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Cardiomyocyte cell death occurring during myocardial reperfusion (reperfusion injury) contributes to final infarct size after
transient coronary occlusion. Different interrelated mechanisms of reperfusion injury have been identified, including alterations
in cytosolic Ca2+ handling, sarcoplasmic reticulum-mediated Ca2+ oscillations and hypercontracture, proteolysis secondary to
calpain activation and mitochondrial permeability transition. All these mechanisms occur during the initial minutes of
reperfusion and are inhibited by intracellular acidosis. The cGMP/PKG pathway modulates the rate of recovery of intracellular
pH, but has also direct effect on Ca2+ oscillations and mitochondrial permeability transition. The cGMP/PKG pathway is
depressed in cardiomyocytes by ischaemia/reperfusion and preserved by ischaemic postconditioning, which importantly
contributes to postconditioning protection. The present article reviews the mechanisms and consequences of the effect of
ischaemic postconditioning on the cGMP/PKG pathway, the different pharmacological strategies aimed to stimulate it during
myocardial reperfusion and the evidence, limitations and promise of translation of these strategies to the clinical practice.
Overall, the preclinical and clinical evidence suggests that modulation of the cGMP/PKG pathway may be a therapeutic target
in the context of myocardial infarction.
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Ischaemia/reperfusion injury

Cardiomyocyte death is the main cause of the mortality and
morbidity in patients with ischaemic heart disease, the
leading cause of death in the global world population. It
occurs mainly during the acute coronary syndrome, and in
particular during myocardial infarction with ST-segment
elevation, for which the main treatment is prompt reperfu-
sion. There is solid evidence supporting that part of cell
death, secondary to transient coronary occlusion, occurs
upon restoration of coronary blood flow, a phenomenon
known as reperfusion injury (Piper et al., 1998; Yellon and
Hausenloy, 2007).

The mechanisms responsible for cell death during myo-
cardial reperfusion are complex but progressively better
known, and have been reviewed recently (Garcia-Dorado
et al., 2012; 2014a). Restoration of coronary blood flow trig-
gers the synthesis of ATP and Ca2+ uptake by the sarcoplasmic
reticulum (SR) through the sarcoplasmic reticulum Ca2+-
ATPase (SERCA), exceeding its capacity and resulting in the
abrupt release of Ca2+(through ryanodine receptors 2), fol-
lowed by reuptake and resulting in cyclic Ca2+ oscillations.
These oscillations can cause arrhythmias, hypercontracture
and sarcolemmal rupture (Piper et al., 2006). During reperfu-
sion, Ca2+ influx from the extracellular space occurs mainly
via the Na+/Ca2+ exchanger and the increase in cytosolic Ca2+

activates calpain proteolysis, which damages the cytoskeleton
and alters the function of the Na+ pump (Inserte et al., 2005),
aggravating Na+ and, secondarily, Ca2+ overload. On the other
hand, the production of free radicals together with Ca2+ over-
load induces mitochondrial permeabilization and energy
failure leading to cell death (Penna et al., 2013). Due to the
preferential communication between mitochondria the and
SR, Ca2+ oscillations can cause mitochondrial permeabiliza-
tion and vice versa (Ruiz-Meana et al., 2007; Abdallah et al.,
2011). It is important to note that proteolytic activation,
mitochondrial permeabilization and hypercontracture are
dependent on intracellular pH (pHi) and do not occur until

intracellular acidosis is corrected during the initial minutes of
reperfusion (Inserte et al., 2011a).

It is now clear that cAMP/cGMP-dependent PK (cGMP/
PKG) signalling modulates not only the rate of pHi normali-
zation, but many other important phenomena determining
cell death or survival during myocardial reperfusion. This
article will review the effects of ischaemia/reperfusion on the
cGMP/PKG pathway, its role in endogenous cardioprotection
by postconditioning and its potential as a pharmacological
target for the prevention of reperfusion injury.

Effect of ischaemia/reperfusion on the
cGMP pathway

cGMP is a ubiquitous intracellular second messenger
involved in a large variety of cardiovascular processes (Yuan,
2002; Munzel et al., 2003; Tsai and Kass, 2009). cGMP is
produced from the purine nucleotide GTP in an enzymic
reaction mediated by two different types of guanylyl cyclase
(GC) that differ in their ligands and intracellular distribution
(Cerra and Pellegrino, 2007) (Figure 1). One is the soluble GC
(sGC), localized in the cytosol and requiring binding of
endogenous NO to its haem moiety for cGMP synthesis. The
other is the group of particulate GC (pGC) that is the integral
proteins of the plasmatic membrane specifically activated by
natriuretic peptides (NPs). A natriuretic receptor (natriuretic
peptide receptor-C), without GC activity, binds to a Gi

protein eliciting activation of endothelial NOS (eNOS) (Costa
et al., 2006). The cellular activity of cGMP is controlled
through its highly regulated hydrolytic degradation by PDEs
(Bender and Beavo, 2006) that differ in their affinity and
specificity for cAMP and cGMP, and in their distribution, not
only across tissues but also among the different subcellular
compartments of cardiomyocytes (Zaccolo and Movsesian,
2007; Rao and Xi, 2009; Francis et al., 2011). The net effect of
this system of distribution of PDE activity is that the concen-
tration of cGMP and cAMP varies within different intracellu-
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lar compartments in response to pGC and sGC stimulation
(Castro et al., 2010). The primary cGMP mediator in the car-
diovascular system is the cGMP-dependent PKI (PKG), which
acts by phosphorylating target proteins and, indirectly, the
cAMP-dependent PK (PKA) via cGMP-regulated PDE (Zhang
and Kass, 2011).

