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Abstract

Correct localization of membrane proteins is essential to all cells. Chaperone cascades coordinate 

the capture and handover of substrate proteins from the ribosome to their target membrane; yet the 

mechanistic and structural details of these processes remain unclear. Here we investigate the 

conserved GET pathway, in which the Get4-Get5 complex mediates the handover of tail-anchor 

(TA) substrates from the co-chaperone Sgt2 to the Get3 ATPase, the central targeting factor. We 

present a crystal structure of a yeast Get3-Get4-Get5 complex in an ATP-bound state, and show 

how Get4 primes Get3 into the optimal configuration for substrate capture. Structure-guided 

biochemical analyses demonstrate that Get4-mediated regulation of ATP hydrolysis by Get3 is 

essential to efficient TA protein targeting. Analogous regulation of other chaperones or targeting 

factors could provide a general mechanism for ensuring effective substrate capture during protein 

biogenesis.
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In eukaryotes, the proper targeting of membrane proteins is a significant challenge for the 

cell to overcome 1. Integral membrane proteins contain hydrophobic transmembrane 

domains (TMD), which must be protected from the aqueous cytosolic environment prior to 

integration into the appropriate membrane. For the majority of membrane proteins targeted 

to the endoplasmic reticulum (ER), this is accomplished by the signal recognition particle 

(SRP), typically binding the initial TMD, or signal anchor, as it emerges from the ribosome 

and targets it to the ER for co-translational insertion. Exceptions are the ubiquitous tail-

anchor (TA) proteins, defined topologically by a single transmembrane domain near the C-
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terminus, which are unable to access the SRP pathway and must be targeted to the ER post-

translationally 2,3.

Found in most cellular membranes, TA proteins are targeted to either the ER or 

mitochondria. For the latter, a dedicated pathway has not been identified 4. Those destined 

for other organelles are initially targeted to the ER, and then subsequently trafficked to the 

appropriate membrane 3. Examples include many essential proteins such as SNAREs 

(vesicle fusion), Bcl-2 (apoptosis), and Sec61γ (protein translocation machinery) 5. A need 

for specific targeting of ER destined TA proteins was first conceptualized nearly two 

decades ago 2 and the cellular factors responsible have now been identified. The central 

targeting factor was identified biochemically in a mammalian system as the cytosolic 

ATPase TRC40, demonstrated to bind the TA and deliver it specifically to the ER 6,7. 

Previous genetic experiments involving the yeast homolog, Get3, could then be linked to TA 

targeting providing a route for studying this process 8. This was followed by a series of 

results that characterized the new pathway, termed GET (Guided Entry of TA proteins) 9–11. 

In yeast, this pathway consists of six proteins, Get1-5 and Sgt2, all with homologs in higher 

eukaryotes (Reviewed in Ref. 12).

Structural characterization of Get3, the central TA targeting factor, demonstrates that it 

undergoes ATP-dependent conformational changes from a apo ‘open’ to an ATP-bound 

‘closed’ form required for capturing the TA substrate 12–18. Deletion of Get3 in yeast leads 

to a buildup of mislocalized cytosolic TA proteins 9 and is embryonic lethal in mice 19. The 

Get3-TA complex is recruited to the ER by the membrane proteins Get1-Get2 

(Get1-2) 20–23. These stimulate release of the TA protein and subsequent insertion into the 

ER membrane, although the specifics of this mechanism are, as yet, unknown. Upstream of 

Get3 is the multi-domain Hsp70 or Hsp90 co-chaperone Sgt2 11,24,25 that specifically binds 

the TA, the first committed step in TA targeting, followed by hand-over to Get3 24.

Efficient delivery of a TA substrate to Get3 requires the hetero-tetrameric Get4-Get5 

(Get4-5) complex that provides the link between Sgt2 and Get3 11,24,26. Structural studies of 

Get4 and the N-terminal domain of Get5, also called Mdy2, revealed that Get4 is an alpha-

helical repeat protein, with the N-terminus of Get5 wrapping around its C-terminus 27,28. 

Biochemical and genetic evidence implicated the N-terminal face of Get4 in Get3 binding at 

an interface that shared commonalities with the binding sites for Get1 and Get2 27,28. In 

SAXS reconstructions, the full-length Get4-5 complex forms an extended structure where 

Get4 flanks the Get5 ubiquitin-like domain (Ubl) and central Get5 C-terminal 

homodimerization domain 25,27,29. Initial results suggested that binding of Get4 to Get3 

required nucleotide 27; however, a subsequent publication has brought this into question 30. 

