
Structural Equation Model Trees

Andreas M. Brandmaier
Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

Timo von Oertzen
Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

John J. McArdle
Department of Psychology, University of Southern California

Ulman Lindenberger
Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

Abstract

In the behavioral and social sciences, structural equation models (SEMs) have become widely 

accepted as a modeling tool for the relation between latent and observed variables. SEMs can be 

seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths 

of SEMs and the decision tree paradigm by building tree structures that separate a data set 

recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees 

provide means for finding covariates and covariate interactions that predict differences in 

structural parameters in observed as well as in latent space and facilitate theory-guided exploration 

of empirical data. We describe the methodology, discuss theoretical and practical implications, 

and demonstrate applications to a factor model and a linear growth curve model.
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In this article, we describe a multivariate statistical method that combines benefits from 

confirmatory and exploratory approaches to data analysis, and is grounded in two well-

established paradigms: structural equation models (SEMs) and the recursive partitioning 

paradigm, also known as decision tree paradigm. A combination of these concepts yields 

trees of SEMs, thereby forming SEM Trees. Given a template SEM, which reflects prior 

hypotheses about the data, the data set is recursively partitioned into subsets that explain the 

largest differences in relation to parameters of a SEM. This allows the detection of 

heterogeneity of a data set with respect to covariates. SEM Trees are sought to provide a 

useful and versatile integration of confirmatory and exploratory approaches. Confirmatory 

aspects are provided by the structural equation modeling framework, and exploratory 
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aspects arise from the properties of decision trees. SEM Trees allow finding covariates and 

covariate interactions that predict non-linear differences in structural parameters among the 

observed variables as well as in latent space and facilitate the exploratory discovery of 

homogeneous subgroups of a data set. They allow successive discovery and confirmation of 

hypotheses within the same statistical framework.

Structural Equation Modeling

In the behavioral and social sciences, structural equation models (SEMs) have become 

widely accepted as a statistical tool for modeling the relation between latent and observed 

variables. SEMs can be perceived as a unification of several multivariate analysis techniques 

(cf. Fan, 1997), such as path analysis (Wright, 1934) and the common factor model 

(Spearman, 1904). SEMs represent hypotheses about multivariate data by specifying 

relations among observed entities and hypothesized latent constructs. By minimizing an 

appropriate discrepancy function, model parameters can be estimated from data and 

goodness-of-fit indices for a sample can be obtained. Latent variable models allow 

measurements to be purged of measurement errors and thus offers greater validity and 

generalizability of research designs than methods based on observed variables (Little, 

Lindenberger, & Nesselroade, 1999). Traditionally, SEM is considered a confirmatory tool 

of data analysis.

Decision Trees

Decision trees are hierarchical structures of decision rules that describe differences in an 

outcome with respect to observed covariates. Assume that for each subject, an observed 

categorical outcome y and a vector of covariates x were collected. A decision tree refers to a 

recursive partition of the covariate space that is associated with significant differences in the 

outcome variable. It is usually depicted as a dendrogram (see Figure 1). The partitions of the 

covariate space are defined as inequalities on the individual dimensions of the covariate 

space. Hence, decision trees can be read like rule sets, for example, “if x1 > 5 and x2 < 2 then 

y = 0, otherwise y = 1.” The maximum number of such rules encountered until arriving at a 

decision designates the depth of the tree. Formally, decision trees describe partitions of the 

covariate space that are orthogonal to the axes of the covariate space. The paradigm was 

introduced by Sonquist and Morgan (1964) and has gained popularity through the seminal 

work by Breiman, Friedman, Olshen, and Stone (1984) and Quinlan (1986). Decision trees 

split a data set recursively by maximizing an information criterion or by applying statistical 

tests to determine the significance of splits. As an extension, model-based trees have 

appeared in many varieties. Model-based trees maximize differences of observations with 

respect to a hypothesized model. CRUISE (Kim & Loh, 2001), GUIDE (Loh, 2002), and 

LOTUS (Chan & Loh, 2004) allow parametric models in each node. Linear model trees 

based on a maximum-likelihood estimation procedure have been also described by Su, 

Wang, and Fan (2004). Zeileis, Hothorn, and Hornik (2006) reported applications of 

recursive partitioning with linear regression models, logistic regression models, and Weibull 

regression for censored survival data. A recent comprehensive framework for model-based 

recursive partitioning was presented by Zeileis, Hothorn, and Hornik (2008), and an 

important treatment of recursive partitioning approaches was given by Strobl, Malley, and 
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Tutz (2009). Decision tree methods are usually considered as an exploratory data-analytic 

tool.

Structural Equation Model Trees

Model-based trees enhance the decision tree paradigm by partitioning the data set with 

respect to differences prescribed by a hypothesized model. Thus far, model-based trees 

focused on differences in model parameters describing relations between observed variables. 

SEM Trees extend these approaches to a target structure that is specified at the latent level. 

Due to the great flexibility of SEM, SEM Trees facilitate exploratory analyses for a large 

range of models, including regression models, factor analytic models (Jöreskog, 1969), 

autoregressive models (Jöreskog, 1970), latent growth curve models (McArdle & Epstein, 

1987), latent difference score models (McArdle & Hamagami, 2001), or latent differential 

equations (Boker, Neale, & Rausch, 2004). Typical questions that can be addressed with 

SEM Trees include the following: “Is there a significant difference in the mean values of a 

latent construct in subpopulations of the data set with respect to the covariates?” or “Does 

the correlation between a latent intercept and a latent slope in a latent growth curve model 

differ between specific subgroups of a population?”

To find and interpret differences between individuals or groups in factor-analytic models, 

measurement invariance has to be ensured (Meredith, 1993), that is, restrictions of freely 

estimated parameters have to be established across groups. SEM Trees include specific 

mechanisms to guarantee measurement invariance and can thus provide insight whether the 

chosen level and type of invariance holds across a data set for a given factor model. On the 

other hand, finding significant differences in this framework without the invariance 

assumption is also possible. The latter property of SEM Trees enables the retrieval of 

different factor profiles for distinct sub-populations.

In an exploratory data analysis, researchers might choose to sequentially include covariates 

in models to examine their influences on model variables. Alternatively, models are 

sometimes split into multi-group models according to covariates, such as age or sex, 

sometimes with the hope to identify homogeneous sub-groups for which the hypothesized 

model fits better. For example, Asparouhov and Muthén (2009) set up a two-group model by 

participants’ sex and, in a second step, expanded this model by adding a poverty index as 

latent predictor. Such kinds of model selection processes are often driven by more or less 

implicit heuristics and proceed in an exploratory or quasi-exploratory fashion. For example, 

in developmental research on age differences in cognition, the selection of age groups is 

informed by prior knowledge about the age trajectories of task-relevant mechanisms (e.g., 

Kray & Lindenberger, 2000). Although sample and variable selection can be effective in 

practice, it generally lacks a formal justification. In particular, the selection process is 

susceptible to implicit or explicit biases of the investigator (cf. Kriegeskorte, Simmons, 

Bellgowan, & Baker, 2009).

Whenever models are built from a single data set, there is the danger that the model will fit 

the data set well but will generalize poorly to others. This is called overfitting the data. Some 

practices in SEM, such as the use of modification indices and some fit indices, mislead the 
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researcher in engaging in an exploratory model selection process while reporting 

confirmatory statistics. Sometimes, this is referred to as data dredging or capitalizing from 

chance. SEM Trees are built around a greedy selection procedure that builds tree structures 

based on criteria that account for the dangers of overfitting and allow to find generalizable 

features in the data.