Ischaemia/reperfusion has dramatic effects on the basal
myocardial content of cGMP and the ability of cardiomyo-
cytes to respond to stimulators of cGMP synthesis. In the
isolated heart model, myocardial cGMP levels increase during
the first 10–25 min of ischaemia (Depre and Hue, 1994;
Lochner et al., 1998) and acutely decrease thereafter (Nesher
et al., 1977; Inserte et al., 2000). Reduced myocardial cGMP
content has been described in the in situ rat, rabbit and pig
heart subjected to transient ischaemia (Yamaguchi et al.,
1997; Hoshida et al., 1999; Padilla et al., 2001).

Several factors can modify cGMP synthesis during ischae-
mia and reperfusion. Energetic depletion could reduce the
availability of GTP, the substrate for GC, or affect GC activity
by modification in its phosphorylation state (Lucas et al.,
2000). However, we have observed no correlation between
intracellular ATP content and cGMP synthesis stimulated by
NO donors or pGC agonists in isolated cardiomyocytes
(Agullo et al., 2003). In agreement with these results, it has
been reported that a depletion of GTP to less than 10% of the
initial levels did not decrease, but substantially increased
cGMP synthesis after stimulation with a NO donor
(Geisbuhler and Schwager, 1996). Further studies are needed
to understand this absence of effect of ATP concentration on
cGMP in cardiomyocytes.

Acidosis has been shown to be critical for cGMP synthesis.
Results from our group demonstrated that pHi values close to
6.4 induce a profound depressant effect on pGC in cultures of

cardiomyocytes and endothelial cells and on sGC in endothe-
lial cells (Agullo et al., 2003). This study suggests that in
situations causing intracellular acidification, as ischaemia,
cardiomyocyte cGMP synthesis is largely dependent on NO
stimulation of sGC. However, oxidative stress associated with
ischaemia/reperfusion may decrease sGC activity by direct
oxidation of its haem group (Stasch et al., 2006; Zhou et al.,
2008; Derbyshire and Marletta, 2012). In addition, reduced
NO bioavailability during reperfusion is a consequence of
eNOS uncoupling by oxidation of its cofactor tetrahydrobi-
opterin (BH4) (Vasquez-Vivar et al., 2002; Chen et al., 2010).

cGMP/PKG pathway as a mediator of
endogenous cardioprotection

Repeated non-lethal episodes of ischaemia/reperfusion acti-
vate endogenous protective mechanisms that profoundly
reduce the infarct caused by a more sustained ischaemic
insult. This concept of endogenous cardioprotection was ini-
tially described for ischaemic preconditioning (Murry et al.,
1986), which is a pretreatment by definition and therefore
cannot be used in the setting of acute myocardial infarction
(AMI). Subsequently, it has been expanded to the more
clinically applicable paradigms of postconditioning (ischae-
mic postconditioning; PoCo) and remote conditioning
(Kharbanda et al., 2002; Zhao et al., 2003; Kerendi et al.,
2005).

Postconditioning, consisting in brief episodes of coronary
artery reocclusion and reflow applied at the moment of myo-
cardial reperfusion, is by far the cardioprotective strategy that
has been tested in more proof-of-concept clinical trials, and

Figure 1
Schematic representation of the cGMP/PKG pathway. cGMP is synthesized by activation of the NO/sGC and the NP/pGC pathways and regulated
by compartmentalized PDEs. Agonists of Gi-coupled receptors stimulate the eNOS/sGC/PKG axis via activation of PI3K/Akt. The main cGMP
actions are not only mediated by PKG but also by regulation of cAMP-mediated effects through modulation of PDE2 and PDE3 activities. The
different pharmacological strategies that have been used to stimulate the cGMP/PKG pathway are shown in blue. BK, bradykinin; NOx,
nitrites/nitrates.
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the first demonstrating that it is possible to reduce infarct size
in patients with ST-segment elevation myocardial infarction
(STEMI) using treatments applied at the time of reperfusion.
In most of these small clinical trials, cycles ranging from 30 to
90 s of angioplasty balloon inflation and deflation have been
shown to improve both, early markers of infarct size and
contractile function up to 1 year of infarction (Staat et al.,
2005; Thibault et al., 2008; Ovize et al., 2010). There are,
however, studies that do not confirm protection by PoCo,
questioning the utility of this phenomenon to limit reperfu-
sion injury in clinical practice (Sorensson et al., 2010; Freixa
et al., 2012; Tarantini et al., 2012). A recent multicentre, pro-
spective, randomized trial with the largest series reported so
far [700 patients with STEMI undergoing primary percutane-
ous coronary intervention (PCI)] failed to demonstrate a
benefit of a PoCo protocol consisting in four cycles of 1 min
low-pressure balloon inflation separated by 1 min of reflow
(Hahn et al., 2013). The results of a large-scale trial
(DANAMI-3, NCT01435408) that is currently underway to
determine whether PoCo can reduce the combined end-point
of cardiac death, re-infarction and heart failure at 3 years will
provide more definitive information about the clinical use-
fulness of PoCo and the conditions that determine its
effectiveness.