More recent work has expanded on the role of Get4-5 in TA targeting beyond acting as a 

simple bridge. In addition to preferentially recognizing a nucleotide bound Get3, Get4 

inhibits Get3 ATP hydrolysis 31. TA binding is the presumptive trigger for hydrolysis 31, 

thus Get4 helps to stabilize Get3 in a conformation competent for TA binding. Since a major 

outstanding question is how Get4 regulates Get3 activity, we set out to understand the 

structural basis of Get4 function.
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This report describes the 5.4 Å crystal structure of an ATP-bound Get3-Get4-5 complex 

from Saccharomyces cerevisiae (Sc), a combined ~160 kDa hetero-hexameric structure. 

Two functionally distinct binding interfaces for anchoring and ATPase regulation were 

found between Get3 and Get4, that were confirmed biochemically and genetically. 

Mutations at these interfaces demonstrated that Get4-5-mediated regulation of ATP 

hydrolysis by Get3 were critical for efficient TA targeting. Finally, crystallographic 

tetramers of Get3 are compatible with two Get3 dimers bridged by a single Get4-5 hetero-

tetramer. In total, this work illustrates how Get4-5 regulates Get3, priming it for TA loading, 

a critical step in this important pathway.

RESULTS

Get4-5 binds the ATP-bound state of Get3

It was first important to establish the requirements for forming a stable Get3-Get4-5 

complex. Unless noted, Get3 is either wild type or contains an ATPase inactivating mutation 

(D57V, referred to as Get3D) that prevents ATP hydrolysis while still allowing ATP 

binding. Get4-5 is either the wild-type hetero-tetramer (Get4-5) or a 22 residue C-terminal 

truncation of Get4 (1–290) and the 54 residue N-terminal domain of Get5 (Get4-5N), similar 

to that used in a crystal structure of the heterodimer 27. As observed previously 30, in low 

salt (10 mM NaCl) a 1:1 complex of Get3D bound to Get4-5N could be generated that was 

stable by size-exclusion chromatography (SEC) (Fig. 1a, yellow trace). Increasing the salt 

concentration resulted in a loss of complex formation such that no complex could be 

detected at 500 mM NaCl (brown trace), suggesting an electrostatic interaction. At near 

physiological conditions (175 mM NaCl), a complex between Get3D-Get4-5 was disfavored 

(dark red trace) suggesting that additional factors were required to stabilize the complex in 

vivo.

Based on previous evidence that suggested a role for nucleotide in complex formation 27, a 

variety of assays were tested to confirm nucleotide stabilization of the Get3D-Get4-5N 

complex. SEC was performed in the presence of nucleotide at a salt concentration where the 

complex was disfavored (250 mM NaCl) (Fig. 1a,b, orange trace). For ADP, a clear 

stabilization of the complex was seen (Fig. 1b, green trace) while ATP resulted in the most 

stable complex (blue trace), consistent with previous experiments 27,31. Additionally, pull-

down experiments were quantified where tagged Get4-5N was used to precipitate Get3D 

with binding presented as a ratio of the two. These experiments confirmed the nucleotide-

dependence as observed with SEC demonstrating a preference for ATP (Fig. 1c). Finally, 

affinity constants (Kd) were measured using isothermal titration calorimetry (ITC) at a 

physiological ionic strength (150 mM KOAc) (Fig. 1d and Supplementary Fig. 1). For an 

apo-Get3D, a Kd could not be measured suggesting that the affinity was less than 10 µM. In 

the presence of ADP, Get4-5N binds to Get3 with micromolar affinity that increases to ~500 

nM with ATP. Collectively, all three assays show that Get4-5 preferentially interacts with 

ATP-bound Get3 at physiological ionic strength conditions.
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Architecture of the Get3-Get4-5 complex

While it is clear that Get4 recognizes the ATP-bound state of Get3, the structural details of 

this interaction were missing. To understand these, a complex of ATP, Get3D and Get4-5N 

was crystallized and a structure was determined to 5.4 Å resolution (Table 1). In the 

structure, there is a 1:1 ratio of Get3D to Get4-5N. Get3 is in a ‘closed’ conformation, as 

anticipated based on ATP being bound 14, with the Get4 interaction lying across the dimer 

interface (Fig. 2). An ‘anchoring’ (see below) interface (primarily to the brown Get3 in the 

figure) buries ~920 Å2 surface area, while a ‘regulatory’ interface (primarily to the purple 

Get3) contributes ~400 Å2 to this interaction (Supplementary Fig. 2).

