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Abstract

Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved 

biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and 

degenerative nervous system disorders. These, in whole or in part, are a significant societal burden 

due to growth in numbers of affected people and in disease severity. Lost productivity of the 

patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The 

need for improved health care, treatment and diagnostics are immediate. A means to such an end 

is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and 

nanomedicines range from biomarker discovery including neuroimaging to therapeutic 

applications for degenerative, inflammatory and infectious disorders of the nervous system. This 

review focuses on the current and future potential of the field to positively affect clinical 

outcomes.
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1. Introduction

The field of nanoneuromedicine offers real opportunities to harness unique therapeutic 

approaches to address diseases of the nervous system where often few options exist. 

Because of the enormous potential of the field, it was chosen as the theme for the 2014 

meeting of the American Society for Nanomedicine.1 In addition to improved therapies, 

newer, safer and more sensitive-specific imaging modalities as well as improved diagnostics 

for disease detection are immediately needed.

Nervous system disorders, due to infection, trauma or degenerative disorders, represent a 

significant societal burden with parallel broad unmet needs. In many and sometimes most 

cases, current treatments are simply inadequate to affect disease progression or even 

ameliorate symptoms and signs of brain injury or degeneration. Significant challenges 

abound and are associated with the transport of therapeutic or imaging contrast agents across 

the blood-brain barrier (BBB) into the nervous system and retain the ability to achieve 

targeted delivery to appropriate brain or spinal cord subregions.2 Nanomedicines can 

facilitate solutions to such problems. This and related enabling technologies, can increase 

drug-drug interactions, facilitate disease ameliorating immunomodulation, enable pathogen 

clearance and improve nervous system delivery of biologically active molecules. Included 

are multifunctional therapeutic, imaging and diagnostic devices currently referred to as 

theranostics.3 However, limitations for improved drug delivery to the nervous system are not 

trivial, including the potential for secondary toxicities. Thus, any new formulation must 

balance a drug therapeutic index. This highlights a quite diverse and multifaceted field of 

research in biomarker discovery, bioimaging and theranostics. If successful, therapies to 

address neurodegenerative, immune and infectious diseases of the nervous system could be 

realized and more options would be available for human use.

2. Biomarker Discovery, Bioimaging and Theranostics

The abilities to diagnose and monitor neurological diseases have seen considerable growth 

in the recent decades. Nonetheless, in understanding the mechanisms and pathology of 

neurodegenerative diseases, the development of strategies to detect neurological diseases at 

early stages and prior to the emergence of overt symptoms is still a challenge for scientists 

and physicians in the field. In this context, nanotechnology-based techniques have gained 

tremendous interest as a tool in the efforts to improve the effectiveness of the imaging of 

central nervous system (CNS) functions and disease states as well as to advance 

neurosurgical practice. Most notably is bioimaging. Magnetic resonance imaging (MRI) has 

emerged as the most important tool in the diagnosis of brain disorders. Positron emission 

tomography (PET) imaging is not far behind and has already allowed improved 

understanding of the time course of a range of nervous system disorders including for the 

pathophysiology of Alzheimer's disease (AD). This has been seen through the application of 

radiolabeled amyloid ligands.4-6

Nanoparticles containing iron, gadolinium and manganese were studied extensively as 

contrast agents. Among them superparamagnetic iron oxide (SPIO) nanoparticles have 

garnered interest due to their large surface area, magnetic properties and low toxicity. 
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Biocompatible SPIO nanoparticles consist of a crystalline iron oxide core (in the form of 

magnetite, Fe3O4, or maghemite, γFe2O3) encased in polymer or a coated monomer (Figure 

1, upper panel).7, 8 The particles can be classified according to their size in several 

categories: particles with a mean diameter of 50 to 180 nm, referred to as standard SPIOs 

(e.g. ferumoxides coated with dextran); ultra-small SPIO (USPIOs) nanoparticles with a 

diameter of 10 to 50 nm; and very-small SPIO (VSPIOs) nanoparticles less than 10 nm in 

diameter.9 The nature of the surface coatings determine the physical and biologic properties 

such as the overall size, surface charge, coating density, toxicity and degradability. These 

affect the fate of SPIO in body fluids and cells10. The nonspecific uptake of SPIO 

nanoparticles by the reticuloendothelial system (RES) has found clinical application for 

imaging liver tumors11, 12 and lymph nodes.13 Ferumoxytol, the USPIO nanoparticles 

coated with polyglucose sorbitol carboxymethyl ether approved for intravenous iron 

replacement therapy in patients with chronic kidney disease,14 was recently investigated as 

an MR contrast for brain tumors.15, 16 Unlike gadolinium-based agents, contrast 

enhancement of brain malignancies with ferumoxytol requires intracellular uptake by 

mononuclear phagocytes (MP; perivascular macrophages and microglia) and reactive 

astrocytes with maximal signal enhancement at 24-48 hours after injection.9 The extended 

USPIO residence time is believed to promote their uptake by circulating cells. This suggests 

that USPIOs, combined with perfusion-weighted imaging can accurately gauge tumor 

progression.