Although different confounding factors, including
co-morbidities, co-medications and interventional proce-
dures, have been proposed to explain the coexistence of posi-
tive and negative clinical studies (Heusch, 2012; Hausenloy
et al., 2013), it is important to note that not all preclinical
studies have consistently shown a benefit of PoCo. The
reasons for these discrepancies lie primarily in the PoCo algo-
rithm used, the effectiveness of which varies depending on
the species and experimental preparation (Skyschally et al.,
2009a). The critical factor determining the threshold for trig-
gering PoCo protection is the ability of the PoCo algorithm to
delay pHi normalization at the onset of reperfusion (Cohen
et al., 2007; Fujita et al., 2007; Inserte et al., 2009). Measure-
ment of pHi kinetics by NMR spectroscopy in rat hearts
showed that only those PoCo protocols that prolong acidosis
during reperfusion for at least 3 min are protective and that
there is a close correlation between the delay in pHi recovery
and the extent of cell death (Inserte et al., 2009). As it is not
possible to accurately measure pHi in patients undergoing
PCI, we do not know whether the PoCo algorithms used in
clinical trials with negative results were adequate to ensure a
slow pHi correction at the time of reflow.

The cardioprotective effect of prolongation of intracellu-
lar acidosis during the first minutes of reperfusion has been
solidly demonstrated in different models (Kaplan et al., 1995;
Ohashi et al., 1996; Preckel et al., 1998; Inserte et al., 2008).
As detailed in a recent review, acidosis inhibits many mecha-
nisms involved in reperfusion injury including Ca2+ overload
and myofibrillar contractility that causes Ca2+-dependent
hypercontracture, mitochondrial permeability transition
pore (mPTP) formation, calpain activation and propagation
of cell death through gap junctions (Inserte et al., 2011a).
Preventing cell death during acidosis allows for activation of
endogenous mechanisms of protection and/or normalization
of Ca2+ homeostasis that would prolong protection once the
pHi has been normalized. On the basis of these findings, we
propose that the relative timing of the correction of intracel-

lular Ca2+ levels and pHi during the first minutes of reperfu-
sion will determine cell death (recovery of pHi occurs before
that of Ca2+) or survival (recovery of Ca2+ control occurs
before pHi normalization).

The mechanism by which PoCo delays the normalization
of pHi during early reperfusion involves not only reduced
lactate washout caused by intermittent reflow but also the
activation of the cGMP/PKG pathway (Inserte et al., 2011b).
Blockade of cGMP/PKG pathway by the addition of the
sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one
(ODQ) or the PKG inhibitor KT5823 during reperfusion accel-
erated pHi recovery measured by NMR spectroscopy and
abolished PoCo protection in isolated hearts. The effect of
PoCo on pHi appears to be mediated by an inhibitory effect of
PKG on the Na+/H+ exchanger (NHE) (Inserte et al., 2011b).

Activation of cGMP/PKG pathway by
ischaemic conditioning
There is good evidence demonstrating that activation of
cGMP/PKG pathway is essential for the protective effects of
PoCo (Yang et al., 2004; Penna et al., 2006; Inserte et al.,
2011b). As in ischaemic preconditioning (PreC), activation of
sGC and PKG by PoCo has been proposed to be dependent on
the PI3K/Akt pathway. Hausenloy et al. found that activation
of the prosurvival kinases PI3K/Akt and ERK1/2 during the
first minutes of reperfusion, which they termed the reperfu-
sion injury salvage kinases (RISK) pathway, is required for
PoCo protection (Hausenloy et al., 2005). However, the causal
role of RISK in the protection induced by PoCo has been
questioned by more recent data. Different studies performed
in the in situ pig model and the rat perfused heart demon-
strated that PoCo was still effective after pharmacological
blockade of RISK and that increased RISK phosphorylation
was a consequence but not a cause of the reduction in cell
death induced by PoCo (Skyschally et al., 2009b; Inserte et al.,
2013). Moreover, the observation that blockade of NOS, sGC
and PKG, but not PI3K, abolished the cardioprotective effects
of PoCo, confirmed that activation of the cGMP/PKG
pathway depends on NOS but is independent of PI3K/Akt
signalling (Inserte et al., 2013).

