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Abstract

Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the 

brain. High angular resolution diffusion imaging (HARDI) samples diffusivity at a large number 

of spherical angles, to better resolve neural fibers that mix or cross. Here, we implemented a 

framework for advanced mathematical analysis of mouse 5-shell HARDI (b=1000, 3000, 4000, 

8000, 12000 s/mm2), also known as hybrid diffusion imaging (HYDI). Using q-ball imaging 

(QBI) at ultra-high field strength (7 Tesla), we computed diffusion and fiber orientation 

distribution functions (dODF, fODF) to better detect crossing fibers. We also computed a 

quantitative anisotropy (QA) index, and deterministic tractography, from the peak orientation of 

the fODFs. We found that the signal to noise ratio (SNR) of the QA was significantly higher in 

single and multi-shell reconstructed data at the lower b-values (b=1000, 3000, 4000 s/mm2) than 

at higher b-values (b=8000, 12000 s/mm2); the b=1000 s/mm2 shell increased the SNR of the QA 

in all multi-shell reconstructions, but when used alone or in <5-shell reconstruction, it led to 

higher angular error for the major fibers, compared to 5-shell HYDI. Multi-shell data 

reconstructed major fibers with less error than single-shell data, and was most successful at 

reducing the angular error when the lowest shell was excluded (b=1000 s/mm2). Overall, high-

resolution connectivity mapping with 7T HYDI offers great potential for understanding 

unresolved changes in mouse models of brain disease.
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1. INTRODUCTION

Diffusion-weighted MR imaging (DWI) is a powerful tool to study water diffusion in the 

brain. By sampling water diffusivity at multiple spherical angles, DWI can reveal the 

orientational architecture of neural tissue within each voxel of the image [1, 2, 3] revealing 
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the underlying tissue microstructure. The directions of the underlying axonal fibers can be 

estimated from a minimum of six independent diffusion-sensitized images, and one non-

diffusion weighted image (b0 image). These images are used in diffusion tensor imaging 

(DTI) to estimate a 3×3 diffusion tensor, or the covariance matrix of a 3-dimensional 

Gaussian distribution [3]. However, as white matter fibers mix and cross, diffusion will not 

always be Gaussian, and the DTI model will fail to resolve complex structures [1, 4]. In 

addition, with DTI it is hard to model partial volume effects (where white matter, gray 

matter and cerebrospinal fluid may all contribute to diffusion in the same voxel) [1, 3, 5].

To overcome some limitations of DTI, a broad spectrum of acquisition and reconstruction 

methods have been developed [6, 7]. High angular resolution diffusion imaging (HARDI), 

for example, acquires a large number of angular measures of diffusion in a “single-shell” 

scheme (i.e., they use a fixed diffusion weighting, or b-value). Other methods, such as 

diffusion spectrum imaging (DSI) [6], use a dense Cartesian sampling of a large set of 

possible angles and multiple b-values to resolve diffusion microstructures with a model-free 

approach. DSI can be time consuming as it uses a large number of measurements to encode 

the q-space at each voxel [4]. An alternative approach, used here, employs a multiple-shell 

scheme to sample diffusivity on multiple concentric spheres in q-space, each with a fixed b-

value [4]. This method is referred to as multi-shell HARDI, or hybrid diffusion imaging 

(HYDI). Although we and others have used this method in humans [4], this paper may be 

the first report of HYDI in experimental mice, where longer scan times can resolve even 

finer structure. In these scans, voxel volumes are around 1000 times smaller than in typical 

human DWI scans.

In this study, we extend the power of high-field MRI to map the healthy mouse connectome. 

Specifically, we explored the benefits of HYDI using the q-ball imaging (QBI) model [6]. 

We estimated the diffusion and fiber orientation distribution functions (dODF, fODF) of the 

diffusion propagator [1] to investigate how each layer of complexity adds to our 

interpretation of tissue microstructure and fiber-based reconstructions. Understanding the 

complex connectivity patterns of the brain may require advanced methods, including a 

multi-shell scheme – especially when we try to shed light on white matter pathology. The 

current technology can be scaled to mouse models of disease, and importantly human 

imaging for improved acquisition protocols.

