-safe tube wells were high commitment, strong descriptive norms, and
high self-efficacies (Inauen et al., 2013).

The aforementioned precaution adoption process model of Weinstein and Sandman (1992)
was also applied to understand the level and types of precautionary actions designed to
protect children against the health effects of drinking water contaminants taken by low-
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income families relying on private wells (Postma et al., 2011). Households (n=188) with
income levels 2.5 times lower than the federal poverty level and with at least one child under
the age of 7 in Gallatin County, Montana, and Whatcom County, Washington, were studied.
Most families had never tested their well water and many had never thought about taking
precautions. Results suggest that young families with low incomes and low levels of
education, as well as renters, are the least likely to have ever tested their well water.
Subsequent water testing results of these households highlight the need for testing because
about 27% of homes had at least one contaminant present in their water at levels above a
EPA MCL. In order of frequency, contaminant results greater than human-health
benchmarks included total coliforms (18%), arsenic (6%), synthetic organic chemicals (6%),
nitrates (2%), fluoride (2%) and E. coli (< 1%).

In this special issue, a questionnaire survey (n=420) and interview (n=32) study designed to
identify gaps in public risk knowledge regarding arsenic risk exposure in private wells in
Nova Scotia (Chappells et al., this issue) found that the majority of respondents (60%)
reported having “no” or “low” concern about the health risks of arsenic in their well water.
Structured interviews found that the top reasons for not testing were a lack of concern
(42%), inconvenience (23%), and cost of testing (16%). Optimism biases were evident in the
structured interview. Over half of the interviewees reported that they knew that high
concentrations of As were a concern in Nova Scotia but did not identify this as a risk at a
local level. Several had heard of neighbors experiencing problems with As, but this was
rarely regarded as a personal threat to their own health even if they resided in an area where
elevated arsenic levels had been found nearby. Likewise, similar optimism biases were
found in a mailed survey of randomly selected households (n=452) conducted in January
2013 in 13 towns of Central Maine, an area with high well-water dependency and frequent
natural groundwater As (Flanagan et al., this issue-b). The survey applied the RANAS
model (Mosler, 2012) and found that having knowledge that chronic exposure increases As-
related health risks (risk knowledge), knowing who to contact to test well water (action
knowledge), believing that regular testing does not take too much time (instrumental
attitude), and having neighbors who regularly test their water (descriptive norm) are
significant predictors of testing for As. Accepting the prevalence of optimism bias, Flanagan
et al. (b), conclude that as long as private well testing and treatment are left up to the
owners, there will always be population exposure to As through consumption of well water.

The health protective action taken by well owners, once they have tested their well water
and found concentrations of As above the EPA MCL, is either to install a treatment system
or to switch to drinking bottled water. Only a few studies examined the technical
performance of household As treatment systems in real-world situations; the findings are
concerning and the reasons for treated water still being non-compliant with MCL are not
well understood because they could be technical or maintenance related. Spayd et al. (this
issue) provides preliminary evidence for the relatively more effective reduction of As
exposure through a point-of-entry (POE) or whole house treatment system using granular
ferric oxide media, a media that has been found to perform better than reverse osmosis
(Pratson et al., 2010). A decision on which mitigation option to use is not simple because
cost and maintenance requirements differ (Sargent-Michaud et al., 2006). Drinking bottled
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water requires no maintenance but is expensive for most households; using a point-of-use
(POU) system requires relatively little maintenance and relatively low expense but suffers
high failure rates due to ineffective removal of As(l11) by reverse osmosis (Walker et al.,
2008); installing a POE system requires a relatively large capital investment and high
maintenance costs. In this special issue, Flanagan et al. (b), report on a follow-up survey in
Jan 2013 of households that had been mailed water-quality test results revealing As >
10ug/L between 2006 and 2010 in central Maine after they voluntarily participated in a free
water testing program offered by Columbia University. Of the 256 households that
responded, 43% installed or use some kind of water treatment system for As, 30% drink
bottled water or from another source such as a neighbor’s As-safe well, and 27% took no
action in response to the arsenic test results. The concentration of As in well water appears
to be a factor for mitigation: 31% of households with well water As concentrations between
10 and 50 pg/L (n=201) did not act, compared to 11% of households with well water As
concentrations > 50 pg/L (n=55). Belief that untreated water is not safe to drink (risk) and
that reducing drinking water As would increase home value (instrumental attitude) were
identified as significant predictors of mitigating As. A majority of households (72%) agreed
it costs a lot of money to decrease As exposure. Being “not concerned” about the As level
was also common amongst those given results between 10 and 50 pg/L and who decided not
to act. There are indications that households can benefit from guidance on treatment options:
48% agreed that “It is difficult to compare the pros and cons of As control methods,” and
24% were not confident they could maintain a treatment system.

4 MOVING TOWARDS SOLUTIONS

There are indeed many technical and human behavioral challenges in the reduction of As
exposure in the population of private well users. However, it is worth noting that public
health gains often take many decades to attain after a hazard is recognized, and these gains
can be fraught with setbacks. In light of this, the As hazard in private well water is similar to
other challenging public health problems. We now know that statistical models used to
predict the likelihood of regional As occurrence are imperfect; however, combined with
existing testing data, they can be useful to guide efforts for screening. Until models can
predict with better accuracy and with lower error than current models, predicting
concentrations of arsenic in private wells will remain a regional-scale tool. New statistical
models that utilize classification tree methods and (or) bootstrapping techniques, as well as
models designed to make use of output from other, more complex models of hydrologic
information, such as output from groundwater flow models, may help to improve predictions
(Nolan et al., 2014).