Recently, an alternative mechanism, summarized in
Figure 2, for increased cGMP/PKG signalling has been pro-
posed as well. Different studies have observed that PoCo
attenuates reactive oxygen species (ROS) generation at reper-
fusion, probably by limiting the delivery of oxygen during
the controlled reperfusion (Halkos et al., 2004; Kin et al.,
2004; Fan et al., 2011). Our laboratory reported similar results
in an ex vivo rat heart model and demonstrated that the
resulted attenuation of oxidative stress by PoCo reduces
eNOS uncoupling by preserving cytosolic BH4 levels and
results in increased NO-dependent activation of cGMP/PKG
pathway (Inserte et al., 2013).

Mechanism of cGMP-mediated
cardioprotection
Despite the existing evidence supporting that the cGMP/PKG
pathway is required for PoCo protection, only few studies
have identified target proteins phosphorylated by PKG that
are involved in the molecular mechanisms of cardioprotec-
tion. Activation of PKG has been suggested to inhibit mPTP
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by phosphorylation of glycogen synthase kinase-3β (GSK3β)
(Juhaszova et al., 2004; Gomez et al., 2008). However, double
knockin mice lacking the GSK3β phosphorylation sites that
result in kinase inactivation could still be protected by both
PreC and PoCo (Nishino et al., 2008), demonstrating that the
inhibition of GSK3β is unlikely to serve as a downstream
mediator of the cardioprotection mediated by cGMP/PKG
activation. More recently, the notion that GSK3β phosphor-
ylation does not play a causal role in PoCo protection has
been further supported by data from the in situ pig model and
the ex vivo rat heart (Skyschally et al., 2009b; Inserte et al.,
2013).

In addition to its contribution to prolong acidosis at the
onset of reperfusion by inhibition of NHE, it is proposed that
PKG modulates phospholamban (PLB) phosphorylation and,
therefore, SR Ca2+ entry through SERCA (Abdallah et al.,
2005). At reperfusion, PLB is rapidly phosphorylated by PKA
at Ser16 and Ca2+/calmodulin-dependent PK (CaMK) at Thr17

resulting in its dissociation from SERCA and activation of the
pump (Vila-Petroff et al., 2009), favouring the formation of
SR-driven Ca2+ oscillations that cause reperfusion-induced
hypercontracture and mPTP opening (Siegmund et al., 1997).
In a recent study, we have demonstrated that PoCo reduces
SERCA activity during the first minutes of reperfusion by
delaying PLB phosphorylation through activation of PKG and

inhibition of PKA and CaMKII. Additionally, our study sug-
gests that cGMP/PKG-dependent activation of PDE2 is
responsible for the inhibition of PKA while the reduced activ-
ity of CaMKII could be the result of PoCo-dependent attenu-
ation of Ca2+ overload and ROS production during the first
minutes of reperfusion (Erickson et al., 2011). The resulting
blockade of SERCA activity during the first minutes of reper-
fusion attenuated the development of hypercontracture and
cell death by preventing Ca2+ oscillations and allowed for Ca2+

normalization through the Na+/Ca2+ exchanger and for the
activation of endogenous protective signalling pathways that
ensure long-term cardioprotection (Inserte et al., 2014).

Prolongation of acidosis by PoCo increases S-nitrosylated
protein levels (Penna et al., 2011) and, recently, the selective
sGC inhibitor ODQ (Methner et al., 2013; Tong et al., 2014)
and the cardiomyocyte-specific ablation of the PKGI gene
(Methner et al., 2013) failed to abolish PoCo-induced protec-
tion in isolated mouse hearts, suggesting that NO-mediated
S-nitrosylation rather than the sGC/PKG pathway plays a key
role in the cardioprotective effects of PoCo. However,
although ODQ, which inhibits sGC by binding to its haem
group in a NO-competitive manner (Schrammel et al., 1996),
is commonly used to discriminate cGMP-dependent and
cGMP-independent effects of NO, it has been demonstrated
that persistence of NO-induced effects in the presence of
ODQ does not necessarily prove cGMP independence (Lies
et al., 2013). In addition, it cannot be ruled out that the
persistence of protection in mice lacking PKGI in cardiomyo-
cytes is a consequence of compensatory mechanisms includ-
ing the effect of other PKG isoforms or the contribution of
PKGI from other cardiac cell types.

Activation of cGMP/PKG pathway in remote
ischaemic conditioning
A major limitation of PoCo is that it can only be performed
during the process of PCI, reducing its target patient popula-
tion but also increasing the risk of complications during the
procedure. In recent years, it has been reported that induc-
tion of intermittent non-lethal ischaemia in a remote organ
or limb protects the myocardium against the detrimental
effects of a sustained lethal episode of ischaemia. This stimu-
lus known as remote ischaemic conditioning (RIC) can be
applied before myocardial ischaemia, during myocardial
ischaemia or in the first few minutes of reperfusion (Andreka
et al., 2007; Schmidt et al., 2007). RIC has multiple advan-
tages over PoCo including the fact that it can be easily
applied in the ambulance to all patients with STEMI that
receive reperfusion treatment and is extremely safe (Botker
et al., 2010). By contrast, the mechanisms by which RIC
exerts its protective effect are much less known. The pathway
linking the remote organ, on which the stimulus is applied,
to the heart remains unclear and has been attributed to
neural and/or hormonal pathways. Recently, Donato et al.
described that remote preconditioning activates a neural
afferent pathway and the cardioprotective signal reaches the
heart through the vagus nerve (efferent pathway) and releases
ACh that activates the endogenous signal cascade through
muscarinic receptors (Donato et al., 2013), which can result
in the stimulation of eNOS and increased production of
cGMP (Massion and Balligand, 2003; Downey et al., 2007).
Other studies provide evidence suggesting the involvement