Since MP are present in a range of intracranial pathologies from glial tumors to many 

inflammatory disorders, ferumoxytol and other USPIO may be useful for imaging diseases. 

Labeling of circulating monocytes by systemic administration of USPIO nanoparticles were 

applied to spatiotemporal profiles of MP infiltration in stroke models.17, 18 Studies 

demonstrated delayed influx of blood-borne monocytes in affected brain regions. The 

potential of using ferumoxtran-10 (USPIO coated with dextran) for imaging ischemic 

lesions in patients suffering from stroke was evaluated.19 Contrast enhancement was 

observed primarily within the infarcted brain region attributed to the USPIO nanoparticle-

labeled macrophage brain infiltration. The latter was supported by a combination of 

gadolinium-enhanced and USPIO nanoparticle-enhanced MRI.17, 18 Similar observations 

were reported by Beckmann et al.20 in studies of cerebral amyloid angiopathy in amyloid 

precursor protein mouse AD models. Systemic administration of SPIO improved the MRI 

detection of microvascular lesions in the brains of the mice, and also led to the labeling of 

additional microvascular alteration sites. For AD, it was suggested that monocytes take up 

SPIO nanoparticles in the circulation then penetrate the brain after attraction by chemokines 

produced by amyloid beta (Aβ)-stimulated glia. This is true in inflammatory diseases of the 

nervous system. Indeed, macrophage activity can be visualized with USPIO nanoparticles 

using MRI tests in patients with relapsing-remitting multiple sclerosis.21 Alternatively to 

labeling circulating monocyte-macrophages, visualization of activity may be achieved with 

isolated cells loaded with SPIO nanoparticles through in vitro incubation prior to systemic 

administration. Such a strategy has been applied in stroke models to depict inflammatory 

cell biodistribution.22
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Multifunctional modifications of SPIO nanoparticles with specific ligands such as 

antibodies, peptides, aptamers and other targeting molecules offer the ability to monitor 

SPIO nanoparticle accumulation at the disease site (Figure 1, lower panel). This results in 

enhanced contrast and improved diagnostics. For example, SPIO nanoparticles conjugated 

with chlorotoxin (a neurotoxin known to target glioma) show increased uptake in glioma 

cells and are being developed to improve imaging of brain tumors.23, 24 Polyethylene glycol 

(PEG)-coated USPIO nanoparticles chemically coupled with Aβ1-42 peptide have provided 

the opportunities for simultaneous targeting and imaging of amyloid plaques in AD 

transgenic mice. This is seen following intravenous injection without the need to co-inject 

an agent to transiently open the BBB.25 The amyloid plaques detected by longitudinal 

bioimaging were confirmed with matched histological sections. Such systems are very 

useful for early diagnosis and also for direct measurements of anti-amyloid therapies.

In sites of inflammation in stroke, multiple sclerosis, and HIV-dementia, circulating blood 

leukocytes are the first to migrate across activated endothelium. In particular, vascular cell 

adhesion molecule-1 (VCAM-1) plays an important role in leukocyte recruitment to the 

brain.26-28 Thus, targeting contrast agents to adhesion molecules in inflamed, activated 

cerebral endothelium is a potent strategy for early diagnosis. The feasibility of VCAM-1 

visualization in acute brain inflammation was demonstrated with VCAM-1 antibody 

conjugated to microparticles of iron oxide (VCAM-MPIO).29, 30 In this case, the application 

of micron-size of MPIO allowed delivery of a high iron payload to the targeted sites of 

disease. In addition, due to their size, micron-size SPIO (MSPIO) particles are less 

susceptible than USPIO to extravasation or non-specific uptake by endothelial cells, and 

therefore retain specificity for molecular targets. VCAM-1-targeted MRI revealed that pre-

symptomatic lesions could be quantified in an experimental autoimmune encephalomyelitis 

(EAE) of multiple sclerosis when found undetectable by gadolinium-enhanced MRI.31 An 

alternative to VCAM-1 targeting is the direct detection of neuroinflammation by targeting 