SEM Trees offer a formal setting for model selection by combining confirmatory and 

exploratory approaches. Main influences and interactions of covariates on the parameter 

estimates of a template model are found in an exploratory fashion, while theory-based 

assumptions and hypotheses can be represented in the SEM. SEM Trees then allow in a 

successive step to confirm the refined hypothesis on an evaluation set of participants. The 

importance of such an evaluation has been stressed repeatedly in the modeling literature 

(Bishop, 2006; Browne & Cudeck, 1992; Kriegeskorte et al., 2009).

Techniques for recursive partitioning of SEM have also been suggested by Merkle and 

Zeileis (2011) and Sanchez (2009). Both approaches are implemented in R packages. The 

former is available as strucchange by Zeileis, Leisch, Hornik, and Kleiber (2002), and the 

latter is available as pathmox by Sanchez and Aluja (2012). Strucchange can be employed 

for a recursive partitioning methodology based on a generalized fluctuation test framework, 

whereas the pathmox software provides recursive partitioning of path models based on 

partial least squares estimation. Differences between pathmox and SEM Trees primarily 

reflect differences of the underlying estimation techniques, which is least squares for 

pathmox and maximum likelihood for SEM Trees. For a comparison of those, see Jöreskog 

and Wold (1982).

In the remainder of this article, we formally define SEM Trees and discuss two methods to 

evaluate covariate-specific splits of a given data set during the tree growing process, one 

based on a Bonferroni-corrected likelihood ratio test and the other on crossvalidation 

estimates. We explain how measurement invariance is implemented in SEM Trees, thereby 

greatly facilitating the use of factor analytic models. We also discuss ways to incorporate 

parameter restrictions across a tree structure, and we discuss possibilities to apply pruning, a 

technique designed to increase the generalizability of tree structured models. To illustrate 

the utility of SEM Trees in exploratory data analysis, we present SEM Tree analyses of 

previously published empirical data sets using a latent growth curve model and a standard 

factor model. We conclude by detailing some strengths and limitations of the SEM Tree 

framework.

Structural Equation Modeling

SEM Trees can be conceived as a hierarchical structure of models, in which each model is a 

SEM. In structural equation modeling, models are constructed by specifying a model-based 

expectations vector µ and a model-based covariance matrix l. By imposing or freeing 

restrictions in these matrices, different concepts and hypotheses about the data can be 

integrated into a single model. The key feature lies in the comparison of the model-based 

expectations and covariances with the observed expectations and covariances in a data set. 

Based on a discrepancy function, model parameters can be estimated, and indices of 

goodness-of-fit can be derived.
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SEMs have been extensively discussed in the literature. For an introduction, see for example 

the textbook by Bollen (1989). SEMs constitute a widely applied multivariate analysis 

technique and can be seen as a unification of several multivariate statistics (cf. Fan, 1997). 

Different representations of SEMs proposed in the literature, among which LISREL 

(Jöreskog & Sörbom, 1996) and RAM (Boker, McArdle, & Neale, 2002; McArdle & Boker, 

1990; McArdle & McDonald, 1984), can be used for SEM Trees. A diverse range of 

methods exists for parameter estimation in SEM, that is, least squares, partial least squares, 

maximum likelihood, and expectation maximization. Under the assumption of multivariate 

normality, maximum likelihood estimation has some convenient properties, such as the 

availability of standard errors of the parameter estimates, known distributional properties of 

the test statistic, and efficiency of the estimator.

With the full information maximum likelihood (FIML) formulation, robust parameter 

estimation under missing data is feasible (Finkbeiner, 1979). For notational convenience, 

twice the negative log-likelihood (−2LL) usually replaces the likelihood function. The case-

wise −2LL of the model under the data is obtained through the following equation:

(1)

where Ki is a constant depending on the number of non-missing data points, Σi is the model-

implied covariance matrix with rows and columns deleted according to the pattern of 

missingness in the ith observation xi, and likewise µi is the model-implied meanvector with 

elements deleted according to the respective pattern of missingness.

Since the observations are assumed to be independent, the complete −2LL function for n 

independent observations is given by the following:

(2)

Parameters are estimated by minimizing this function, usually by an iterative, gradient-based 

optimization method (e.g., von Oertzen, Ghisletta, & Lindenberger, 2009).

From Model to Tree

SEM Trees are a variant of model-based recursive partitioning. Instead of fitting a single 

model to an observed data set, the data set is partitioned with respect to covariates that 

explain the maximum difference in the parameter estimates of the hypothesized model. This 

partitioning procedure is applied in a hierarchical fashion as long as differences are 

discovered. For example, in a factor model, a SEM Tree could identify covariates, that is, 

measured variables describing subsets of the sample, that maximally differ in their latent 

mean score. In a bi-variate linear latent growth curve model, a SEM Tree could retrieve 

subgroups that maximally differ in their latent slope correlation. A SEM Tree can be 

depicted as a tree structure with each node in the tree representing a SEM. Each inner node 

of the tree also represents a split point with respect to a covariate. The respective child nodes 

are associated with a SEM that represents the induced subsamples of the data set.
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For illustration, assume a data set of N = 400 participants of two age groups: “young” and 

“old.” Half of each group participated in a cognitive training program that is supposed to 

prevent or attenuate cognitive decline with age. The decline is assumed linear and thus is 

modeled with a linear latent growth curve model, which measures a hypothetical cognitive 

score on four occasions of measurement. Model parameters include mean µ and variance a2 

of the intercept and mean µ and variance a2 of the slope. This hypothetical example is 

inspired by the literature on cognitive intervention in old age (for summaries, see Baltes, 

Lindenberger, & Staudinger, 2006).

Let us assume that decline in older adults was steeper than in younger adults, and that the 

treatment only affected older participants by reducing the slope of their decline process to 

the extent that it was similar to that of younger participants. In this instance, the SEM Tree 

would find the covariate interaction of “age” and “treatment.” Results for a simulated data 

set are shown in Figure 2. The SEM Tree split the data set according to age and recursively 

proceeded to split the older individuals into two subgroups that significantly differ in their 

growth curve parameters, namely those with the treatment and those without. The group of 

younger individuals was homogeneous with respect to the model parameters and was not 

selected for a further split. The simulated data set also contained a further covariate “noise,” 

which was generated from a Bernoulli process. In the process of growing the tree, this 

variable has never been selected because it has no explanatory power with respect to 

differences in the parameter estimates. While this setting is likely subject to a confirmatory 

analysis of variance, the strengths of SEM Trees come to the fore when (1) parameter 

specifications (e.g., error structure, latent factors) imply the need to set up a SEM, and (2) 

when the number of covariates is large, their interaction unknown, or both (e.g., sets of 

behavioral, cognitive, or genetic covariates).

Formal Definition

A SEM Tree is a tuple (T, M, O), with T being a tree structure, and with M being a θ-

parameterized structural equation model and a set of parameter estimates for each node τ 

given as .

We denote the set of leaves of the tree—that is, nodes without successors—with L(T). The 

set of all inner nodes—that is, nodes that have successors—is denoted by I(T). The number 

of leaves and the number of inner nodes of a tree will be noted by the cardinalities of the 

respective sets, |L(T)| and |I(T)|. A subtree T= is a tree that contains as root any node of T, 

and also all successors of this node. Subtrees of T will be denoted as T ≤ T. A SEM Tree 

with two successors of every inner node—that is, a tree that at each node describes a bi-

partition of the covariate space—is a binary SEM Tree.