Figure 2
Scheme showing the proposed mechanisms by which cGMP/PKG
pathway participates in the cardioprotective effects of ischaemic
postconditioning (PoCo). PoCo attenuates the burst of O2

− gener-
ated at the onset of reperfusion, reducing oxidative stress which
limits the oxidation of BH4 and increases eNOS activity. The resulting
activation of the cGMP/PKG pathway contributes to PoCo protection
at least in part by delaying normalization of pHi during reperfusion
via PKG-dependent inhibition of NHE. In addition, PoCo delays PLB
phosphorylation at the onset of reperfusion by inhibiting PKA and
CaMKII. The resulting transient inhibition of SERCA prevents oscilla-
tions Ca2+ and favours Ca2+ extrusion through Na+/Ca2+ exchanger.
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of cGMP/PKG pathway via activation of the PI3K/Akt-
dependent signalling by released humoral factors (Breivik
et al., 2010; Xin et al., 2010). Hausenloy et al. reported that in
the in situ pig model, activation of the PI3K/Akt pathway at
the time of reperfusion is required for the cardioprotective
effects of remote preconditioning but not of remote percon-
ditioning (Hausenloy et al., 2012).

Myocardial cardioprotection by
pharmacological modulation of the
cGMP/PKG pathway

There is extensive literature demonstrating that preservation
of the cGMP/PKG pathway during myocardial reperfusion by
using pharmacological strategies directed to either increase
cGMP synthesis or reduce its degradation attenuates cardio-
myocyte death occurring with reperfusion (Bice et al., 2013).
However, it is important to note that the experimental design
used in many of these studies includes the administration of
the tested drug before the ischaemic insult, a situation that
does not adequately model the clinical context of a patient
with ongoing AMI receiving myocardial reperfusion. Unfor-
tunately, several of these pharmacological interventions have
provided less conclusive data regarding their effectiveness to
increase cGMP production and to limit ultimate infarct size
when they are applied at the time of reperfusion.

This section summarizes the pharmacological strategies
that have been tested in preclinical studies to stimulate the
cGMP/PKG pathway and limit myocardial reperfusion injury,
making emphasis in those with potential for their translation
to the clinical treatment of AMI.

Stimulation of cGMP synthesis
Most of the preclinical data supporting preservation of
cGMP/PKG pathway as a therapeutic strategy for protecting
myocardium against reperfusion injury are based in studies
that stimulate the synthesis of cGMP. The potential targets
that can augment cGMP levels are divided in those acting
through the NO/sGC pathway and the NPs/pGC pathway.

NO/sGC pathway
Synthesis of cGMP through sGC is modulated by NO gener-
ated by NOS using L-arginine as a substrate, O2 and NADPH.
However, in disease states associated with reduced availability
of O2 and high-energy phosphates, as occurs during ischae-
mia, production of NO is severely compromised (Lundberg
et al., 2008). L-arginine supplementation has been pursued as
a potential approach for restoring NO production in reper-
fused myocardium. The pre-ischaemic administration of
L-arginine has been found to attenuate reperfusion injury in
isolated rat and in situ pig hearts by a mechanism dependent
on the sGC (Agullo et al., 1999; Padilla et al., 2000). However,
its administration at the onset of reperfusion failed to
increase cGMP levels and protect myocardium (Agullo et al.,
1999). Impaired NOS activity as consequence of the burst of
ROS generated during the first minutes of reperfusion may
explain the lack of efficacy of L-arginine. Superoxide gener-
ated from different sources combines with NO at a very fast

rate to form peroxynitrite (ONOO−) ions (Beckman et al.,
1990). Peroxynitrite not only reduces the availability of free
NO but may also act directly on the NOS haem group pro-
ducing the inactivation of the enzyme (Chen et al., 2010).
In addition, O2

− and ONOO− can oxidize BH4, an essential
cofactor for NOS, resulting in NOS uncoupling and preferen-
tial production of O2

− instead of NO (Xia et al., 1998;
Vasquez-Vivar et al., 2002).