E- and P-selectins. This demonstrates the fact that intercellular adhesion molecules are up-

regulated as part of host response to injury.32 Van Kasteren et al. designed glyco-USPIO 

decorated with a biomarker ligand sialyl LewisX which showed excellent targeting to 

activated endothelium and allowed pre-symptomatic in vivo brain imaging of brain diseases 

in several clinically relevant animal models.33 Similarly, USPIO nanoparticles coated with a 

short heptapeptide (IELLQAR) that target selectin binding sites34 were successfully used for 

mapping E-selectin expression following traumatic brain injury.35

Nanoparticles based on biodegradable poly(n-butyl cyanoacrylate) (PBCA) coated with the 

surfactant polysorbate 80 were investigated as carriers for drug delivery to the brain. The 

ability of these nanoparticles to bypass the BBB has been attributed to polysorbate-80 

mediated affinity for apolipoproteins B and E and the subsequent transcytosis through low-

density lipoprotein receptors present on brain endothelial cells.36, 37 This mechanism was 

utilized to deliver BBB-impermeable molecular imaging probes into the brain for 

visualization of amyloid plaques.38 Further, MRI of wild type mouse brain revealed contrast 

enhancement of brain parenchyma after intravenous administration of PBCA nanoparticles 

loaded with gadobutrol, a gadolinium-based contrast agent routinely used in humans for 

imaging anatomical lesions. Similarly, PBCA nanoparticles were utilized for the brain 
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delivery of radiolabeled amyloid-affinity chelator, 125I-clioquinol, a derivative of quinoline 

imaging probes.39 Nanoparticulate encapsulation of 125I-clioquinol into PBCA nanoparticles 

resulted in significantly greater brain uptake, enhanced retention of the drug and labeling of 

amyloid deposits in AD transgenic mice. These data collectively indicate the future potential 

of nanocarrier-mediated delivery of molecular imaging probes to improve diagnostic 

specificity.

The use of nanotechnology-based approaches for cell therapy and tissue engineering has 

shown promise in brain and spinal cord injury. Stem cells have been shown to selectively 

target injured brain and spinal cord tissue and improve functional recovery (Figure 2).40, 41 

The ex vivo loading of cells with magnetic nanoparticles allowed the in vivo tracking and 

monitoring of grafted cells in the host organism with MRI after transplantation. Successful 

in vivo detection and migration monitoring of SPIO-labeled cells was demonstrated in 

numerous preclinical studies related to implantation of hematopoietic, mesenchymal or 

neuronal cells in the CNS.40, 42-44 Clinical trials based on this approach involved tracking 

autologous neural stem cells by MRI in traumatic head injury and bone marrow stem cells in 

chronic spinal cord injury and were shown to be safe and effective.45, 46 Despite the 

encouraging results of initial trials, cell tracking using SPIO labels is limited by dilution of 

contrast agent during cellular proliferation, possible transfer of label from dying cells to 

surrounding endogenous cells (e.g. macrophages or microglia), and inability to discriminate 

between live and dead labeled cells. Thus, interpretation of signal changes during long-term 

MRI cell tracking might be difficult and requires caution.47 In addition, the clinical MRI 

agents Feridex® (Endorem) and Resovist® are no longer commercially available. Feridex 

was discontinued by AMAG Pharma in 2008, while Resovist was approved for the 

European market in 2001, but production was abandoned in 2009; thus new SPIO suitable 

for clinical applications will have to be developed. Li et al, reviews the approaches for the 

development of MR contrast agents suitable for cell labeling.48

Semiconductor fluorescent quantum dots (QDs), nanoscale-sized particles, are used 

extensively for visualization and tracking of living cells. Manipulations of the core material 

and size allow synthesis of a wide array of QDs emitting at various wavelengths, including 

the near-infrared region, which is optimal for deep-tissue imaging.49 The long-term stability 

and brightness of QDs as well as the possibility for attachment of different bioactive 

molecules to their outer shells make them perfect candidates for in vitro and in vivo targeting 

and imaging. For example, diffusion dynamics of glycine receptors in living spinal neurons 

were analyzed using single-QD tracking.50 In this study, the fluorescence and electron 

microscopy images were acquired with the same probes, which provided both the temporal 

dynamics and high-resolution localization of the diffusing receptors in the neuronal 

membrane. Wang et al. demonstrated the feasibility and specificity of using antibody-

labeled QDs for rapidly visualizing epidermal growth factor receptor expression in human 

brain tumor cells and in surgical frozen section slides of glioma tissue.51 Recently, Feng et 

al. developed QDs conjugated with an anti-Aβ antibody to track the state of Aβ 

accumulation in vivo in a mouse model of AD.52 While QD-based optical imaging 

represents a valuable tool to address cellular and molecular questions of interest, one of the 

remaining issues with QD probes is in vivo toxicity. Modification of the surface of QDs by 
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PEG or other polymers significantly improved their biocompatibility; however, the long-

term fate of polymer-coated QDs in living organisms is not fully understood. Safety 

concerns need to be addressed before applications of QDs can be translated into human 

clinical use.