2. METHODOLOGY

2.1 Fiber Profile Estimation, Quantitative Anisotropy and Tractography

K-space and q-space imaging methods rely on the Fourier transform to define the 

relationship between the diffusion MR signal, S(k,q), average diffusion propagator, pΔ(r,R) 

for time Δ, and the diffusion spin density, ρΔ(r) [1, 2]. From the k-space reconstruction, the 

diffusion weighted image can be derived, W(r,q), as a function of the average propagator at 

each voxel:

(1)
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where r is the voxel coordinate, q = γGδ/2π with γ defined as the gyromagnetic ratio, and G 
and δ as the strength and duration of the encoding gradient; finally, R is the diffusion 

displacement [2]. In Eq. 1, ρ(r)pΔ (r, R) represents the spin density function, or Q(r,R), and 

defines the diffusion average propagator in the scale of the spin quantity. By applying the 

cosine transform to Eq. 1, Q(r,R) can be redefined as:

(2)

From here, we can quantify the distribution of spins undergoing diffusion in a particular 

direction û:

(3)

where LΔ is the diffusion sampling length, also known as the regularization parameter [2]. 

Eq. 3 represents the spin distribution function (SDF) and when obtained from the spin 

destiny function, Q(r,R), it defines the orientation distribution function (ODF) of the spin 

quantity. Importantly, Eqs. 2 and 3 describe the relationship between the diffusion weighted 

image, W(r,q), and the SDF:

(4)

if LΔ is set to infinity, the sinc function in Eq. 4 [2] becomes the delta function and therefore, 

estimates the Funk-Radon transform used by QBI [6] – also computed in this study.

The normalization of the SDF turns it into a diffusion ODF (dODF), ψd, which may be 

viewed as a linear summation of multiple dODFs and a background isotropic dODF [1]. 

Each dODF component may correspond to a fiber population within each voxel; they are 

defined here by the vertices of an 8-fold tessellated icosahedron, resulting into 642 sampling 

directions (dODF is symmetric around the origin, so 321 directions were considered); the 

dODFs were computed using the analytical QBI solution with a spherical harmonic order of 

8 to ensure high angular resolution, and a recommended regularization parameter of 0.006 

[8]. From the dODF peaks, the fiber orientation and profiles were computed using a single 

fiber component; the fODF of the fiber spin density was estimated by deconvolution [2]:

(5)

Here, ρψd stands for SDF (see Eqs. 3 and 4), ψf⊗ψc is the convolution between the fODF 

and the dODF and ρ0ψ0 is the background isotropic dODF. Mathematically, the 

deconvolution is solved by inverse matrix multiplication, Aψf, where A is a 321×321 matrix 

with column vectors describing dODFψc at 321 orientations [2]:

(6)

We performed ODF deconvolution, with a smoothening factor of 20, as it has been shown to 

improve the angular resolution of the resolved fibers over the dODF [1]. Finally, we 
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computed the quantitative anisotropy (QA) - which is a metric for each resolved fiber 

population (unlike FA, which is a metric for each voxel) and includes an SDF scaling factor, 

Z0 [2]:

(7)

Based on the spin fiber density information in the fODF, we performed deterministic 

streamline tractography with QA as a threshold criterion to define where fiber tracts 

terminate (probabilistic fiber tracking methods could also be used). As part of the 

implementation [1], fiber orientations were defined based on the fODF local maxima. 

35,000 fibers were extracted. Reconstruction, deconvolution and tractography were 

performed in DSI studio (www.dsi-studio.labsolver.org) [1, 2, 5].

2.2 Data and Analysis

We analyzed a healthy (wildtype) mouse scanned ex vivo with a 7 Tesla Bruker BioSpin 

MRI scanner at the California Institute of Technology. DWIs were acquired using a spin 

echo pulse sequence (120×166×80 matrix; voxel size: 0.1×0.1×0.2 mm3, TE=34 ms; 

TR=500 ms, δ=11 ms, Δ=16 ms). 305 separate volumes were acquired: 5 T2-weighted 

volumes with no diffusion sensitization (b0 image) and 300 diffusion-weighted images. 