The SEM M will in the following also be referred to as template model. Using a fit index f, 

typically a maximum likelihood index, a SEM Tree is constructed from a data set D 

represented by a n × (k + l) matrix of observations D, which consists of n observations, k 

observed variables, and l covariates not modeled in M. The observed data matrix used for 

parameter estimation in M is denoted as the submatrix Dk = D1..n,1..k, and the matrix of 

covariates is denoted by Dl = D1..n,k + 1..k + l. The covariates constitute the set of candidate 
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split variables. Each SEM Tree possesses a mapping function t/J(T, d), which maps an 

observation d to a node of T. Essentially, the mapping function traverses the tree with 

respect to the covariates of an observation and thus matches the observed variables of an 

instance to a particular submodel of the tree. If a covariate encountered in the traversal 

process is missing, the traversal process finishes at that particular inner node instead of in a 

leaf node. In particular, this mechanism allows the formulation of a likelihood function of a 

SEM Tree M given the data D with potential missingness in the data set. Alternatively, a 

surrogate approach can be used to deal with missing values (cf. Hastie, Tibshirani, & 

Friedman, 2001).

The −2LL of a SEM Tree M is defined as the sum over the −2LLs of all node models:

(3)

In a SEM Tree, the likelihood of observing the data is maximal for the given tree structure, 

that is, each node model is associated with parameter estimates that represent the optimal 

solution with respect to the fit index f. Put differently, in the maximum likelihood setting, a 

SEM Tree has the maximum likelihood of having observed the data set given that particular 

tree structure. This can be achieved by maximizing the individual likelihood functions of the 

node models since the observations are independent and the node splits induce a non-

overlapping partition of the data set.

SEM Trees are depicted as tree graphs with nodes and edges (see Figure 2). Inner nodes are 

drawn as ovals and represent splits of the data set with respect to a specific covariate. The 

node is labeled with the name of the covariate. If available, the p-value of the test statistic 

that was used for evaluating the split candidate is appended to the node label to reflect the 

confidence in the selection of the respective node as covariate split. Leaves of the tree 

represent the estimated parameter sets for the subset of the data according to the performed 

partition of the original data set. Leaf nodes are represented as rectangles containing 

information about the estimation of the submodel, usually including the number of data 

points N that remained in the respective partition and all parameter estimates and, if 

required, estimates of their standard error and statistical significance of differing from zero.

Categorical, Ordinal, and Continuous Covariates

Initially, tree-based methods were created for dichotomous attributes. A generalization to 

categorical, ordinal, and continuous variables is realized with a dichotomization procedure 

of the variables under investigation (Quinlan, 1993). Categorical variables can be split into a 

set of dichotomous variables applying a one-against-the-rest scheme or by consideration of 

all possible non-empty dichotomizations. For example, if there are five categories of 

occupation, there are 15 possible splits. Hence, the computational needs are generally much 

heavier for categorical variables. Alternatively, it is possible to allow multiple splits into 

several subgroups according to the number of categories of a variable. In the latter case, the 

degrees of freedoms of the likelihood ratio test for split candidate evaluation have to be 

adapted accordingly. For ordinally scaled and continuous variables, we apply the 
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dichotomization as suggested by Quinlan (1993), which is also known as exhaustive split 

search in the literature. At first, the data set is ordered according to the attribute A under 

consideration. Given the sorted values of A as v1 … . vm, this results in a maximum of m - 1 

splits, the ith split being at (vi + vi + 1)/2. Along the same line, nominal data with m 

categories can be split into 2m-1 - 1 dichotomous split variables.

If a covariate that has been dichotomized in this way occurs repeatedly in a tree, the 

corresponding subset of participants has to satisfy both constraints. For example, if a split is 

“age below 50” and later on in that subtree, a split is “age above 25,” then the resulting 

subset of participants ranges in age between 25 and 50.

Particularly interesting is the fact that monotonic transformations of the covariates do not 

change the structure of the SEM Tree. In a regression model, a researcher might choose to 

model relations on a logarithmic scale. However, the non-linear interactions that are 

investigated in the covariate structure do not have to be log-transformed because this 

transformation does not affect the partitioning of the data set. In aging research, researchers 

sometimes choose to standardize variables, such as age in years, by subtracting the mean 

and dividing by the standard deviation or by using polynomial forms of the variable, such as 

age squared. Assuming that age is always positive, these transformations also are monotonic 

and are subsumed in the exploratory procedure of searching for possible attribute splits. 

Thus, they do not have to be explicitly specified.

In the following and in line with Zeileis et al. (2008), we restrict our considerations to binary 

SEM Trees. This imposes no loss of generality because an N-ary split of a single covariate 

can be represented by a sequence of N - 1 binary splits. Non-dichotomous covariates will be 

transformed to a set of dichotomous variables. The emerging set of original dichotomous 

and transformed dichotomous covariates forms the candidate pool for potential node splits 

during tree growing. This set is referred to as the set of implied covariates.

Algorithm

The following section describes the general procedure for growing SEM Trees.

General recursive partitioning—The generic split procedure for model-based recursive 

partitioning is simple:

1. Fit a parametric template model to the current data set via a chosen optimization 

procedure;

2. for each covariate, split the data set with respect to the covariate and compare the 

fit of the compound model of all submodels against the fit of the template model; 

and

3. choose among the compound models the one that is the best description of the data 

set according to a chosen criterion. If this model fits significantly better than the 

template model, repeat the procedure with Step 1 for all submodels. Otherwise 

terminate.
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Given that the statistics for growing SEM Trees rely on asymptotic assumptions, it might be 

convenient to define a minimum number of observations minN that is required for a node 

candidate to be considered legitimate. Nodes with a smaller number of observations will be 

skipped in node evaluation.

Growing SEM Trees—To put this generic algorithm into a SEM context, we 

operationalize the three steps listed above as follows. The parameterized model in our 

context is represented by any generic SEM, reflecting assumptions and prior hypotheses 

about the structure of the data. In our implementation, optimization is performed using a 

maximum-likelihood estimation procedure. However, the suggested approach does not rely 

on this particular estimation method. Any other discrepancy function can also be used for 

parameter estimation, such as generalized least squares or asymptotic distribution free 

methods. As long as the function provides an asymptotic x2 fit-statistic, the procedures 

described in this article remain unchanged.

Since the compound model, which is a model subsuming all models generated by the 

covariate split, and the base model are nested, we can apply a likelihood ratio test to 

evaluate whether the model can be split into submodels. Indeed, the full model can be 

interpreted as the compound model with additional linear constraints of parameter equality 

across all submodels. Thus, evaluating a model split can be interpreted as comparing a 

multi-group SEM whose groups are determined by the levels of a covariate against a unitary 

model (i.e., a SEM Tree with only the root node).

The formal evaluation of a node split with respect to a selected covariate is explained in the 

following. For a given template model M, we are equipped with the likelihood function f(θ|

D) for a parameter set θ with m free parameters and a data set D. We obtain the parameter 

set θF for the full data set by minimizing f(θF|D). For a given candidate split variable, 

assume a partitioning of the data set D into independent subsets D1,…, Dk. Because the 

subsets are non-overlapping, the parameters θ1, … , θk are found by independently 

minimizing f(θ1|D1), … , f(θk|Dk). The compound model of all submodels is from now on 

referred to as MSUB. M is nested within MSUB since M corresponds to MSUB with n 

additional linear equality constraints on the free parameters in θ. Given the nested structure, 

we can formulate a null hypothesis that the model fit of M is not significantly different from 

MSUB so that the parameters of the submodels are indeed the same, that is, H0 : θ1 = θ2. The 

log likelihood ratio A between M and MSUB is then given as

(4)

Following Wilks’s (1938) theorem, A is x2-distributed with (k - 1)m degrees of freedom. 