We also know that the typical doses of As from private well water of northeastern America
are low to moderate and that the detrimental health impact of As may be most severe for
fetuses and young children (Naujokas et al., 2013). Therefore, it may be warranted to
integrate public health campaigns on As testing and treatment with intervention programs
that intend to reach pregnant women and families with young children. Such integrated
approaches have been applied to exposure to lead-based paint and mercury in fish. To this
end, it is encouraging that the American Academy of Pediatrics (AAP) has issued a policy
statement recommending that pediatric health care providers ask families whether they drink
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water from a well at home (Rogan et al., 2009). AAP also recommends regular biologic and
chemical testing of private wells that supply drinking water to U.S. children, including
testing for As. Because some studies suggest that this is an environmental justice issue
affecting the low income, less educated, rural populations in the U.S., targeting vulnerable
populations might be warranted. The AAP's policy statement recommends “Tests
determined to be necessary for the safety and health of the families’ drinking well water
should be convenient and, if possible, free or inexpensive.” We suggest that such a policy
might benefit private well owners in New England and beyond. Because current regulations
adopted by some states (Table 2) rely on real estate transactions or new well installations to
trigger testing, these safeguards are unlikely to reach the low income families who are most
likely to be renters. Additionally, such families will need additional support to reduce
exposure after testing. Sustained public resources, devoted to private well users, especially
low income families with young children, are one way to improve drinking water safety. In
terms of impact, consider a hypothetical town with 1,000 households using private wells and
with a 20% As occurrence rate (Fig. 2). Even after 50% of the households have tested their
well water for As, and even after 70% of those tested have taken actions to either avoid As
through drinking bottled water or to treat for As, there remain 137 households exposed to >
10 pg/L As. This can be due to households being unaware of As because they have not
tested for it (n=100), to their testing for As but not taking action (n=30), or to their taking
action but their treatment units failing (n=7).

Considering all of the impediments to testing and treating, does it still make sense to drill
wells into rock formations where we know that there is a high likelihood of encountering
unsafe levels of arsenic? There is no easy answer to this question, yet consideration of
alternative water sources has not been a major part of the dialogue on reducing exposure,
largely because of the perception that bedrock aquifers are the best choice for private water
supply. We suggest that treatment of already contaminated wells may not be the only way to
reduce exposure and that developing alternative water sources for private wells where
arsenic is not typically found would immediately reduce exposure and would require no
maintenance of an arsenic treatment system. There are many potential ways to develop
alternative sources of water supply that can be considered, including connecting to a public
supply source where feasible; developing small, localized, public community water supplies
that would fall under the jurisdiction of the Safe Drinking Water Act; or developing
alternative shallow-well designs, which are bacteria and drought resistant, in the glacial-
deposit aquifers that overlie the bedrock aquifer.

In the latter case, for example, it is generally true that water from wells in glacial aquifer
materials have either slightly acidic pH or are oxic. In these conditions As will not be
mobilized to the same extent as in wells in the underlying bedrock, which often are slightly
alkaline and anoxic. The glacial aquifer has been overlooked recently due to the concern that
the water is often bacteriologically unsafe and that the aquifer does not produce water of
sufficient quantities to be useful. Whereas this has been true historically, it may be due in
part to deficient well designs. Traditional designs call for excavating a large hole and
installing a stack of approximately 1-m-diameter concrete well tiles (casing), with a concrete
cap. These installations can become compromised and permit the entry of bacteria from
runoff, precipitation, and entry of insects and rodents. New, alternative designs for glacial
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aquifer wells (dug wells) can prevent these conditions from occurring and may warrant
consideration and testing (Ayotte, JD, US patent application 14/488,097., 2014). Although
such wells would not replace all drilled wells, they may have a place in the plan to reduce
exposure to arsenic for the domestic well population.

There is a long way to go to eliminate exposure to As through drinking water from private
wells. It has been suggested that a more appropriate and scientific approach to private well
oversight in New England be developed through more regional coordination (Tramposch,
2008). At this crossroads in our understanding of arsenic concentrations in northeastern well
waters, and the goal of reducing arsenic exposure, we suggest that the development of an
exposure-reduction tool box could be a viable way forward. This tool box could include the
best-available guidance on testing, treating, using alternative water sources, and reducing
one’s As exposure in other ways, including consideration of food-borne sources of As. The
potential for As to occur in wells will always be with us, and therefore the development of a
strategy to reduce exposure will be ongoing. Thus, thoughtful consideration of the range of
options to reduce exposure in areas prone to having wells with high levels of arsenic,
including efforts to encourage testing, treatment, alternative water sources, and regulation of
private well-water quality, may be warranted at local, state, and regional levels. Some
regulations have already been implemented at the state and local levels (Table 2). We are at
the crossroads where As in private well water of this region is recognized as a public health
issue. It is best to address the issue head on.
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Figure 1.

Locations of 12 studies published in the special issue are labeled, with the approximate

geographic extent outlined in color.
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Figure 2.

Exposure scenarios for a hypothetical town with 1,000 private well households where the
occurrence rate of As in well water is 20%. Even if half of the households test for As and
70% of the tested households take action to avoid or to treat As, 137 households would still
be exposed to As out of the 200 households at risk of exposure.
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