DWIs were acquired with the same angular sampling across 5 distinct b-value shells: 1000, 

3000, 4000, 8000 and 12000 s/mm2 (each b-value shell contained 60 diffusion-weighted 

images). We designed a pre-processing protocol inspired by human processing workflows 

[9, 10]. First, we corrected the images for eddy current distortions using the “eddy correct 

FSL” tool (www.fmrib.ox.ac.uk/fsl) [12] for which a corrected gradient table was calculated 

to account for the distortions. Then, we removed extra cerebral tissue using the “skull-

stripping” Brain Extraction Tool from BrainSuite (http://brainsuite.org/) and edited the 

images manually as needed. All images were linearly aligned and up-sampled to the Mori 

DWI template (http://cmrm.med.jhmi.edu/) (voxel size: 0.065×0.065×0.065 mm3) using 

FSL’s flirt function [11] with 12 degrees of freedom. Furthermore, the gradient direction 

table was rotated accordingly after each linear registration.

As part of our analysis, we first investigated the benefit of using multiple shells by analyzing 

the signal to noise ratio (SNR) of the QA computed for each individual shell, compared to 

multi-shell reconstructed images. The same number of samples was used within each shell 

to fairly compare the SNR across shells. All shells had the same angular sampling to best 

exploit the effects of the b-values across the shells and not the bias from the difference in 

angular sampling. We computed the mean SNR as the ratio between the mean voxel value 

within a region of interest (ROI) and the standard deviation of the voxel value within the 

same ROI. We delineated the ROI within the cingulum1 of the mouse brain. For comparison 

purposes, we defined the 5-shell HYDI as the ‘ground truth’ and compared the performance 

of the reconstruction and deconvolution methods from individual shells, and <5 multi-shell 

HYDI (called target images), to the performance obtained from the ground truth image. To 

1The cingulum was studied here due to its homogenous fiber distribution; this helped limit biological variance in the SNR calculation 
(by avoiding heterogenous regions).
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do this, we computed the largest local maximum in the fODFs within each voxel within the 

cingulum and determined the minimum angular deviation, or the inner angle between the 

fiber orientations corresponding to the local maxima, between each target image and the 

ground truth image:

(8)

Here, ûmax, 1 and ûmax, 2 are the local maxima peaks within a voxel in the ground truth and 

target images.

3. RESULTS

As expected, the mean SNR of the single-shell QA (Fig. 1) in the mouse cingulum was 

highest at the lowest b-value and decreased, for single-shell acquisitions, as the b-value 

increased (Fig. 2). In a 2-tailed t-test, we found that the mean SNR within the cingulum in 

the single- and 2-shell DWIs is significantly higher at the b-value range 1000–4000 s/mm2, 

compared to the b-value range 8000–12000 s/mm2 (p-value=0.02). This has been previously 

shown in human data [13], and is expected here as the noise increased with increasing b-

values, possibly affecting the shape of the fODFs used for the QA computation. Meanwhile, 

as we reconstructed the 2+ multi-shell HYDIs, adding the lowest b-value shell (b-value= 

1000 s/mm2) significantly increased the SNR (p-value=0.02); note the visibly nosier QA and 

fiber reconstruction at b-value=1000 s/mm2 in Figures 1 and 3. On the other hand, we found 

that the highest b-value shell (b-value=12000 s/mm2) did not significantly impact the SNR 

of the multi-shell QA although the fiber reconstruction seems visibly more similar to the 

ground truth image reconstruction (Fig. 3).

Although the lowest b-value shell (b=1000 s/mm2) adds more signal to the QA, it also adds 

more angular error to the resolved fiber population in the cingulum (Figs. 3 and 4). In 

contrast to the 5-shell HYDI ground truth image, the angular deviation of the major peak 

fibers in the b=1000 s/mm2 shell across 64 voxels was as high as 53° (Fig. 4). A 53° angular 

error can occur when the anterior-to-posterior fibers of the cingulum are confused as being 

part of the corpus callosum (left-to-right directionality), which is what we observe in Figures 

3 and 4 (fibers in the cingulum are slightly red). Mean angular errors across all single-shell 

data were significantly higher than the errors from multi-shell HYDI, but only when the 

b=1000 s/mm2 shell was excluded from the multi-shell reconstruction (2-tailed t-test p-

value=0.02). Lowest angular errors were achieved for major fibers reconstructed from the 

last three shells (b=4000, 8000, 12000 s/mm2), however, reconstruction from the middle 

shells performed comparably well (b=3000, 4000, 8000 s/mm2 and b=4000, 8000 s/mm2).