Given a set of covariates, all possible splits are evaluated, and the model with the best 

increase in fitness is compared against a previously chosen threshold, determined by ex, the 

chosen probability of Type I error. If the split is statistically significant, splitting is 

continued recursively.
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Multiple testing—The variable selection criterion based on the likelihood ratio test 

chooses the split candidate with the maximum increase in likelihood after splitting, and thus 

bases acceptance of a candidate variable on the known distribution of the individual test 

statistics under the null hypothesis. However, this selection strategy is plagued by a popular 

fallacy. In fact, by choosing the maximum of a set of statistics (one for each covariate to be 

tested), the resulting distribution is no longer the same as the distribution of the individual 

statistics. A typical solution to this situation is a conservative correction of the significance 

level of the likelihood ratio test, commonly known as Bonferroni correction. Under the 

assumption of independence of the individual tests, it corrects the maximally chosen test 

statistic such that the originally chosen ex level is valid. Since covariates are typically 

correlated to some degree, the Bonferroni correction is overly conservative. Several authors 

(Jensen & Cohen, 2000; Kriegeskorte et al., 2009) recommend cross-validation (CV) as an 

appropriate technique to estimate the generalization performance of a selection algorithm. In 

SEM Trees, CV can be employed for the node selection process. Instead of evaluating 

attribute candidates on the full data set S, n-fold CV will split the training into set into n 

disjoint sets Si. For each candidate attribute split, the respective submodels will be created, 

and their SEM parameters will be estimated from S after the removal of Si. The likelihood 

ratio for this particular partition of the training will be approximated by estimating the log-

likelihood ratio of the implied node split on the remaining validation set Si. The overall 

estimate of the log likelihood ratio test statistic for the candidate split is the average of the n 

estimates. Kohavi (1995) evaluated the choice of cross-validation for model evaluation in 

the context of univariate categorical outcomes with the C4.5 decision tree algorithm. His 

results suggest that a choice of 5- or 10-fold CV can be an appropriate choice for SEM 

Trees. Nevertheless, the effect of the number of folds on bias and variance of the estimator 

remains to be investigated more fully. The number of folds n is a crucial choice. In each CV 

iteration, parameters will be estimated from (n - 1)/n of the sample, and the test statistic will 

be evaluated on 1/n of the sample. Choosing a larger n will stabilize the parameter 

estimation process with only a small decrease in sample size. On the other hand, 

computation time linearly increases with larger choices of n. Generally, CV estimates for 

attribute selection only imply a moderate increase in computation time and will correct for 

the multiple comparison problem. When using CV, the likelihood ratio estimate no longer 

follows a x2-distribution because the parameter estimates cannot be assumed to be close to 

the optimum of the fit index for the holdout set. Therefore, thresholds for significant results 

cannot be chosen based on known distributions but only heuristically. The threshold we 

suggest is to accept the split whenever the CV estimator of the likelihood ratio is larger than 

zero, as in these cases the candidate split model represents the data on average better than 

the unitary model. More precisely, the expected likelihood of observing a new data point 

under the tree is larger than under the unitary model. The larger the estimate, the better the 

representation relative to the unitary model. Given the shortcomings of the Bonferroni-

correction, we recommend using CV-based SEM Trees over Bonferroni-based SEM Trees. 

Nevertheless, we like to emphasize that researchers can in principle build trees of arbitrary 

depth without stopping rule and this procedure might help them to gain a better 

understanding of their data. Trees hold the ex-level of the statistical test employed for 

variable selection because hypotheses in a tree are recursively nested Zeileis et al. (2008).
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Selection bias—Any tree-structured algorithm carrying out an exhaustive search in the 

split attribute space exhibits the problem of selection bias, sometimes also referred to as 

attribute selection error (Jensen & Cohen, 2000). With a growing number of possible splits 

in a variable, this variable is increasingly likely to be selected as a split criterion, solely 

based on the larger number of partitions of random fluctuations, which induce apparently 

significant results but merely reflect random noise. General principles to address variable 

selection bias were described by Jensen and Cohen (2000). In the context of decision trees, 

variable selection bias was addressed by different approaches. Two general approaches to 

reduce bias are (a) the selection of variables based on p-values instead of maximally selected 

test statistics, and (b) the separation of variable and split point selection (Shih, 2004). Frank 

and Witten (1998) computed p-values from permutation tests, and Dobra and Gehrke (2001) 

approximated p-values for the distribution of the GINI-index. QUEST (Loh & Shih, 1997) 

also bases the split-variable selection on p-values derived from an analysis of variance 

(ANOVA) F-statistic for ordered values or x2-statistic for categorical values and uses a 

Bonferroni correction to account for multiple testing across variables. The authors report 

that this procedure has negligible bias. CRUISE (Kim & Loh, 2001) is a variant that allows 

multiway splits. GUIDE (Loh, 2002) controls bias by relying on a chi-square analysis to 

detect interactions between the residuals and the covariates. Numerical variables are divided 

into four groups corresponding to sample quartiles. Hothorn, Hornik, and Zeileis (2006) 

proposed a generalized framework based on conditional inference procedures that provides 

unbiased formal tests for variable selection and stopping criteria. Zeileis et al. (2008) 

suggested a unified framework for unbiased model-based recursive partitioning that is based 

on tests for parameter instability. Strobl, Wickelmaier, and Zeileis (2011) presented an 

application of this framework on Bradley–Terry models. They used a two-stage procedure 

that first selects a variable by parameter instability test statistics and then selects the optimal 

cut point by maximizing the likelihood after the split. Using either the Bonferroni-correction 

or CV is subject to variable selection bias. One might be tempted to apply a nested 

Bonferroni-correction that corrects at the tree level for the number of candidates and at the 

variable level for the number of implied splits. However, this correction reverses the bias 

because variables with many levels are more severely penalized. A fair selection strategy 

can be achieved by following the advice of Shih (2004) and separating variable and split 

point selection. In order to illustrate the effects of selection bias in SEM Trees, we show 

some simulation results in Figure 3. In the simulation, trees were built from uninformative 

ordinal variables with different numbers of levels (2, 4, and 10). For three different selection 

strategies, the bars indicate how often the particular variable would have been selected as the 

best splitting variable. Since all three variables are generated to be uninformative, a fair 

selection strategy is expected to show a uniform distribution. As expected, a naive selection 

scheme, in this case a Bonferroni-correction, prefers variables with more levels under the 

null hypothesis that the variable is uninformative. A nested Bonferroni scheme reverses the 

bias by overly penalizing variables with many levels. In contrast, a two-stage procedure 

related to the ones implemented by Loh and Shih (1997) and Kim and Loh (2001), which 

first selects the best cut point for each variable and then selects among the best candidates, 

has negligible selection bias. This procedure can be used with both a Bonferroni-correction 

or cross-validation to correct for multiple testing at the level of the original covariates.
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Evaluation and pruning—The use of independent sets for model selection and model 

evaluation in data analysis has been emphasized in many contexts (Bishop, 2006; Browne & 

Cudeck, 1992; Kriegeskorte et al., 2009). If no independent sample is available, one usually 

divides the available data set into two disjoint sets: a training set and a test set. The training 

set is usually chosen to be larger than the test set to provide enough data for stabilizing the 

learning phase, that is, in the present case, the tree building phase. The test set can either be 

used for evaluation of the predictive performance of a tree or to prune back a tree to increase 

its generalizability. Pruning procedures select subtrees usually by pruning off terminal nodes 

by evaluating criteria that trade off reduction in heterogeneity against added complexity. An 

overview of different pruning algorithms can be found, for example, in Esposito, Malerba, 

Semeraro, and Kay (1997). One common pruning method for classification trees proposed 

by Quinlan (1987) is called Reduced Error Pruning. This technique can be straightforwardly 

employed with SEM Trees by replacing Quinlan’s classification error by the −2LL criterion. 

The algorithm prunes back terminal nodes of a SEM Tree as long as the −2LL of the test set 

improves. A different approach to pruning was suggested by Su et al. (2004), who proposed 

an Akaike information criterion (AIC)-based pruning strategy for trees based on models 

estimated with maximum likelihood procedures. An unbiased estimator of the generalization 

performance of a SEM Tree is the evaluation of an independent test set on the decision tree. 