At the anchoring interface, Get4 α2 makes extensive contacts roughly parallel to the groove 

formed by Get3 α10 and α11 (Fig. 3a and Supplementary Fig. 3, we have included side-

chains for clarity despite the resolution). This results in an interaction between the invariant 

residues Phe246 and Tyr250 on Get3 α10 and Tyr30 on Get4 α2 (Fig. 3a,b and 

Supplementary Fig. 2b,c). In addition to these hydrophobic contacts, a number of highly 

conserved charged residues are located within this interface (Get3: Glu253, Gln257, Glu258, 

Glu304, Asp308 and Get4: Arg37, Arg42). In contrast to α2, Get4 α1 is located on the 

opposite face relative to Get3, and makes fewer contacts. However, the N-terminus of Get4 

α1 is tilted toward Get3 placing the conserved charged residues Lys15 and Arg19 in close 

proximity to Get3 α10. Previously, this group had demonstrated that residues on the N-

terminal face of Get4 bound Get3 residues at a similar surface to that demonstrated for the 

ER receptors Get1 and Get2 20,21,27. A number of these residues map to the anchoring 

interface (Get3: Tyr250, Glu253 and Get4: Arg19, Tyr30, Arg37, Arg42) (Fig. 3a and 

Supplementary Fig. 2a).

At the regulatory interface, located on the opposing monomer, the C-terminal end of Get4 

α4 packs against the loop following Get3 α3 (Fig. 3a,b and Supplementary Fig. 3). This 

places a number of highly conserved complementary charged residues within this interface 

(Get3: Lys69, Lys72, Arg75 and Get4: Asp74, Glu81). Central to this interaction are the 

invariant residues Lys69 (Get3) and Asp74 (Get4), which are located opposite one another.

Mutational analysis of the Get3–Get4 interface

As noted above, the extensive Get3–Get4 interface involves varied contacts to both 

monomers. ITC and affinity capture assays were performed to determine which residues are 

essential for binding (Fig. 3 and Supplementary Fig. 1). As expected, alanine substitution of 

the invariant hydrophobic residues (Get3: Phe246, Tyr250 and Get4: Tyr30) dramatically 

reduced the binding affinity. In addition, a number of the conserved charged residues within 

the anchoring interface (Get3: Glu253, Glu304 and Get4: Arg19, Arg37, Arg42) produced 

similar effects following their substitution. A moderate binding defect was seen with Ala 

substitutions of the remaining residues on Get3 α10 (Gln257, Glu258) and the loop 

following Get3 α11 (Asp308). Substitution of the remaining residues on Get4 (Get4: Lys15, 

Lys23, Tyr29, Glu31, His33, Gln34, Arg45), which are located farther away from the core 

of the anchoring interface and of lower sequence conservation, had little to no effect on 

binding.
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At the regulatory interface, several highly conserved basic residues in Get3 (Lys69, Lys72, 

Arg75) are in close proximity to oppositely charged residues in Get4 (Asp74, Glu81). 

Nevertheless, substitution of these Get3 residues by Ala or Asp has little to no effect on 

Get4 binding (Fig. 3c). Furthermore, substitution of Get4 Asp74 by Lys resulted in a 

marginal increase in Kd ~1 µM as determined by ITC (Fig. 3c). Collectively, these studies 

revealed that the anchoring interface is mainly responsible for the specificity of binding 

between Get3 and Get4.

Regulation of Get3 nucleotide hydrolysis

While the regulatory interface is not involved largely in binding, the highly conserved nature 

of residues at this interface suggests they play an alternative role in TA targeting. Recently 

published work demonstrated that Get4-5 binding results in inhibition of Get3 ATP 

hydrolysis 31. To test if this interface plays a role, kcat was determined for several mutants of 

Get3 in the absence and presence of Get4–5 (Supplementary Table 1). The results are 

presented as a ratio (-Get4-5:+Get4-5) where a larger number indicates inhibition by Get4-5, 

e.g. wild-type Get4-5 inhibits Get3 ~6-fold (Fig. 4a). Consistent with their binding defects, 

the Get3 mutants E253K and E304K were not inhibited by Get4-5 (Fig. 4a). Notably, Get3 

K69D, situated at the regulatory interface, significantly lost the ability to be inhibited by 

Get4-5 (Fig. 4a) although it bound Get4-5 with similar affinities to wild type (Fig. 3c). A 

Get3 K72D mutant also lost the ability to be inhibited by Get4–5 relative to wild-type, albeit 

to a smaller extent (Supplementary Table 1). Mutation of the invariant Get4 Asp74, situated 

opposite Get3 Lys69 (Fig. 3b and 4c and Supplementary Fig. 2b,c and 3), yielded the same 

phenotype (Fig. 3c and Fig. 4a). Importantly, combining both opposing mutants (Get3 

K69D/Get4 D74K) restored the ability of Get4–5 to regulate Get3 ATPase activity, 

demonstrating that these two residues directly interact (Fig. 4a). This is again consistent with 

the high conservation of residues located on either side of this interface (Fig. 3b and 

Supplementary Fig. 2b,c). These results demonstrate that Get4 plays two distinct roles for 

Get3, recruitment and regulation, which can be biochemically decoupled.