Because different studies demonstrate that BH4 is mark-
edly reduced during ischaemia (Dumitrescu et al., 2007),
the therapeutic potential of BH4 supplementation has been
analysed (Moens et al., 2011). Pretreatment with BH4 or the
BH4 precursor sepiapterin has been shown to improve
endothelium-dependent vasorelaxation in isolated coronary
arterioles and ventricular function in isolated rat hearts fol-
lowing ischaemia/reperfusion injury (Tiefenbacher et al.,
1996; Verma et al., 2002; Yamashiro et al., 2002). Our labora-
tory has examined the effect of BH4 supplementation during
the first minutes of reperfusion in rat isolated hearts. The
results showed that exogenous BH4 was effective in reducing
NOS uncoupling and increasing NO production but was asso-
ciated with no effect on O2

− levels, enhanced ONOO− produc-
tion and failure to protect myocardium (Inserte et al., 2014).
This study indicates that NOS uncoupling is not a major
source for O2

− generated during myocardial reperfusion and
support the notion that the effectiveness of those strategies
directed to stimulate NOS activity is limited by the excessive
O2

− production and the subsequent formation of ONOO−, an
effect that could counterbalance the potential cardioprotec-
tive actions of enhanced NOS activity.

An alternative approach to stimulate the NO/sGC
pathway that would bypass NOS involves the use nitrates
(nitroglycerin, isosorbide mononitrate) and nitrites (sodium
nitrite, amyl nitrite) which are reduced in sequential steps by
enzymatic and non-enzymic mechanisms generating NO,
and synthetic NO donors which spontaneously release NO
(SNAP, NOC9) (Lundberg et al., 2008). The cardioprotective
actions of these compounds have been examined by numer-
ous studies and there is solid evidence supporting that their
administration before ischaemia diminishes infarct size by
NO-dependent, NOS-independent mechanisms (Webb et al.,
2004; Duranski et al., 2005; Shiva et al., 2007). However, the
literature is inconsistent in reporting protective effects of NO
donors when administered at reperfusion in animal models.
Bice et al. demonstrated a concentration-dependent effect of
NOC9, a rapid release NO donor, limiting infarct size in ex
vivo rat hearts (Bice et al., 2014), while in a study by Salloum
et al, nitroglycerin given at reperfusion failed to limit infarct
size in an in vivo rabbit model (Salloum et al., 2007). The NO
donor SNAP in the range of 1–10 μM was not protective in
ex vivo hearts when administered for 15 min (Burley and
Baxter, 2007), but reduced infarct size when its infusion was
extended to 35 min of reperfusion, suggesting that a pro-
longed time of infusion is necessary to maintain the
cardioprotective signalling (Cohen et al., 2010). However, an
alternative explanation for this inconsistent effectiveness of
NO donors is related to the oxidative stress caused by reper-
fusion. First, as it occurs with those strategies aimed to stimu-
late NOS, NO donors can favour the deleterious effects
resulting from the formation of ONOO− when they are
administered at the time of the burst of ROS generated at
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reperfusion (Szabo, 1996). Second, sGC is a heterodimeric
protein which contains a prosthetic haem group required for
stimulation by NO. It is well known that under conditions of
oxidative stress, the redox state of this haem group shifts
from a reduced (Fe2+) state to a NO-insensitive (Fe3+) state,
impairing the NO-dependent activation of sGC (Stasch et al.,
2006; Meurer et al., 2009).

To avoid the problems associated to reduced NO bioavail-
ability, formation of ONOO−, a promising new class of drugs
has recently been developed which are NO-independent
stimulators and activators of sGC. These sGC stimulators
(YC-1, riociguat, BAY 41–2272) bind to the haem moiety in its
normal Fe2+ state and increase the GTP catalytic activity inde-
pendently of NO while sGC activators (cinaciguat, ataciguat,
BAY 60–2770) activate the oxidized form of sGC in a haem-
independent manner (Follmann et al., 2013). In the context
of myocardial reperfusion injury, where the oxidized sGC is
expected to be the prominent form in cardiomyocytes, sGC
activators are, in principle, the most interesting compounds.
Administration of the sGC activator cinaciguat during reper-
fusion improved ventricular function in dog hearts ex vivo
(Korkmaz et al., 2009) and decreased infarct size after regional
ischaemia in mice (Salloum et al., 2012), rats (Krieg et al.,
2009) and rabbits (Krieg et al., 2009; Cohen et al., 2010). More
recently, administration of ataciguat during reperfusion
reduced infarct size in an ex vivo and in vivo rat model in a
concentration-dependent manner (Inserte et al., 2014). In
this study, protection was reported at moderate concentra-
tions that were effective in reducing phosphorylation of PLB
at Ser16 and Ca2+ oscillations and in favouring Ca2+ normali-
zation in isolated cardiomyocytes, while failing to confer
protection at high concentrations lacking effect on PLB. In a
recent study, it has been demonstrated that either the sGC
stimulator BAY 41–2272 or the activator BAY 60–2770 per-
fused during early reperfusion limit infarct size in an ex vivo
rat model, suggesting that both reduced and oxidized pools of
sGC are simultaneously present during reperfusion (Bice
et al., 2014). Interestingly, the co-perfusion of both drugs
resulted in high cGMP increase and greater infarct size com-
pared with the sGC activator alone, supporting the idea that
an excess of cGMP is detrimental.