For an independent data set, parameter estimates of the node models will not necessarily 

represent a maximum of the associated likelihood functions, and therefore the distribution of 

the likelihood ratios will be unknown. However, if the likelihood of having observed the test 

set is larger given the tree than given the root model only, we are inclined to believe that 

indeed the tree-implied model is a more appropriate representation of the population.

Computational Aspects

Asymptotic time complexity analysis—The run time of the algorithm depends on the 

sample size N and the number of dichotomous covariates M. For the evaluation of a 

potential new split, M calls to the SEM optimizer have to be made. The run time of the 

optimizer can be assumed to be linear in N if full information maximum likelihood (FIML) 

is employed. Bounds for the depth of the tree are the number of covariates M, and the binary 

logarithm of the number of cases log(N). In practical situations, most often we will find that 

log(N) < M. In that case, the run time will quadratically depend on the number of 

dichotomous covariates and linearly on the number of observations. When using k-fold CV 

for split evaluation, each parameter estimation process is executed k times, and therefore, the 

run time is linearly scaled by the number of folds. These considerations are general in the 

sense that they do not depend on a particular hardware or computing architecture.

Numerical parameter estimation—Parameter estimation in SEM requires the solution 

of an optimization problem. Typically, the solution is found by one of many numerical 

optimization methods. Given a set of starting values, the method will iteratively improve the 

estimate until the target function, such as the likelihood function value, will converge. In 

some cases, convergence is not reached, for example, if starting values are chosen far away 

from the unknown population values. Building a SEM Tree requires a large number of 

model fits and problems in some model fits are likely to occur.
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The SEM Tree algorithm passes on parameter estimates of a node as starting values for 

submodels when evaluating splits. If the model does not converge, the original starting 

values can be used. If this still fails, either the potential split is disregarded or a new set of 

starting values has to be generated by a different estimation method, for instance, by a least-

squares estimate. Non-converging models are marked during the tree growing process. Non-

converging estimates can result for various reasons. Whenever non-converging models 

occur, the user is advised to cautiously inspect the reasons. If non-convergence occurs very 

early in the SEM Tree, model respecification is advised. In later stages of the growing 

process, non-convergence may reflect small sample size. In these cases, the limited 

information in the data set prevents the tree from being grown further. In our 

implementation, unique starting values and the passing-on of previous estimates as starting 

values is implemented.

Parameter restrictions—A particular strength of SEM is the possibility of algebraic 

restrictions on models. The likelihood ratio test offers statistical means to significantly reject 

restrictions if the sampled data contradict them. Most often, restrictions in SEM include 

either restricting a parameter to zero or restricting a set of parameters to be equal. Hence, 

significant values of the respective test statistics indicate that in the first case the parameter 

is truly different from zero or in the second case the chosen parameters are truly different 

from each other. Restrictions on SEM Trees help to test hypotheses, reflecting the 

substantive questions of the researcher.

In the following paragraph, we introduce two types of restrictions across models in a tree: 

(1) A global restriction requires a parameter from the template model to be the same across 

all models in the tree. Due to the greedy nature of the algorithm, this can be achieved only if 

values for the chosen parameters are estimated once on the full data set and regarded as 

fixed for all subsequent models. (2) A local restriction requires a parameter to be equal on 

all models whose nodes have the same father node only during split evaluation. This can be 

thought of as a parameter equality restriction across models in a multi-group setting. This 

leads eventually to diverging values of the restricted parameter in the leaf models. However, 

this restriction allows that parameters are freely estimated while their differences across 

submodels do not contribute to the evaluation of the split criterion. For example, in a 

regression model, a researcher might be interested in model differences with respect to the 

regression parameters, but not in differences of the regression line with respect to prediction 

accuracy, that is, the residual error term. In that case, the residual error can be defined as 

locally restricted. Without this restriction, the tree can in principle find distinct subgroups 

that are characterized by the exact same regression slope but differ only in the residual error 

term. Certainly, the latter case might also be of interest, depending on the researcher’s 

questions.

Variable Splits Under Invariance Assumptions

A widely used class of SEM are factor models that define relations between hypothesized 

latent factors and observed scores. In applied psychological research, hypotheses about 

factor-analytic structures are often tested across multiple groups. For example, in aging 

research, a common approach is the separation of the participants into models according to 
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their age group, that is, a model for the younger and a model for the older participants (e.g., 

Kray & Lindenberger, 2000). Multi-group factor models are essentially represented by 

replications of a template model for each group whereby free parameters are unique within 

each group. Parameter constraints cannot only be set within groups but also across groups. 

This allows testing hypotheses whether parts of the model are indeed equal across groups or 

significantly differ from each other. An obvious question could be, “Do two groups differ in 

their average value of the latent construct?” These questions can be answered validly to the 

extent that the researcher can ascertain that latent constructs have been measured identically 

across all groups. This requirement, referred to as measurement invariance (MI) or 

measurement equivalence, has been debated in psychology for more than a century (Horn & 

McArdle, 1992; Meredith, 1964, 1993). Measurement invariance is traditionally tested 

through a sequence of hypothesis tests. While the literature has many concepts of invariance, 

most often four nested concepts are used: (1) configural invariance, sometimes termed 

configuration invariance or pattern invariance, requires the invariance of the pattern of zero 

and non-zero factor loadings across groups; (2) metric invariance, weak invariance, or 

factor pattern invariance requires invariance of the values of the factor loadings across 

groups; (3) strong invariance or scalar invariance assumes intercepts of the indicators and 

all factor loadings to be the same across groups; (4) strict invariance additionally restricts 

the residual errors to be equal across groups, to allow the interpretation of standardized 

coefficients across groups.

Having factor loadings, means, and variances all freely estimated could result in SEM Trees 

whose implied hierarchical group structure might violate the requested invariance 

qualifications. However, we definitely can gain knowledge about our data set from freely 

estimating all parameters. This would correspond to an exploratory search predicting the 

maximal difference between submodels and therefore subsumes covariates that maximally 

break the invariance assumptions. In line with Meredith (1993), we are inclined to require 

strong invariance whenever we are interested in latent mean differences. Since factor 

loadings express the expected change in the observed variable per unit of change of the 

latent variable, this invariance test is a test of equal scaling across the groups (Jöreskog, 

1969). In that case, we suggest to only explore variable splits under the constraint that factor 

loadings are equal across all submodels. Effectively, the SEM Tree can be generated under 

the assumption of the chosen level of measurement invariance. By choosing a global 

restriction across the factor loadings, metric invariance can be imposed on the model; by 

extending the restriction to the score means, strong invariance is imposed. However, the 

assumption of MI is not yet statistically validated. By introducing additional tests whether 

these global restrictions hold at the stage of covariate split evaluation, the tenability of MI is 

ensured. Precisely, at each evaluation of a possible split in a submodel, a third model is 

introduced which is a variant of the submodel, only that the global restriction over the factor 

loadings is relaxed. The likelihood ratio between the compound submodel and the relaxed 

submodel allows testing MI in the traditional way by tentatively accepting the model as 

invariant if the null hypothesis cannot be rejected. Formally, let the estimated parameters of 

the full model before a split be θfull, and the constrained compound split model’s parameters 

θres, and θfree the freely estimated parameters of the compound model of all split models. 

These models are nested and their likelihood values will satisfy
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(5)

The only way to maintain a variable split is if the likelihood ratio 2LL(θfull)−2LL(θres) is 

significantly different from zero, suggesting that the full model is truly a worse 

representation of the data set, and 2LL(θres)−2LL(θfree) is not significantly different from 

zero, suggesting that the invariance assumption is tenable.

With this procedure in place, SEM Trees allow the generation of hierarchical model 

structures that predict parameter differences in SEM under a chosen assumption of 

measurement invariance, be it configural, metric, strong, or strict invariance.