4. CONCLUSION

In this work, we explore the benefits of high-field multi-shell diffusion imaging, or HYDI, 

to understand how each distinct b-value shells adds to the complexity of the reconstructed 

diffusion signal. We show that 7T HYDI is feasible in mice, and the effects of different q-

space sampling methods at single-shell b-values 1000, 3000, 4000, 8000 and 12000 s/mm2, 

as well as a combination of multi-shell schemes.
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We found that excluding the b-value=1000 s/mm2 shell improves the fiber reconstruction 

accuracy and importantly, also saves scanning time. This particular b-value shell is the most 

frequently used in human imaging studies today – so studying its added value is important. 

For improved fiber peak orientation accuracy, adding higher b-value shells proved to be 

beneficial (i.e., b-value=3000, 4000, 8000 s/mm2). For instance, multi-shell HYDI 

reconstructions composed of b-value shells 4000 s/mm2 and 8000 s/mm2 were almost as 

accurate as the 5-shell HYDI ground truth reconstruction. This further indicates that not all 

5-shells are necessary to acquire a highly complex and accurate diffusion signal, which once 

again – allows us to save scanning time.

To reconstruct the diffusion signal, we used fODFs – the orientation distribution of the fiber 

spins [1, 2, 5], which better resolve crossing fibers and fiber peaks. In fact, fODFs obtained 

from spherical deconvolution, as computed here, have been claimed to be more accurate 

than dODFs and other methods [1, 8]. This deconvolution method can be applied to ODFs 

obtained from many other reconstruction methods including DSI [6], generalized q-sampling 

imaging (GQI) [2], and others. Other reconstruction methods may lead to different fiber 

reconstruction outcomes, so results should still be interpreted cautiously.

HYDI offers an unprecedented power to assess the structural connectivity and neural 

integrity of the mouse brain – especially for studies that aim to validate the diffusion signal 

with high-resolution histological correlates. Despite the popularity of DWI, a lack of 

histological ground truth makes it difficult to understand the cellular basis of the underlying 

neuroimaging signals. Our future work will integrate the highly complex diffusion signal 

from HYDI with ex vivo cellular measures, and will assess the potential of connectivity 

analysis for assessing therapeutic consequences.
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Figure 1. 
Quantitative fractional anisotropy (QA) maps computed for single- and multi-shell DWI 

acquisitions in the mouse brain. The contrast to noise ratio visibly increases with the b-value 

shell, while the highest signal to noise ratio (SNR) is found in the lowest b-values shells 

(especially at b-value=1000 s/mm2).
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Figure 2. 
The signal to noise ratio (SNR) of quantitative anisotropy (QA) in single and multi-shell 

DWIs in the mouse cingulum is plotted. The same set of angular samples was used for each 

single- and multi-shell reconstruction. The lowest diffusion weighting gives the highest 

SNR.
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Figure 3. 
Deterministic streamline fiber tracts computed from QBI, as a function of fiber spin density, 

based on single and multi-shell DWIs in a coronal slice of the mouse brain. Tracts are 

overlaid on the fiber ODF maps; 5-shell HYDI was selected as ‘ground truth’ for 

comparison purposes. Note the poor resolution of fiber directions at b=1000 s/mm2, the 

value typically used in human studies today.

Daianu et al. Page 10

Proc SPIE. Author manuscript; available in PMC 2016 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Top row fODFs and zoomed in tracts at b=1000 s/mm2, and separately, in a 5-shell ‘ground 

truth’ HYDI, illustrated in the cingulum of the mouse brain across 64 voxel (8×8). 2nd and 

3rd rows: 8×8 matrix showing angular error (0°–53°) between local maxima of fiber peaks 

(fODFs) in the cingulum at voxel level for target images and the ‘ground truth’ image. 

Angular error is highest at b=1000 s/mm2 and decreases as shells are combined (p=0.02). 

The agreement with ground truth increases from the left to the right in the 2nd and 3rd rows. 

Angular deviation as high as 53° can occur when the anterior-to-posterior fibers of the 

cingulum are confused as being part of the corpus callosum that have a left-to-right 

directionality.
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