NP/pGC pathway
There is solid experimental evidence supporting the use of
NPs to stimulate pGC as a therapeutic strategy for protecting
the myocardium against AMI. Stimulation of pGC by atrial
natriuretic peptide (ANP) and brain natriuretic peptide
administered at reperfusion has consistently shown to reduce
myocardial infarction in isolated cardiomyocytes, ex vivo and
in vivo hearts in a concentration-dependent manner (Philipp
et al., 2006; Burley and Baxter, 2007; Ren et al., 2007; Gorbe
et al., 2010). Our laboratory reported that administration of
the NP urodilatin during the first minutes of reperfusion
increases cGMP levels, attenuates hypercontracture and
reduces infarct size in isolated hearts (Inserte et al., 2000).
Furthermore, i.v. doses of urodilatin at the time of reperfusion
in the in situ pig model subjected to transient coronary occlu-
sion resulted in a rapid normalization of myocardial cGMP
concentration in the absence of significant haemodynamic
effects and attenuated infarct size. Interestingly, urodilatin at

doses resulting in excessive increase in myocardial cGMP was
less cardioprotective (Padilla et al., 2001).

Inhibition of cGMP degradation
Although early research has mostly focused on the stimula-
tion of the cGMP synthesis, it has been more recently dem-
onstrated that cGMP degradation by PDEs plays a critical role
in the control of cGMP effects. Preservation of cGMP levels by
pharmacological blockade of PDE5 has demonstrated to limit
infarct size in different experimental models and species
when PDE5 inhibitors are administered prior to ischaemia
(Kukreja et al., 2011). The mechanisms proposed involve
PKG-dependent phosphorylation of ERK and GSK3β (Das
et al., 2008), increased NO generation through activation of
eNOS/inducible NOS, activation of PKC and opening of mito-
KATP channels (Kukreja et al., 2005). However, the evidence
supporting PDE5 inhibition at the time of reperfusion as a
cardioprotective strategy is less consistent. Continuous infu-
sion or bolus injection of sildenafil and vardenafil at reperfu-
sion reduced infarct size in in vivo rabbits and rats (Salloum
et al., 2007; Ebner et al., 2013), in contrast to the findings of
Reffelmann and Kloner who failed to demonstrate a cardio-
protective effect with sildenafil in the same model using
similar doses (Reffelmann and Kloner, 2003). It is important
to note that sildenafil at concentrations that has been
reported to limit infarct size did not elevate total cGMP
beyond control level (Elrod et al., 2007; Madhani et al., 2010;
Ebner et al., 2013). This lack of increase in cGMP observed
with sildenafil despite its cardioprotective effects has been
explained by the heterogeneous compartmentalization of
cGMP within the cell (Castro et al., 2006) and suggests that
local elevation of cGMP and no elevation in total cGMP
content might be sufficient for protecting the heart. However,
as total cGMP levels are severely depleted during prolonged
ischaemia, it is possible that PDE inhibition at the onset of
reperfusion may not effectively increase cGMP if cGMP syn-
thesis remains depressed because of the oxidative stress and
other reasons.

Pharmacological stimulation of the
cGMP/PKG pathway in clinical trials

Although the cGMP/PKG pathway to date is one of the phar-
macological targets for limitation of reperfusion injury with
more solid preclinical evidence, only two clinical studies have
directly assessed the effectiveness of this strategy in patients
with STEMI using different approaches: stimulation of pGC
with ANP and of sGC with nitrites respectively.

Consistent with the solid preclinical data previously
described, in the J-WIND-ANP trial, stimulation of the pGC
with continuous i.v. infusion of ANP during 3 days following
reperfusion by either PCI or thrombolytic therapy reduced
enzymic release and improved ventricular function at 6 to 12
months compared with controls (Kitakaze et al., 2007).

Recently, the final results of a multicentre trial investigat-
ing the effects of i.v. sodium nitrite administered immediately
prior to PCI in 118 patients with first STEMI (NIAMI) have
been published (Siddiqi et al., 2014). The study showed no
significant differences between patients receiving nitrite or
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placebo neither in the primary end point (infarct size at 6–8
days measured by NMR) nor in the secondary end points
(acute enzyme release and ventricular function at 6 months).
The failure of nitrites to protect was foreseeable from the
contradictory preclinical evidence supporting a protective
effect of NO donors when administered at reperfusion in
animal models, as it has been discussed earlier, and reinforce
the premise that pharmacological therapies should be
selected on basis of a robust cardioprotection in different
experimental models before being translated to the clinical
setting (Hausenloy et al., 2013). The ongoing NITRITE-AMI
trial, in the same clinical context of patients with STEMI,
analyses whether an intracoronary injection of nitrite, initi-
ated prior to establishment of full reperfusion, reduces infarct
size (NITRITE-AMI: ClinicalTrials.gov: NCT01388504).