Recently, the arsenal of nanoparticle-based technologies has been further expanded by the 

design of multifunctional constructs combining diagnostic and therapeutic functions within 

the same nanocarrier (Figure 1, upper panel). These “theranostic” platforms enable a 

noninvasive assessment of the pharmacokinetics, tissue biodistribution and accumulation of 

drugs at the target site (Figure 1, lower panel). Such an approach can be used to optimize the 

drug delivery systems and treatment regimens in order to achieve maximal therapeutic 

efficacy and minimize drug-induced side effects. By doing so, theranostic nanoparticles 

might also contribute to the development of “personalized” treatment options. Numerous 

exciting examples were developed in recent years, especially for the treatment of 

cancer.53, 54 Reddy and colleagues have developed multifunctional polyacrylamide-based 

nanoparticles consisting of a surface-localized tumor vasculature targeting F3 peptide, an 

encapsulated photosensitizer (Photofrin) and an iron oxide imaging agent. Serial MRI was 

used for determination of pharmacokinetics and distribution of nanoparticles within the 

tumor. A combination treatment of F3-targeted nanoparticles followed by photodynamic 

therapy in glioma-bearing rats showed a significant improvement in survival rate in treated 

animals that were found tumor-free at the end of the study.55 In another study, researchers 

demonstrated that dendrimer-grafted gadoliniumfunctionalized nanographene oxide 

nanoparticles carrying epirubicin and miRNA can be detected by MRI to identify the tumor 

area and quantify the concentration of therapeutics within the tumor in a mouse glioma 

model.56 The capacity of theranostic agents to delineate the peri-infarct region and achieve a 

therapeutic effect in brains of ischemic injured animals was also demonstrated.57 These 

investigators prepared stealth immunoliposomes carrying the drug citicoline and a contrast 

agent, a gadolinium-labeled lipid. HSP72 protein, an inducible form of HSP70 that 

translocates to the cellular membrane under stress conditions such as ischemia, was selected 

to specifically target the peri-infarct tissue.58 Using MRI, they found that after intravenous 

administration, about 80% of anti-HSP72 liposomes were located on the periphery of the 

ischemic lesion, and animals treated with citicoline encapsulated in these liposomes 

presented significantly smaller lesion volumes compared to controls. These findings 

demonstrate that targeted theranostic nanoparticles represent an interesting platform for 

noninvasive monitoring of the effectiveness of the therapy. Although the data of theranostic 

approaches being used to target areas located inside the brain parenchyma are currently 

limited, these examples clearly demonstrate the potential of nanotheranostics to bring much-

needed treatments for neurological diseases.

Biomarkers are molecules that indicate the biological status of a disease59 and, therefore, 

can provide invaluable information for clinical diagnosis such as monitoring response to 

treatment, as well as, aid in the development and evaluation of novel therapies. Sensitive and 

accurate detection of biomarkers in human body fluids could offer essential input to early 

diagnosis for neurological diseases. In the past decade, various nanomaterials (gold (Au) 

nanoparticles, QDs, SPIO, carbon nanotubes and nanowires) have been extensively studied 

to improve the sensitivity and specificity of biomarker detection.60-63 For example, a bio-
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barcode amplification assay based on a sandwich process involving oligonucleotide-

modified Au nanoparticle and magnetic microparticles, both functionalized with antibodies 

against a specific antigen, was utilized for ultrasensitive detection of soluble amyloid-β-

derived diffusible ligands (ADDL) in cerebral spinal fluid (CSF) at clinically relevant 

concentrations.64 Elevated concentrations of ADDLs were detected in the CSF of AD 

patients compared with CSF from non-demented controls. Another sandwich assay was 

developed for fast detection of Alzheimer's tau protein using a combination of hybrid 

magnetic nanoparticles functionalized with monoclonal anti-tau antibodies and polyclonal 

anti-tau immobilized Au nanoparticles as the recognition and surface-enhanced Raman 

scattering component, respectively.65 Ultrasensitive immunosensors for detection of Aβ 

peptides based on surface plasmon resonance66 or scanning tunneling microscopy-based 

electrical detection67 utilized specific monoclonal antibody fragments immobilized on the 

surface of Au nanoparticles as recognition elements. Yang et al. synthesized and 

characterized SPIO coated with antibodies against Aβ-40 or Aβ-42 and employed them as an 

immunoassay platform.68 In combination with immunomagnetic reduction technology, these 

biofunctionalized SPIO targeted Aβs with high specificity and exhibited ultralow detection 

limits (~ 10 pg/mL). Furthermore, levels of Aβ-40 or Aβ-42 peptides detected in blood 

plasma samples from normal and AD patients correlated with clinical diagnosis. Aβ 

screening methodology based on the electrochemical sensing of saccharide–protein 

interactions has also been reported.69 The densely packed sialic acid areas for recognition of 