Note that for factor-analytic models, both generative modes of the SEM Tree, either with or 

without measurement invariance, can make sense, depending on the researcher’s questions. 

A SEM Tree under measurement invariance can be used to predict differences in the factors, 

a regular SEM Tree might detect profiles of factor loadings that differ in the sample.

SEM Tree Package

We have implemented SEM Trees in the package semtree for the statistical programming 

language R (Ihaka & Gentleman, 1996), which is published as a complement to this article. 

It can be freely downloaded at http://www.brandmaier.de/semtree. The package is based on 

OpenMx (Boker et al., 2010), freely available at http://openmx.psyc.virginia.edu. In 

OpenMx, models can be specified with great flexibility, either in a matrix-based fashion or 

in a path-analytic way. Different representations of SEM proposed in the literature, among 

these LISREL (Jöreskog & Sörbom, 1996) and RAM (Boker et al., 2002; McArdle & Boker, 

1990; McArdle & McDonald, 1984), can be used for SEM Trees. In particular, existing 

RAM-based OpenMx models can be run with the SEM Tree algorithm without 

modifications. The SEM Tree package provides methods for tree growing, pruning, 

evaluation, and plotting. Tree growing can be based either on the presented Bonferroni 

correction of the likelihood ratio test or on CV estimates. The latter is the recommended 

method. Local and global restrictions can be separately specified and the presented tests for 

MI are included. Tree pruning based on the reduced-error-pruning method is also 

implemented. All examples in this article were analyzed with this package. We also included 

facilities for tree visualization, both on-screen and as publication-ready LaTeX code.

Applications

To illustrate the utility of SEM Trees in data analysis, we present SEM Tree analyses on 

simulated and previously published empirical data sets. The examples include SEM Trees 

with four different template models, an autoregression model, a regression model, a 

longitudinal growth curve model, and a standard factor model.

Developmental Latent Growth Curves

McArdle and Epstein (1987) described aspects of latent growth curve modeling with a 

longitudinal data set of scores of N = 204 young children from the Wechsler Intelligence 

Scale for Children (WISC; Wechsler, 1949) over four repeated occasions of measurement, at 
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about 6 years of age (t = 1), 7 years of age (t = 2), 9 years of age (t = 3), and finally at about 

11 years of age (t = 4). Intellectual capability was measured on two distinct scales, 

representing verbal IQ and performance IQ. In line with McArdle and Epstein, we chose 

four subscales from each scale. The eight subscales included the Information, 

Comprehension, Similarities, Vocabulary, Picture Completion, Block Design, Picture 

Arrangement, and Object Assembly tests. The raw scores were rescaled to represent a 

“percent correct” scaling, thus ranging between 0 and 100. These were collapsed into an 

average score, which was investigated in further analyses. Covariates in the data set included 

the dichotomous variable sex, the continuous variable age at first measurement, and years of 

education of both mother and father in a categorical representation. Education of the father 

was the only variable that had missing values reported. The set of implied covariates had a 

size of 28.

We set up an equivalent factor model for an analysis with SEM Trees based on the data as 

described by Ferrer, Hamagami, and McArdle (2004) and McArdle and Epstein (1987). The 

template model for the SEM Tree was a linear latent growth curve model with a latent 

intercept and a latent slope, modeling a composite average score of the verbal and 

performance subscale over four occasions of measurement, with slope factor loadings λ1 = 

0, λ2 = 1, λ3 = 3 and λ4 = 5 accounting for non-equidistant measurement occasions. The 

model was defined by six free parameters, mean µS and variance  of the slope, mean µI 

and variance  of the intercept,  for the measurement error, and  for the correlation 

between intercept and slope.

A SEM Tree was generated from the full data set. Model differences were investigated with 

respect to the set of all six free parameters. We constructed trees both with the Bonferroni 

correction (ex= .05) and with CV estimates with a required minimum of minN = 20 

observations per leaf. The resulting from applying CV was in fact a pruned subtree of the 

Bonferroni-constructed SEM Tree. In Figure 4, the SEM Tree with the p-values from the 

Bonferroni-corrected construction method is presented. According to the CV method, the 

left subtree was associated with a significant improvement in model fit. Both construction 

methods found the variable mother’s education as primary split and found a subsequent split 

according to father’s education in the right subtree. The right subtree with the split point sex 

was not chosen by CV and would not have been chosen with the Bonferroni-corrected 

method with an ex-level of .01. This suggests that this split should indeed be ignored.

In their original analysis of the data, McArdle and Epstein (1987) also reported that mother’s 

education predicted differences in children’s cognitive growth, which, they claim, would 

have been overlooked by individual path analysis or multivariate analysis of variance 

(MANOVA) models. While the influence of mother’s education on the model was a priori 

selected to be explored, the SEM Tree included an entire set of covariates and found 

mother’s education to predict the largest differences with respect to the model parameters.

The parents’ education covariates were originally coded with six categories, the first three 

representing various levels of high school graduation and graduation from schools beyond 

high school, and three levels for pre-high school education. Remarkably, the algorithm 
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mimicked this plausible distinction of both education covariates in a purely data-driven 

fashion by separating children according to whether their mothers and fathers graduated 

from high school.

To examine the stability of the algorithm in the context of this data set, we drew 100 

bootstrap samples. In each replication, we drew N = 204 samples from the original data with 

replacement to construct a training set. The remaining samples formed an independent test 

set. SEM Trees were generated from the training sets like described above and were 

evaluated on the test sets. In all 100 out of 100 replications, the SEM Tree algorithm found a 

model description, according to which the SEM Tree model with splits was more likely to 

be true than the unitary growth curve model. In 33 out of 100 of the bootstrapped trees, 

mother’s education was chosen as first split variable. In all these trees, “father’s education” 

was chosen as a single further split, thus replicating the tree structure obtained from the 

whole sample. In the remaining 67 bootstrapped trees, “father’s education” was chosen as 

first split variable. Interestingly, in only two out of these 67 trees, “mother’s education” was 

chosen as a subsequent split. The variables sex and age were never chosen. These results 

indicate that both parents’ education variables predict key differences in the model 

parameters. Particularly, father’s education seems a strong predictor (chosen in total in 98 of 

100 replications). The possibility to get either mother’s or father’s education as first split is 

not surprising considering their high correlation in the population.

Factor Analysis of Wechsler Adult Intelligence Scale—Revised (WAIS–R; Wechsler, 1981) 
Data

The WAIS–R contains performance scores on eight subscales, similar to the WISC data set 

described in the previous section. We base our analysis on a data set that was previously 

analyzed by others, that is, McArdle and Prescott (1992) and Horn and McArdle (1992). The 

sample was collected during 1976 and 1980 by the Psychological Corporation and includes 

the scores of N = 1,880 individuals on a total of 11 WAIS–R subscales. A rich set of 

demographic covariates is available for this data set, including age group (in nine categories, 

hence eight implied dichotomous covariates), geographical information about the place of 

residence (four nominal categories, hence seven implied covariates), urban/rural place of 

residence (dichotomous), place of birth in the United States (dichotomous), marital status 

(again four nominal categories, hence seven covariates), handedness (dichotomous), 

education (six ordinal categories, hence five covariates), occupation (six nominal categories, 

hence 31 covariates), sex (dichotomous), and birth order (nine ordinal categories, hence 

eight covariates). In total, these resulted in 70 dichotomous variables.

Following McArdle and Prescott (1992), we included all individuals 18 years of age or 

older, obtaining a sample size of N = 1,680. For a first evaluation, we set up a single factor 

model that hypothesizes a latent factor representing verbal IQ on four verbal performance 

scores, represented by a latent mean µIQ and a latent variance . The performance on the 

remaining seven WAIS–R subscales was not considered in this example. The factor loading 

of the Information score (IN) was fixed at λ1 = 1 and also the corresponding expectation of 

the observed score µ1 = 0. Free parameters in the model include the remaining factor 
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loadings λ2 (Comprehension); λ3 (Similarities); λ4 (Vocabulary); and the residual errors ε1, 

ε2, ε3, ε4 of the four scores.