In addition to these studies, there are a number of small
clinical trials using emerging pharmacological treatments for
preventing lethal reperfusion injury that, although not spe-
cifically addressed at the cGMP/PKG pathway, mediate their
effects at least in part through stimulation of this pathway
(Figure 3). In general, preclinical studies demonstrate that
these therapies have in common the use of agonists for
Gi-coupled receptors that stimulate the eNOS/sGC/PKG axis
via activation of PI3K/Akt. This is the case of insulin which
has been shown to be protective at the onset of reperfusion in
different experimental models and is the main component of
the glucose-insulin-potassium (GIK) therapy. It has been
shown that insulin protects cardiomyocytes against reoxy-
genation injury by accelerating cytosolic Ca2+ recovery
through a mechanism that involves increased eNOS and PKG

activities (Abdallah et al., 2006). Although the first attempts
to translate the administration of GIK into the clinical prac-
tice gave negative results probably because of the late admin-
istration of the treatment (Diaz et al., 1998; Ceremuzynski
et al., 1999; Mehta et al., 2005), a recent study has assessed
the effectiveness of its delivery in the ambulance and in the
receiving hospital for 12 h in total to patients with suspected
acute coronary syndrome. The results after 30 days and 1 year
follow-up demonstrate improved clinical outcomes in those
patients with STEMI (reduced composites of cardiac arrest or
1 year mortality, and of cardiac arrest, 1 year mortality or
heart failure hospitalization) (Selker et al., 2014).

Adenosine is another Gi-coupled receptor agonist that
activates Akt and therefore the cGMP/PKG pathway (Yang
et al., 2010). Intravenous administration of adenosine or its
synthetic agonist AMP579 in the AMISTAD and ADMIRE
trials provides inconclusive results with regard to their clini-
cal use (Mahaffey et al., 1999; Kopecky et al., 2003). However,
a subsequent reanalysis of the AMISTAD-II gave evidence of
protection in those patients receiving early reperfusion
(Kloner et al., 2006). More recently, the effect of adenosine
delivered in the form of intracoronary injection before rep-
erfusion on the infarct size measured by NMR has been tested
in the PROMISE trial (Garcia-Dorado et al., 2014b). Although
adenosine failed in its primary end point when considering
all patients, the results showed that adenosine limits infarct
size and improves ejection fraction in those receiving PCI
within the first 3 h after pain onset.

There is solid experimental evidence that stimulation of
the glucagon-like peptide-1 (GLP-1) signalling pathway using

Figure 3
Proposed mechanisms of action of therapeutic interventions that stimulate the cGMP/PKG pathway and have been shown to limit infarct size in
clinical trials.
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agonists of GLP-1 or inhibitors of its degradation attenuate
reperfusion injury through cGMP/PKG, among other path-
ways (Ban et al., 2008; Timmers et al., 2009). Two clinical
trials have evaluated the effect of the GLP-1 agonist exenatide
administered intravenously in patients with STEMI 15 min
prior to PCI and for 6 h, and in both studies exenatide
increased myocardial salvage (Lonborg et al., 2012; Woo et al.,
2013).

Conclusions/limitations

Extensive preclinical evidence supports a pivotal role for the
cGMP/PKG pathway as a survival signal and demonstrates
that its stimulation at the onset of reperfusion represent a
promising therapeutic target to limit infarct size in patients
with STEMI. However, although several strategies applied
before experimental ischaemia have been shown to enhance
cGMP levels and limit cell death, many of these interventions
provide less consistent results when initiated at reperfusion
mainly because of the negative effects caused by the burst of
ROS generated at the onset of reperfusion. This is the case for
nitrites, nitrates and synthetic NO donors, stimulators of NOS
activity (L-arginine, BH4) and inhibitors of PDE5. In contrast,
accumulating evidence suggests that stimulation of pGC with
NPs and the new class of NO- and haem-independent sGC
activators are the strategies with more potential for being
translated into the clinical setting for the benefit of patients
with acute coronary diseases.

A potential inherent limitation of interventions aimed to
stimulate the cGMP/PKG pathway is that the cardioprotective
effects of cGMP are only demonstrated within the physiologi-
cal concentration range. An excessive stimulation of this
pathway resulting in a too large cGMP concentration appears
to be detrimental (Padilla et al., 2001; D’Souza et al., 2003;
Bice et al., 2013; Inserte et al., 2014). This bell-shaped dose-
response curve can be explained at least in part by the
complex cross-talk between the effects of cAMP and cGMP.
cGMP controls cAMP-mediated signalling in cardiac myo-
cytes by activating or inhibiting PDEs that hydrolyze cAMP.
As the binding affinity of myocardial PDEs for cGMP and
cAMP is different for each isoform, the global effect is
expected to vary depending on the concentration of cGMP
(Zaccolo and Movsesian, 2007; Stangherlin et al., 2011;
Inserte et al., 2014). In addition, it has been described that
high concentrations of cGMP may directly activate PKA and
counteract the effects of PKG (Worner et al., 2007).

More proof-of-concept clinical studies with infarct size as
main end point are necessary to demonstrate the effective-
ness and safety of pharmacological stimulation of the cGMP/
PKG pathway during myocardial reperfusion, to determine
which of the available drugs are more adequate, to know
what is the effect of age and co-morbidities on their efficacy
and safety and to establish the potential for combination
with other cardioprotective treatments as RIC. However, the
definite proof of the utility of these treatments necessary for
their inclusion in routine clinical practice will be established
only after completion of adequately designed and sized clini-
cal trials with clinical primary end points including mortality
and incidence of heart failure.
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