Aβ were arranged on the surface of Au nanoparticles electrodeposited on a screen-printed 

carbon strip. The intrinsic oxidation signal of tyrosine residues from captured Aβ peptides 

was detected and monitored using differential pulse voltammetry. Neely et al. demonstrated 

that monoclonal anti-tau antibody-coated Au nanoparticles were used for detection of CSF 

tau by employing a two-photon Rayleigh scattering assay.70 The plasmon absorbance of the 

Au nanoparticles also was exploited in the design of a colorimetric assay for 

neurotransmitters involved in PD pathology.71

The exceptional optical properties of QDs also make them useful as signal amplification 

agents in biomarker detection.72 Recently, core-shell CdSe/ZnS QDs were used in an assay 

designed to detect apolipoprotein E (ApoE) as a potential biomarker for AD.73 The QDs 

proved to be highly effective reporters and exhibited up to a 7-fold enhancement in limit of 

detection compared to a conventional enzyme-linked immunosorbent assay targeting ApoE. 

This allowed assaying very small volumes (1 μL) of human serum with high sensitivity and 

acceptable precision and accuracy. Further fine-tuning of microarrays for use with QDs will 

facilitate improved biosensing and diagnostics.

Other nanoparticle-based technologies have also been investigated for biomarker detection. 

An et al. exploited Au-doped titanium oxide nanotube arrays to develop a 

photoelectrochemical immunosensor for α-synuclein detection.74 A parallel approach was 

proposed based on a dual signal amplification using G4-polyamidoamine dendrimer-

encapsulated Au nanoparticles and enhanced Au nanoparticle labels.75 The designed 

immunosensor displayed an excellent analytical performance with a detection limit of 14.6 

pg/mL for α-synuclein. Recently, vertically aligned ZnO nanowire arrays were fabricated on 

3D graphene foam and used to selectively detect uric acid and dopamine by a differential 

pulse voltammetry method at a detection limit of 1 nM.75 This method was further used to 
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show the feasibility of using uric acid as a biomarker in the serum of PD patients. Apart 

from these examples, there are a number of other studies that use nanomaterials for 

developing sensing mechanisms that will allow detecting and measuring the concentrations 

of pathogenic markers in biological samples at clinically relevant concentrations. Although 

the majority of the reported data are related to the proof-of-concept studies, the current 

findings strongly suggest that nanotechnology has a real potential to contribute to early 

detection, diagnoses and treatments of neurodegenerative diseases.

3. Nanomedicines for Infectious Diseases

Nanoneuromedicines are being developed to increase drug penetration into sites of active 

microbial infection while limiting systemic toxicities. Longer acting medicines would also 

improve regimen adherence. Thus, to facilitate drug therapeutic efficacy by improving 

pharmacokinetics and disease region-specific nervous system drug biodistribution as well as 

immune-directed microbial clearance best defines the field of infectious disease-linked 

nanoneuromedicine. The overarching goal is to actively target, and then eliminate sites of 

persistent infection, inflammation or degeneration.76-78 In recent years, a number of 

nanomedicines were developed for the treatment, detection and prevention of infectious 

diseases.79 The platform has focused on liposomes, polymeric nanoparticles, dendrimers, 

micelles and SLNs to improve water-solubility of poorly-water-soluble drugs and 

subsequently enhance drug stability to sites of infection. Specific drug targeting to 

endothelial cell receptors and use of cell-based carriage of nanomedicines serves to facilitate 

CNS delivery (Figure 3).

The CNS infections where nanomedicines are currently being developed include bacterial 

meningitis, rabies, malaria and HIV. Research is active in models of human disease and in 

translational research. For example, treatment strategies for Staphylococcus aureus and 

Cryptococcus neoformans meningitis in rabbits were successful with self-assembled cationic 

antimicrobial peptides of cholesterol-conjugate G3R6TAT.80, 81 The manufactured particles 

easily crossed the BBB and were shown to be equally effective as vancomycin and 

amphotericin B in attenuating meningeal infections and their sequelae without affecting liver 

function or causing imbalances in blood electrolytes. Both are known complications in 

treating bacterial and fungal disease. Other studies showed that delivery of vancomycin into 

a drug-resistant S. aureus strain using a folic acid-conjugated chitosan nanocarrier improved 

delivery of the medicine,82 highlighting the notion that nanoparticle delivery could 

positively affect treatment outcomes for multidrug resistance in bacteria. Benefits were seen 

with such an approach in reducing oxidative stress that follows S. aureus infections. Indeed, 

diminished lipid peroxidation, protein oxidation, nitrite generation, DNA damage and 

glutathione were seen with the emergence of antioxidant enzymes.