In the first run, the factor loadings were chosen to be tested for weak measurement 

invariance, that is, only candidate splits that fulfill this requirement were considered for 

further evaluation. The resulting SEM Tree under the factorial invariance assumption is 

shown in Figure 5 with a maximum depth of 4 to maintain readability for this form of 

presentation. Interestingly, the first two splits concern the levels of the education variable 

splitting off the two extreme groups from the data set, those with an education of 0 –7 years 

(education = 1) and those with an extremely long education of 16+ years (education = 6). 

For both extreme groups, there is no subsequent split that represents an improvement. For 

the remaining 1,335 individuals, occupation brought out the largest difference with respect 

to model parameters. The resulting two partitions were semi-skilled and skilled workers 

(occupation = 4, 5) versus all other occupations. For both subgroups, again, education 

described the largest difference, depending on whether participants had an education of 

more or less than 12 years (left subtree) or 13–15 years (right subtree). Thus, average 

differences in the latent expectation seemed monotonically related with the variable 

education. Another difference worth mentioning is the difference in the expectation of the 

Similarities score (µ3) across groups determined by the variable occupation.

In a second run, we grew a tree without the invariance assumption to a maximum depth of 3. 

This analysis might guide us in finding potential splits in heterogeneous subgroups that are 

not invariant with respect to their factor loadings. Results might hint at splitting the data set 

with respect to one or more covariates into subgroups that are less easily compared with 

each other but might alert us to substantially meaningful differences in their factor 

structures. A resulting tree could be interpreted as covariate influences on different 

intelligence profiles, or more generally, sub-groups that systematically differ in the 

composition of the latent score. Subsequently, each of these models again can be analyzed 

with a second run of SEM Tree that incorporates the invariance assumption.

Figure 6 depicts the resulting tree without the invariance assumption, that is, each subtree 

features unique estimates for the loadings. The resulting tree resembles the tree under 

invariance to some extent. However, as the subgroups were allowed to differ in their factor 

loadings, the resulting estimates for the latent structure should be compared across models 

with caution. At the same time, the resulting tree can guide theory development by 

discovering meaningful differences in intelligence profiles.

Limitations and Extensions

SEM Trees inherit the statistical properties that the template SEM and the chosen estimator 

impose; for example, when using a maximum likelihood estimator, multi-variate normality 

is an essential requirement. Also, since likelihood ratio tests are used to select the splits, the 

general properties and limitations of the likelihood ratio test in SEM apply to SEM Trees as 

well. Therefore, simulation results describing differential power of the test with respect to 

type of parameter, sample size (MacCallum, Widaman, Zhang, & Hong, 1999; Muthén & 

Curran, 1997), balance between groups (Hancock, 2001; Kaplan & George, 1995), 
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incomplete data (Dolan, van der Sluis, & Grasman, 2005; Enders, 2001), non-normality 

(Enders, 2001), or model type—for example, latent growth curve model (Fan, 2003; 

Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008) or factor model (Hancock, 2001; 

Kaplan & George, 1995)—are directly pertinent to SEM Trees. In particular, this large body 

of research implies that differential power of the test can be critical for highly unbalanced 

subtrees (cf. Hancock, 2001; Kaplan & George, 1995). Furthermore, it is important to note 

that the power to detect group differences depends on the number and types of freely 

estimated parameters in the model. In future work, we plan to consider different estimators, 

which are, in some situations, more robust to violations of the normality assumption, like 

generalized least squares or weighted least squares (cf. Browne, 1974). SEM Trees provide a 

good basis for such extensions, as the choice of the objective function for the parameter 

estimation can be replaced without changes to the method for constructing the tree.

A second limitation coming from multi-group models is that sufficiently many participants 

have to be assigned to each group to ensure approximately asymptotic behavior. Multiple 

suggestions for an appropriate sample size have been made, ranging from minimum sample 

sizes of 10 –200 (cf. Tanaka, 1987). If groups are formed by few individuals only, standard 

errors of parameter estimates have to be interpreted with great caution. A possible way to 

decrease the influence of small sample size is to apply Bayesian estimation (cf. Lee, 2007), 

which we see as an interesting extension of SEM Trees.

The tree growing algorithm proceeds in a greedy fashion, that is, locally optimal choices are 

taken at each step of the growing process. The researcher has to keep in mind that the 

resulting tree is not necessarily the single best tree. Particularly, a tree can be susceptible to 

marginal changes in the data set, resulting in different choices for node splits and eventually 

structurally different trees. Building a set of trees from bootstrap samples sheds light on the 

stability of a tree (Strobl et al., 2009). A more rigorous approach is the generation of 

Structural Equation Forests, that is, ensembles of SEM Trees that were built from 

resampling the original data set. Breiman (2001) introduced random forests as ensembles of 

decision trees, and interesting measures of variable importance (cf. Strobl, Boulesteix, 

Zeileis, & Hothorn, 2007) exist that could be applied to SEM Forests straightforwardly. By 

using forests instead of trees, one moves from statistical modeling to algorithmic modeling 

and trades interpretability for stability (Berk, 2006) at the additional cost of computation 

time. An analysis with a forest can complement a single-tree analysis, of course.

Given the variety of solutions that arise from the selection of parameter estimation methods, 

split candidate selection methods, and hyper-parameters (e.g., folds in cross-validation), 

systematic methodological simulation studies are needed to comparatively evaluate the 

methods with respect to their performance in recovering known data structures. To enhance 

the use of SEM Trees in the toolbox of applied researchers, further simulations studies can 

help to outline problematic situations for the interpretation of tree structures in empirical 

research, including, for example, model misspecification, data perturbation, and violations 

of the normality assumption. Furthermore, future work needs to compare the different 

available tree-based estimation frameworks—such as SEM Trees, pathmox, and mob, 

strucchange—using both empirical and simulated data in terms of effectiveness and 

efficiency.

Brandmaier et al. Page 19

Psychol Methods. Author manuscript; available in PMC 2015 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Summary and Comparison to Other Approaches

By combining the benefits of exploratory and confirmatory approaches, SEM Trees provide 

a powerful tool for the theory-guided exploration of empirical data. The approach offers 

exploratory analyses for the refinement of a large range of hypothesized models. For models 

that require the assumption of measurement invariance, trees can be constructed in a way 

that only covariates are chosen that guarantee invariance across all tree-induced models. We 

discussed two methods to construct trees, based on distributional assumptions of the 

likelihood ratio test for candidate split evaluation and on cross-validation estimates of the 

likelihood ratio. In particular, we discussed selection bias and its remedy for naive selection 

strategies. In addition, we discussed how parameter constraints can be incorporated across 

node models. Also, we discussed a pruning method to increase generalizability of SEM 

Trees. Using two empirical examples based on previously published and analyzed data sets, 

we illustrated how SEM Trees can find substantially meaningful interactions of covariates 

and model parameters in different settings.

Instead of a single model for all participants, a multi-group model may often represent the 

structure of the data in a more appropriate way. In clinical trials, subgroup analysis is 

conducted to test whether a treatment affects subgroups of the sample differently. Here, 

SEM Trees can be regarded as a structured approach to recursive subgroup partitioning in 

relation to a set of covariates. In general, SEM Trees are similar to unsupervised clustering 

techniques in addressing the question whether latent variables and their relations among 

each other and to observed variables form covariate-specific clusters.