To test whether the regulation of Get3 ATPase activity is important for TA targeting, a 

reconstituted in vitro targeting assay was used 31. Specifically, a TA-substrate, Sbh1, was 

translated in Δget3 yeast extracts and targeted to ER microsomes by exogenously added 

Get3. The efficiency of targeting is then reported by the glycosylation of an engineered 

opsin tag on Sbh1 upon insertion into microsomes. Mutant Get3 K69D exhibits a ~40% loss 

of Sbh1 insertion compared to wild-type, which agrees with its loss in Get4-5-induced 

regulation of ATPase activity (Fig. 4a,b and Supplementary Fig. 4a). Importantly, this effect 

is only seen in the presence of Get4-5 as both wild-type Get3 and Get3 K69D have the same 

targeting efficiency using translation extracts from a Δget3/Δmdy2 strain (Get4 is depleted in 

this strain24) (Supplementary Fig. 4b,c). This is distinct from Get1-2 binding mutants as the 

critical E253K mutant (that cannot bind Get1 or Get2) 20–22 completely abolishes insertion 

in both Δget3 and Δget3/Δmdy2 extracts (Supplementary Fig. 4b,c), which demonstrates that 

the Get3 K69D mutant does not directly affect the membrane-associated steps. The 

formation of functional Get3-TA complexes likely follows a mechanism similar to wild-type 

in these mutants, as the data still fits a Hill coefficient of 2, previously shown to correlate 

with Get3 tetramer formation 31. In addition, the targeting by Get3 K69D cannot be rescued 
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by increasing protein concentration (Fig. 4b), consistent with a model in which premature 

ATP hydrolysis in this mutant reduces the fraction of productive Get3-Get4-5 complexes 

that can capture and target the TA substrate. Thus, Get4-5-induced delay of ATP hydrolysis 

from Get3 is integral for ensuring efficient TA protein targeting.

To examine whether this regulation is important for Get3 function in vivo, the ability of 

Get3 K69D and Get4 D74K to rescue known knockout phenotypes was tested using a yeast 

growth assay 9,13,27. As before, neither the Δget3 nor Δget4 strains showed a phenotype 

when grown on synthetic complete media at 30°C. However, growing these strains at 40°C 

in the presence of 2mM Cu2+ produced a strong phenotype that could be rescued by 

expression of the wild-type protein on a plasmid (Fig. 4d). A Get3 K69D mutant was unable 

to fully rescue the growth phenotype supporting a role for regulation in vivo. A Get4 D74K 

mutant was also unable to fully rescue resulting in an even stronger phenotype than the Get3 

K69D mutant (Fig. 4d). It is important to note that this surface of Get4 has no other known 

interacting partners meaning that this phenotype can only be readout of the regulatory role 

of Get4. In total, these results provide strong evidence that Get4-5-mediated regulation of 

Get3 ATPase activity is critical for a functional GET pathway.

DISCUSSION

The structure of the Get3-Get4-5 complex presented here reveals the molecular basis of 

Get3 recognition by Get4. In particular, the structure provides insight into the role of 

nucleotide in complex formation, where Get4 binds to both monomers of Get3 in an 

orientation only compatible with a closed Get3. The anchoring interface was demonstrated 

to mediate the interaction between Get3-Get4, while the regulatory interface is critical for 

inhibition of Get3 ATP activity. This regulation of Get3 is necessary for efficient targeting 

in vitro and loss of regulation leads to growth defects in vivo. While it is difficult to 

speculate at sub-atomic resolution, it is interesting to note that Get3 Lys69 connects through 

a short helix to the critical Switch I loop that contains the catalytic D57. This would make 

the interaction between Get4 Asp74 and Get3 Lys69 allosteric leading to inactivating 

conformational changes in the catalytic pocket.