Adjunctive therapies are often used in combination with antimicrobials to reduce the 

inflammatory events that contribute to CNS damage and long-term impairments associated 

with CNS infectious diseases;83-85 however, the high incidence of adverse side effects with 

corticosteroids limits their use.83 In a recent study, nano-sterically stabilized liposomal 

formulations of the glucocorticoid β-methasone hemisuccinate were used in conjunction 

with artemisone to enhance the efficacy of the antiplasmodial in an experimental mouse 
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model of cerebral malaria with no glucocorticoid-related side effects.86 Of importance, the 

liposomal formulation of the glucocorticoid resulted in accumulation of the drug in the 

brains of infected mice, but not healthy mice. The use of nanoparticles for delivery of anti-

inflammatory agents has also been described for Escherichia coli-induced meningitis87 and 

demonstrated that a water-soluble malonic acid derivative of carboxyfullerene could reduce 

CNS levels of TNFα and IL-1β and inhibit neutrophil infiltration across the BBB. In other 

reports, nanoparticle systems comprised of dendrimers with multiple reactive surface groups 

have also demonstrated anti-prion activity in part through alteration of the conformation of 

misfolded prion proteins (reviewed by McCarthy et al.88), and maltotriose modified poly 

(propyleneimine) dendrimers have been shown to be capable of crossing the BBB.89

Ultimately, the best treatment for controlling CNS infectious disease is vaccination. 

Nanoparticles have been developed for improving the immunogenicity and efficacy of 

vaccines against several CNS infectious diseases. A dendrimer-DNA complex (dendriplex) 

using a plasmid vaccine construct of the rabies virus glycoprotein gene was complexed with 

a novel poly(ether imine) (PETIM) dendrimer and used to immunize mice that were 

subsequently challenged with a standard rabies virus strain.90 These mice demonstrated 4-

fold improved viral titers 14 days after immunization compared to mice immunized with the 

unformulated plasmid viral construct. In addition, all mice receiving the dendriplex vaccine 

compared with 60% of the mice receiving the unformulated vaccine survived viral 

challenge. In another study, Knuschke et al. used functionalized triple-shell calcium 

phosphate (CaP) nanoparticles as carriers for toll-like receptor 9 ligand CpG and antigenic 

peptides to induce a robust immune response and protection from Friend virus-induced 

splenomegaly and reduction of viral load.91 This system provided a proof of concept for the 

development of nanoparticle-based vaccines for retroviral infection.91

Nanoparticle-based detection systems are being developed to provide early and sensitive 

means for diagnosis of infectious disease. Early diagnosis is critically important for effective 

treatment of CNS infections. Reddy and coworkers recently described the use of Au 

nanoparticles to enhance detection of meningococcal antigen by an acoustic wave 

immunosensor method.92 By binding the cell surface outer membrane protein 85 (OMP85) 

of N. meningitides to Au nanoparticles and interacting these complexes with antibodies 

immobilized on a PVDF-coated quartz crystal microbalance, detection of as little as 312 

ng/ml OMP85 in blood or CSF could be readily observed.

Various nanoparticle-based approaches have also been described for treatment of HIV 

infection in the CNS. These notably include drug polymer conjugates, dendrimers, micelles, 

liposomes, SLNs, nanosuspensions, polymeric nanoparticles and cell-mediated nanoparticle 

delivery.93 Of note, improved CNS bioavailability of efavirenz and an increase in the 

relative exposure index for the drug was described using intranasal administration of 

efavirenz-loaded Pluronic® block copolymer (poly(ethylene oxide)-poly(propylene oxide) 

polymeric) micelles.94 Pluronic® block copolymers can inhibit efflux transporters (P-

glycoprotein and multidrug resistance-associated protein) on brain microvascular endothelial 

cells, thus facilitating delivery of drug across the BBB.95 Liposomal formulations are used 

to improve pharmacokinetics of both hydrophobic and hydrophilic drugs. Jin and coworkers 

demonstrated that liposomal formulations of a zidovudine prodrug (AZT-myristate) 
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provided a 2-fold increase of drug in the brain compared to an equivalent dose of free 

AZT.96 Liposomal formulations targeted to transferrin and insulin receptors on endothelial 

cells are also being explored for enhanced delivery of drugs, including antiretrovirals, to the 

brain.97, 98 In other studies, Saiyed and coworkers demonstrated improved penetration of 

magnetic azidothymidine 5’-triphosphate liposomal nanoformulations upon application of 

an external magnetic field.99 Cationic nanogel formulations of nucleoside reverse 

transcriptase inhibitors (NRTIs) decorated with the peptide binding (AP) brain-specific 