Main advantages of trees over classical statistical models are their potential to reveal non-

continuous interactions and non-linear relations between covariates and outcomes. Also, 

SEM Trees make no assumptions about the distribution of covariates and are relatively 

insensitive to outliers (cf. Breiman et al., 1984). We expect trees to be particularly useful 

whenever there are many predictors with no clear indication which one should be considered 

first, whenever there is a large number of interactions whose nature is not known in advance, 

or both. Conversely, we expect trees to add little or nothing to other statistical tools 

whenever the number of covariates is small and the hypotheses are few and straightforward. 

Also, if the model generating the data is linear and additive, the tree may uncover an overly 

complex structure.

In the context of longitudinal data, SEM Trees are related to longitudinal recursive 

partitioning as introduced by Segal (1992), including the extension presented by Zhang and 

Singer (1999). Segal extended the decision tree paradigm to multivariate outcomes allowing 

the modeling of longitudinal data. As he points out, visual analysis is often performed to 

detect substantial differences in longitudinal analysis. However, this approach lacks a formal 

definition of difference and, relying only on the researcher’s experience, is prone to error. 

With large sample sizes, the identification of subgroups with structural differences quickly 

becomes unfeasible, and more complex relations between latent variables will tend to be 

hard to detect by visual inspection of observed variables alone. Therefore, a robust and 

systematic way of identifying and comparing substructures is crucial. SEM Trees extend 
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Segal’s approach by offering a larger variety of underlying models and the ability of 

appropriately handling missing values.

A different exploratory technique, latent mixture modeling (McLachlan & Peel, 2000), has 

attracted interest in analyses based on SEM. In this framework, observations are assumed to 

come from a mixture of two or more unobserved distributions. Usually, this method requires 

determining the number of latent classes a priori, although McLachlan and Peel (2000) 

suggested that boot-strapping may be used to overcome this constraint. SEM Trees are 

designed to detect underlying homogeneous groups in the observations, but without a need 

to determine the number of latent classes a priori. While in latent class modeling the 

resulting classes may sometimes be difficult to interpret, the strength of SEM Trees is that 

the hierarchy of classes is based on covariates and will thus be interpretable.

An interesting question is whether the use of least squares, as employed in the pathmox R 

package, may show different convergence properties than the maximum likelihood driven 

approach of SEM Trees. Future work needs to compare the different estimation frameworks 

such as SEM Trees, pathmox, and strucchange, using both empirical and simulated data.

A future line of research is to integrate time-varying covariates into SEM Trees. SEM Trees 

are well suited for this extension, as the integration of time-varying covariates is common in 

SEM, but research needs to be done to find optimal ways of integrating these covariates into 

the split process.

SEM Trees: The Larger Picture

We would like to conclude this article by highlighting the utility of SEM Trees from two 

perspectives, one taken in the behavioral sciences, and the other taken in computer science. 

We take the abductive theory of scientific method (ATOM; Haig, 2005) as a typical 

representative of perspectives found in the behavioral sciences, and the framework of 

knowledge discovery in databases (KDD; Fayyad, Piatetsky-Shapiro, & Smyth, 1996) as a 

typical representative of the computer science approach.

Essentially, both approaches recognize and advocate that knowledge gain requires the 

recursive interplay of exploration and hypothesis testing. Stable patterns are extracted from 

data, which are called information in KDD and phenomena in ATOM. Then, knowledge is 

derived from information (KDD); respectively, theories are built from the phenomena 

(ATOM). SEM Trees add a tool that seeks to identify novel patterns in data; this property 

serves the function of extracting stable patterns from data. At the same time, they also 

provide visual and statistical indicators about extracted patterns; this property helps in 

theory building and may iteratively inform subsequent data extraction. By choosing an 

initial model, typically in a confirmatory setting, and by selecting interesting covariates, 

SEM Trees combine exploratory and confirmatory qualities.

Generally, we advise researchers to report results of a SEM Tree as exploratory. Two 

warnings are important: (1) SEM Trees do not provide a shortcut from data to theories or 

from data to knowledge but merely provide efficient tools reciprocally relating the two, and 

(2) as any new pattern from data mining must prove its utility with future data, each new 

Brandmaier et al. Page 21

Psychol Methods. Author manuscript; available in PMC 2015 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



theory must be evaluated on a new data set, ideally using a custom-tailored paradigm to test 

the hypothesized effects (cf. König, Malley, Weimar, Diener, & Ziegler, 2007).

In line with the propositions of ethical data analysis by McArdle (2010), we encourage 

researchers to first run their confirmatory analyses so that the use of their chosen statistical 

tests will be appropriate and valid. In subsequent steps, SEM Trees can offer a solid tool to 

refine these hypotheses. Also, SEM Trees avoid implicit selection bias of the investigator 

because there is no prior advantage of any covariate in the tree generation process.

When researchers have multiple competing hypotheses about their data, the hypotheses can 

be formalized in either the same SEM with varying restrictions, or in different classes of 

SEM. In principle, SEM Trees do not have to be limited to a single template model. Our on-

going research involves hybrid SEM Trees that not only find differences with respect to 

parameters of the same model but allow for testing sets of hypothetical models against each 

other.

The process of growing SEM Trees involves multiple steps of data fitting, which can be 

time consuming. However, the algorithm allows naturally for a high degree of 

parallelization, as each subtree can be grown without interaction with the other subtrees.

To conclude, SEM Trees provide a versatile statistical tool that combines exploratory 

detection of influences of covariates on parameter estimates for latent variables, while at the 

same time offering formal confirmatory mechanisms to ensure generalizability. An 

implementation of SEM Trees with a range of options described in this article is available 

(Brandmaier, 2012) in R, based on the OpenMx package for SEM.
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Figure 1. 
Decision trees describe partitions of the covariate space that maximize differences in the 

outcome. Right: A decision tree describing partitions of the covariates X1 and X2 into the 

areas R1, R2, and R3. In this example, covariate X1 was split at value t1, and a subsequent 

split of covariate X2 at value t2 was found in the left subtree. Left: A two-dimensional plot of 

the partitioned covariate space in the areas R 1, R 2, and R3.
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Figure 2. 
Left: Illustration of a structural equation model (SEM) Tree with a linear growth curve 

model as the template model. Right: Predicted mean trajectories with respect to the groups 

identified by the SEM Tree.
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Figure 3. 
An illustration of variable selection bias for three different variable selection criteria: 

Bonferroni-correction (left), nested Bonferroni-correction (middle), and the fair selection 

criterion (right). Each subfigure depicts result of a simulation. The simulated data set 

contained three uninformative, categorical covariates with two, four, and 10 categories each. 

The depicted distribution shows the frequency with which each of these variables would 

have been picked under the null hypothesis. An unbiased variable selection algorithm is 

expected to have no preference for any variable.
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Figure 4. 
Upper panel: Structural equation model (SEM) Tree on the longitudinal Wechsler 

Intelligence Scale for Children data set. A linear latent growth curve model served as the 

template model. The model indicates that the sample is maximally heterogeneous with 

respect to mother’s education, which accounts for differences in the learning curves between 

the two subsamples. The split point of both father’s and mother’s education corresponds to 

whether they graduated from high school. The dashed line indicates the subtree that was not 

constructed when cross-validation was used as the construction method. Lower panel: 

Representation of the linear latent growth model that served as the template model for the 

SEM Tree above.
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Figure 5. 
Structural equation model (SEM) Tree with a factor model representing a single factor of 

verbal IQ, which was observed on four subscales from the Wechsler Adult Intelligence 

Scale—Revised data set for N = 1,680 individuals. The resulting splits indicate that the 

demographic covariates education and occupation account for substantial differences in the 

hypothesized model.
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Figure 6. 
Structural equation model (SEM) Tree on the Wechsler Adult Intelligence Scale—Revised 

data set with a factor model as the template. The tree was generated in the default mode 

without implementing and testing invariance assumptions.
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