There is growing evidence that the soluble Get3-TA complex contains a tetramer of Get3, in 

which two copies of the dimer form a hydrophobic chamber 18,31. A tetramer of Get3 is 

observed in the Get3-Get4-5 crystal packing that is strikingly similar to the tetramer 

structures seen in the archaeal Get3 homolog 19 and in the crystal packing of the Get2-Get3 

complex 16 (Fig. 5a,b and Supplementary Fig. 5). If one considers the orientations of the 

Get4 monomers across the tetramer, the distances are compatible with the requirement that 

they be bridged by the rest of the Get5 dimer (Fig. 5a) 25. In contrast, while a Get3 dimer 

presents two potential Get4 binding sites, a single Get4-5 hetero-tetramer would be unable 

to occupy both, as this would require steric clashes to Get3. The tetramer seen here then 

likely represents a pre-hydrolysis Get3 complex waiting for a TA substrate to trigger 

hydrolysis and release of the complex from Get4.

Coupling this structural data and biochemistry with the current literature allows us to 

provide a refined model for TA selection by the Get3-Get4-5 complex (Fig. 5c). (1) In the 
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absence of nucleotide Get3 is predominantly in the open conformation with low affinity for 

Get4-5. (2) Binding of ATP would shift Get3 to a closed conformation that would be 

recognized by Get4-5, and promote inhibition of Get3 ATPase activity. (3) A second Get3 

dimer binding to the Get4-5 hetero-tetramer would follow. The complex would now be 

primed for capture of a TA substrate from the co-chaperone Sgt2 24 bound to the Ubl-

domain of Get5 29. (4) The stabilized tetramer-TA complex results in ATP hydrolysis 31 

causing release from Get4 and subsequent delivery to the ER.

In all organisms, cascades of protein biogenesis factors mediate the chaperoning and 

handover of nascent proteins from the ribosome to their final folding state or cellular 

destination. Active regulation of the conformation and nucleotide state of protein biogenesis 

factors, as studied here for Get3, has also been observed for the SRP-SRP receptor complex 

during co-translational protein targeting 32,33. This likely represents a general mechanism 

for ensuring efficient and productive biogenesis of nascent proteins.

METHODS

Protein cloning, expression, and purification

The sequences of Get4 and Get5 were cloned as previously described 27. To generate the 

Get4-5N used in this study, this construct was further modified by truncating the C-terminus 

of Get4 (residues 291–312), and by the addition of a stop codon after residue 54 within 

Get5. All S. cerevisiae Get4 mutants were generated using the QuikChange mutagenesis 

method (Stratagene) and verified by DNA sequencing. All Get4-5 proteins were 

overexpressed in BL21-Gold (DE3) (Novagen) grown in 2×YT media at 37 °C and induced 

for 3h by the addition of 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were 

lysed using a microfluidizer (Microfluidics) and purified as a complex by Ni-affinity 

chromatography (Qiagen). The affinity tag was removed by an overnight TEV protease 

digest at room temperature while dialyzing against 20 mM Tris pH 7.5, 30 mM NaCl and 5 

mM β-mercaptoethanol (BME). A second Ni-NTA column was used to remove any 

remaining his-tagged protein then the sample was then loaded onto a 6 mL Resource Q 

anion exchange column (GE Healthcare). The peak containing the Get4-5N complex was 

collected and concentrated to 15–20 mg/mL. Initial purifications of the Get4-5N complex 

was verified to be a single monodispersed species over SEC using a Superdex 200 16/60 

column (GE Healthcare) equilibrated with 20 mM Tris pH 7.5, 100 mM NaCl and 5 mM 

BME. Full-length Get4-5 used in ATPase assays and translocation experiments was further 

purified using a Superdex 200 16/60 column (GE Healthcare) equilibrated with 20 mM K-

HEPES pH 7.5, 150 mM KOAc, 10 mM MgOAc, 10% (v/v) Glycerol, and 5 mM BME. 

Fractions containing Get4-5 were pooled and concentrated to ~5 mg/mL.

The S.cerevisiae Get3 coding region was cloned as previously described 13. A 6×His-tag 

followed by a tobacco etch virus (TEV) protease site was fused to the N-terminus, and a stop 

codon was placed in front of the C-terminal 6×His-tag. All S. cerevisiae Get3 mutants were 

generated using the QuikChange method. Get3 mutants used in SEC, ITC, or capture assays 

were introduced into the Get3D construct, whereas mutants used in ATPase assays or 

translocation assays were introduced into the wildtype Get3 construct. All Get3 proteins 

were made in BL21-Gold(DE3), grown in 2×YT media and induced with 0.5 mM IPTG for 
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16h at 22°C. Cells were lysed using a microfluidizer (Microfluidics) and purified by Ni-

affinity chromatography (Qiagen). The affinity tag was removed by an overnight TEV 

protease digest at room temperature while dialyzing against 20 mM Tris pH 7.5, 100 mM 