ApoE receptor exhibited improved CNS antiviral activity compared to non-formulated 

NRTIs and with low neurotoxicity.100 SLNs are also being investigated for improved 

antiretroviral drug pharmacokinetics and CNS delivery. Kuo and Su demonstrated that 

stavudine, delavirdine and saquinavir encapsulated in SLNs more readily passed across an 

artificial BBB compared to unencapsulated drugs.101 In other in vitro studies, Kuo and Ko 

used the insulin-like peptidomimetic monoclonal antibody, 83-14 MAb, as a targeting 

moiety to improve penetration of saquinavir SLNs across an artificial BBB.102 While these 

in vitro results are promising, supportive in vivo studies are needed to demonstrate the utility 

of targeted SLNs for improved CNS antiretroviral therapy (ART) delivery.

To extend circulation longevity of nanomedicines that are targeted for specific diseases such 

as cancer, many drug delivery systems have been designed to evade the immune system, 

thus improving delivery of drug to the desired target while reducing untoward immune 

reactivity.76 Over the last decade the strategy of targeting nanoparticles to MP, lymphocytes 

and stem cells to use them as Trojan horses for delivery of anti-infective medicines has been 

explored to facilitate drug delivery for a variety of infectious and neurodegenerative 

diseases.77, 103 Our own laboratories have developed the concept of MP delivery of 

nanoART to extend circulating drug levels and target sites of HIV replication including the 

CNS.104-106

Targeted cell-based delivery is also being developed as a means of carrying drug 

nanoparticles across biologic barriers, such as the BBB. The phagocytic and chemotactic 

capabilities of MP can be harnessed by targeted systems to deliver drugs to CNS disease 

sites and to other protected sites such as lymphoid tissue.77, 103 Proof of concept was 

demonstrated for delivery of nanoformulated catalase (nanozymes) to the CNS and for 

delivery of nanoART to localized CNS HIV-1 infection in mouse models of Parkinson's 

disease (PD) and HIV encephalitis (HIVE), respectively.105, 107 CNS targeting of bone 

marrow macrophages (BMM) loaded ex vivo with indinavir nanoparticles was determined in 

an HIVE mouse model. BMM loaded with indinavir nanoparticles were administered 

intravenously to mice and provided indinavir release up to 14 days. Of significance, 

indinavir was present in infected brain regions where there was significant inhibition of HIV 

replication.105 Intracellular transfer of nanoART from MDM to brain microvascular 

endothelial cells was confirmed in vitro by Kanmogne et al., and this transfer could be 

enhanced by addition of folate on the nanoparticle surface as a targeting ligand.108 The 

results demonstrated that nanoART could transfer NP through cell-to-cell contacts, and thus 

facilitate the penetration of nanoART across the BBB. By targeting drugs to MP, delivery 

can be achieved to sites of disease or infection that are normally inaccessible to free drug in 

circulation.
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Of importance, however, an effective cell-based delivery system is dependent on the normal 

function of the cell carrier. Thus, for macrophages, their normal functions of phagocytosis, 

migration, and release of immune-modulating cytokines and chemokines should be 

maintained in nanoparticle-loaded cells. Martinez-Skinner et al. used dynamic global 

proteomic changes in macrophages loaded with nanoART to identify changes linked to 

immune cell migration and chemotaxis, cytokine and chemokine production, lipid 

metabolism, free radical scavenging, and cell differentiation.109 Protein changes were 

substantiated by functional assays that indicated nanoART uptake induced a macrophage 

activation phenotype that is primed for further nanoART uptake, storage and cell migration, 

which would thus enhance the capacity of the cell to deliver drug to the site of disease.109

For cell-based drug delivery, the carrier cell must deliver sufficient amounts of 

therapeutically active drug to the site of infection and disease. For this to occur, once inside 

the cell, the drug must be localized in stable, non-degrading subcellular compartments that 

facilitate release at the target site.110 Cationic nanoparticles decrease acidification of 

lysosomal compartments, and thus are generally less likely to be degraded than are anionic 

particles.103 In addition, trafficking of nanoparticles to non-degrading endosomal subcellular 

compartments can also reduce lysosomal degradation. Our studies on macrophage delivery 

of nanoART, demonstrated that ritonavir nanoART prepared with P188, DSPE-mPEG2000, 

and DOTAP as surfactants were taken up by macrophages via clathrin-mediated endocytosis 

and trafficked to recycling (Rab 11+ and Rab 14+) endosomal compartments.111 

Therapeutically active nanoparticles were released intact at the cell surface. Of particular 

importance, active targeting of the nanoformulated antimicrobials to specific cell 

compartments not only enhanced cell storage, but also allowed the drug to be directed to the 

cell compartments where the infectious agents replicate.111 Such an effect was recently 

demonstrated for nanoART; wherein, atazanavir nanoART were co-localized in the same 

macrophage endosomal compartments utilized for HIV-1 replication.112 Thus, not only can 

nanoART be carried intact by macrophages to sites of disease; but for microbial and viral 

infections that target macrophages, the drug may also be delivered to the site of microbial 

and viral replication.