NaCl and 5 mM BME. A second Ni-NTA column was used to remove any remaining his-

tagged protein then the sample was run on a Superdex 200 16/60 column (GE Healthcare) 

equilibrated with the dialysis buffer. Fractions corresponding to a dimer of Get3 were 

pooled and concentrated to 15–20 mg/mL. Get3 derivatives used for ATPase assays and 

translocation experiments were further purified over a MonoQ anion exchange column to 

remove contaminating ATPases.

Get3D-Get4-5N complex was formed by equilibrating 105 µmol Get4-5N with 100 µmol 

Get3D at room temperature in 500 µL of 20mM Tris pH 7.5, 10mM NaCl, 5mM BME, 

1mM MgCl2, and 1mM of either AMP-PNP or ATP. Prior to complex formation, Get3 had 

been pre-equilibrated with 1mM MgCl2 and either 1mM AMP-PNP or ATP for 5min at 

room temperature. Get3-Get4-5N complex was further separated from free Get4-5N using a 

Superdex 200 10/300 (GE Healthcare) equilibrated with 20 mM Tris pH 7.5, 10 mM NaCl 

and 5 mM BME or with 20 mM Bis-Tris Propane pH 9.0, 10 mM NaCl and 5 mM BME. All 

complexes were concentrated to 10–12 mg/mL before use in crystallization experiments.

Crystallization

Purified Get3D-Get4-5N complex was concentrated to 10–12 mg/ml and crystal trials were 

carried out using the sitting-drop vapor diffusion method at room temperature by 

equilibrating equal volumes of the protein complex solution and reservoir solution using a 

TTP LabTech Mosquito robot and commercially purchased kits (Hampton Research, 

Qiagen, Molecular Dimensions Limited). Get3D-Get4-5N crystals grew in the presence of 

18% PEG 3350, 0.2 M KSCN, 0.1 M Bis-Tris Propane pH 9.0, and 5% DMSO. Crystals 

were cryoprotected by transferring directly to 10µL of a reservoir solution supplemented 

with 20% glycerol, 1mM ATP, and 1 mM MgCl2 and incubated for ≥10 minutes before 

being flash frozen in liquid nitrogen.

Data collection, structure solution, and refinement

All structures were solved using datasets collected on Beamline 12-2 at the Stanford 

Synchrotron Radiation Lightsource (SSRL) at 1 Å at ~100 K. Each structure was solved 

from a single dataset that was integrated using MOSFLM 35 or XDS 36, and scaled and 

merged using SCALA 37,38. Crystals of Get3D-Get4-5N diffracted to 5.4 Å and was solved 

by molecular replacement with PHASER 39 as implemented in PHENIX 40, using a 

monomer of the closed (ADP-AlF4) form of Get3 (PDB ID 2WOJ 14) and one Get4-5N 

heterodimer (PDB ID 3LKU 27) as search models. No solution was found using the open 

(apo) form of Get3 (3A37 17). Refinement was performed using REFMAC v6.3 with rigid 

body restraints and in CNS v1.2 41 using DEN refinement. Manual rebuilding was 

performed using COOT 42. The final model refined to an R-factor of 27.0% (Rfree = 32.8%) 

with residues in the Ramachandran plot in 92.2% preferred, 6.0% allowed, and 1.8% in the 

disallowed and restricted regions 42. Full statistics in Table 1.
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Size exclusion chromatography for complex stability

250 µL of 25 µM Get3D and 250 µL of 25 µM Get4-5N were combined and dialyzed at 

room temperature in 20 mM Tris pH 7.5, 10 mM NaCl, 5 mM BME, 1 mM MgCl2, and, 

where indicated, 1 mM of either ADP or ATP. The total samples were injected onto a 

Superdex 200 10/300 (GE Healthcare) equilibrated in 20 mM Tris pH 7.5, 10–500 mM 

NaCl, and 5 mM BME.

Capture assay

500 nmol of 6×His-tagged Get4-5N was incubated with 10 µL Ni-NTA agarose resin for one 

hour at 4°C in 500µL binding buffer containing 20 mM K-HEPES pH 7.5, 150 mM KOAc, 

10 mM MgOAc, 10% (v/v) Glycerol, 25 mM imidazole, and 1 mM ADP or ATP where 

indicated. Following the addition of 1 µmol of Get3D, the solution was incubated for an 

hour at 4°C. After incubation, the reaction was spun for 30sec at 500×g. The supernatant 

was removed, and 500 µL binding buffer was added to the solution, and gently mixed 

through inversion. The wash step was repeated twice, and following the final wash, the 

remaining bound proteins were eluted with 30 µL of 20mM Tris pH 7.5, 100 mM NaCl, 

5mM BME, and 300 mM imidazole. The samples were spun for 30sec at 500 × g, and the 

supernatant was removed and added to 6 µL of 6×SDS-PAGE buffer. All samples were run 

on 15% SDS-PAGE gels and stained with Coomasie blue G-250. Gels were then analyzed 

by infared scanning in the 700 nm channel using a LI-COR Odyssey Infared Imaging 

System and Odyssey Application Software v3.0.30.

Isothermal titration calorimetry

Get3D-Get4-5N binding experiments were carried out using the MicroCal iTC200 system 

(GE Healthcare). Binding affinities were measured by filling the sample cell with 50 µM 

Get3D and titrating 350 µM Get4-5N. The buffer conditions were identical for all samples 

and contained 20 mM K-HEPES pH 7.5, 150 mM KOAc, 10 mM MgOAc, 10% (v/v) 

Glycerol, and 1mM ATP. For each experiment, 2 µl of Get4-5N was injected into Get3 for 

20 intervals spaced 120 sec apart at 25°C. For the first titration, 0.4 µl of Get4-5N was 

injected. The stirring speed and reference power were 1000 rpm and 5 µcal/s. Affinity 

constants were calculated from the raw data using Origin v7.4 software (MicroCal).

ATPase assay

Get3 ATPase rates were measured as previously described 31. Briefly, the kcat for 8µM Get3 

was determined in the presence of excess of ATP doped with (γ-32P) ATP, and analyzed by 

autoradiography. Each Get3 ATPase reaction was conducted in the presence or absence of 

excess (20µM) full-length Get4-5. For Fig. 4a, individual ratios were calculated for each of n 

independent trials (Supplementary Table 1) performed on separate days and then a mean and 

standard deviation were calculated across n ratios. Each independent trial was the average of 

values from two side-by-side reactions. Values used in Supplementary Table 1 are means 

and standard deviations calculated across n experiments.
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Translocation assay

The coding sequence for yeast Sbh1 was cloned into a transcription plasmid 24 under control 

of an SP6 promoter and modified as previously described 31. Sbh1 mRNA was transcribed 

using the SP6 Megascript kit (Ambion). All translation and translocation assays were 

performed in yeast as previously described 18 using extracts and microsomes from either a 

Δget3 9 or Δget3/Δget5 24 strain. Get3 translocation efficiency was plotted as a function of 

Get3 concentration and analyzed as previously described 31.

Yeast growth assay

Knockout strains BY4741 YDL100C::KanMX (Get3) and BY4741 YOR164C::KanMX 

(Get4) were purchased from America Type Culture Collection (ATCC) and used as 

previously described 13,27. The Get3 rescue plasmid was constructed by PCR amplifying the 

open reading frame with 242 bp upstream and 263 bp downstream flanking regions from 

BY4741 genomic DNA. The Get4 rescue plasmid was constructed by PCR amplifying the 

open reading frame with 233 bp upstream and 86 bp downstream flanking regions from 

BY4741 genomic DNA. Both genes were amplified with SalI and NotI restriction sites and 

ligated into the pRS316 vector 43. Mutants were generated by Quikchange site-directed 

mutagenesis. Yeast strains were transformed using the Li/Ac/single-stranded carrier 

DNA/PEG method 44. Phenotypic rescue was determined by growing each transformant in 

SC-Ura media at 30 °C to an OD600 nm between 1 and 2, diluting to 3.85 × 106 cells/mL and 

spotting 4 µL of serial dilutions onto SC -Ura agar plates in the presence or absence of 2 

mM CuSO4. Plates were then incubated at 30 °C or 40 °C for 24–48 h and photographed. 

The results were consistent through three trials.

Structure analysis and figures

Cartoon representations of protein structures were prepared using PyMol (Schrodinger, 

LLC), while surface representations were prepared using UCSF Chimera 45. Surface figures 

were made in Chimera. Conservation used values for individual residues based on an 

alignment from ClustalW 34. Electrostatic surface potentials were calculated using APBS 

with default values as implemented in the PDB2PQR webserver 46,47.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Get4-5 prefers ATP-bound state of Get3
(a) SEC of Get3D-Get4-5N run in various salt concentrations. (b) SEC of Get3D-Get4-5N in 

250 mM NaCl. (c) Pulldown experiments using 6×His-tagged Get4-5N and Get3D. The 

amount of Get3D retained after elution is plotted as a fraction of Get4, and error bars 

represent the s.d. from n=3 technical replicates. (d) Summary of the binding affinities of 

Get4-5N to Get3D obtained by ITC experiments. Data is expressed as Kd (µM) with n = at 

least 3 technical replicates.
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Figure 2. 5.4 Å crystal structure of an ATP-bound Get3-Get4-5 complex
The asymmetric unit of the Get3D-Get4-5N complex in two orientations (Get4 blue and 

Get5N gray) bound to Get3D (wheat and magenta). Bottom right, Get3D dimer alone in 

gray to emphasize the ‘closed’ structure. ATP is represented as spheres.
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Figure 3. Get3-Get4 binding interfaces
(a) View of the Get3-Get4 interface showing interactions between Get4 (blue) and both 

monomers of Get3D (wheat and purple). Residues at the interface tested for interaction are 

shown as sticks and colored based on phenotype. The positions of side chains cannot be 

determined at this resolution and are only shown here for reference. Below, overview of 

Get3D-Get4-5N in same orientation used to show the interface. Area within the box 

represents the interface shown above. (b) Sequence alignments of regions involved in 

contacts in the Get3-Get4 interface and colored based on ClustalW output 34. Sequences are: 

Scer – S. cerevisiae, Afum – Aspergillus fumigatus, Cele – Caenorhabditis elegans, Xlae – 

Xenopus laevis and Hsap – Homo sapiens. Helices are indicated above the sequence and 

labeled. Residues tested are highlighted by spheres and colored based on phenotype (blue, 

none or minimal; orange, moderate; red, strong). (c) Summary of the data obtained by ITC 

and pulldown experiments. Mutants are colored based on strength of phenotype as in (a-b). 

ITC data was generated from a single experiment; pulldown experiments were performed in 

triplicate, with the mean shown.
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Figure 4. Get4-5 regulates Get3 ATPase activity
(a) Get3 ATPase assay in the presence and absence of Get4-5 and mutants. The Get4-5 

effect is represented as a ratio of kcat in the absence and presence of Get4-5, with a value of 

1 indicating no inhibition by Get4-5. The values are shown as means and standard variations 

for ratios calculated from n independent trials (Supplementary Table 1). (b) Comparison of 

Get3 translocation efficiency between wt and K69D. (c) Stereo view of the regulatory 

interface showing interactions between Get4 (blue) and Get3 (purple). (d) Spot plate growth 

assays of pRS316 derived rescue plasmids under control of genetic promoters in the 
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BY4741 Get3::KanMx or Get4::KanMx background. “KO” represents transformation with 

empty vector. Plates consisted of Sc-Ura with or without 2 mM CuSO4. Each image was 

taken from a single plate at either 24 h (30°C, Sc-Ura) or 48 h (40°C, Sc-Ura w/2 mM 

CuSO4).
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Figure 5. A working model for Get4-5
(a) The tetramer of Get3 from the Get3D-Get4-5N crystal lattice in two orientations. 

Colored as in Fig. 2b. (b) The tetramer of an archaeal Get3 (PDB ID 3UG6 18) oriented 

similar to (a). (c) A model for the assembly of the Get3-Get4-Get5 tail-anchor binding 

complex. Colors correspond to those in Figure 2 and Figure 5.
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Table 1

Data collection and refinement statistics (molecular replacement)

SSRL BL12-21

Data collection

Space group C 2

Cell dimensions

    a, b, c (Å) 166.3, 134.5, 84.1

     α, β, γ (°) 90, 113.4, 90

Resolution (Å) 30.0-5.4 (6.0-5.4)2

Rsym or Rmerge 0.05 (0.46)

I / σI 7.4 (2.0)

Completeness (%) 93.8 (95.9)

Redundancy 0.05 (0.46)

Refinement

Resolution (Å) 30.0-5.4 (6.0-5.4)

No. reflections 5,529

Rwork / Rfree 0.270/0.328

No. atoms 10,177

    Protein 10,112

    Ligand/ion 65

    Water n/a

B-factors

    Protein 348.5

    Ligand/ion 317.4

    Water n/a

R.m.s. deviations

    Bond lengths (Å) 0.0032

    Bond angles (°) 0.94

1
A single native crystal was used to determine the structure Get3D–Get4–Get5

2
Values in parentheses are for highest-resolution shell.
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