Nanotechnological approaches can impact not only therapy, but also imaging, diagnostics 

and theranostics to enable early disease diagnosis coupled with therapeutics as well as 

morphological and/or functional imaging. Such approaches allow for investigation of the 

disease progression or recovery associated with different therapeutic approaches such as 

nanoparticle or stem-cell based strategies.

4. Nanomedicine and neurodegenerative diseases

Neurodegenerative diseases, such as PD, AD, and amyotrophic lateral sclerosis (ALS), 

represent a wide range of devastating progressive conditions associated with the 

deterioration or loss of neurons in specific locations of the CNS. A major challenge in the 

treatment of neurodegenerative diseases, including PD is the restricted access of drug 

molecules across the BBB. In this regard, nanotechnology-based drug delivery strategies 

hold great potential in the management and treatment of these diseases. In this section, we 
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will discuss the current applications of nano-based drug-delivery systems for the treatment 

of neurodegenerative disorders with particular emphasis on PD.

As the second most common neurodegenerative disorder, PD affects over a million 

Americans with an annual cost of several billion dollars. The disease is characterized by the 

loss of dopaminergic neurons in the substantia nigra pars compacta of the mid-brain with a 

drastic decrease in striatal dopamine and its metabolites. Another important pathological 

hallmark of PD is the production of intraneuronal proteinaceous cytoplasmic inclusions 

called Lewy bodies, the primary structural component of which is α-synuclein. Cardinal 

motor signs of PD include resting tremor, rigidity, bradykinesia and postural instability. It 

has been increasingly recognized that the non-motor symptoms, such as sleep disturbances, 

depression, cognitive impairment, anosmia, constipation and autonomic dysfunctions 

precede the classic motor symptoms by several years.113 Currently, the gold standard of 

treatment for PD remains the oral administration of dopamine agonists such as levodopa. 

Although levodopa provides the greatest benefit for motor symptoms, it is unable to stop or 

compensate for the continual loss of dopamine neurons. Furthermore, the effectiveness of 

levodopa fades rapidly; and its long-term use often results in serious motor fluctuations. 

Thus, more effective treatments for PD patients are urgently needed.

In recent years, nanotechnology has been employed in an effort to enhance the efficacy of 

PD therapy. Major advantages of using nanosystems as drug delivery agents include specific 

delivery for targeted action in the CNS, effectively overcoming barriers to CNS, and 

improving the bioavailability and therapeutic efficacy of anti-parkinsonian agents. One 

specific example of nanotechnology in advanced experimental treatment of PD is the brain-

targeted delivery of dopamine. Using an intracranial nano-enabled scaffold device 

implantable in the parenchyma of the frontal lobe of the brain, Pillay and colleagues showed 

that the inclusion of dopamine-loaded cellulose acetate phthalate NPs into a binary cross-

linked alginate scaffold facilitated local dopamine delivery in a rat model.114 Recently, 

systemic delivery of dopamine has been developed. Trapani et al. found that dopamine-

loaded chitosan NPs were less cytotoxic than free dopamine in vitro. In vivo brain 

microdialysis experiments in rats demonstrated that intraperitoneal administration of the 

dopamine-loaded chitosan NPs effectively increased striatal dopamine levels.115, 116 

Unfortunately, these studies did not explore the efficacy of administering dopamine-loaded 

NPs in modulating motor activity and brain biochemical changes in an animal model of PD. 

In a very recent study, Rashed et al. attempted to use polyvinylpyrrolidone-poly (acrylic 

acid) (PVP/PAA) nanogels synthesized by γ-radiation-induced template polymerization to 

systemically deliver dopamine to the brain.117 Intraperitoneal administration of the 

dopamine-loaded PVP/PAA nanogels improved striatal dopamine levels and catalepsy 

scores in reserpine-treated rats. Significant increases in their long-term survival and 

restoration of their normal activity were also found in the reserpine-treated rats following 

subchronic administration of dopamine-loaded PVP/PAA nanogels. Additional animal 

experiments performed in a rotenone PD rat model demonstrated that dopamine-loaded 

PVP/PAA nanogels improved the mitochondrial dysfunction induced by rotenone. 

Nonetheless, these disease-modifying effects of nanogel-based delivery remain preliminary 

and need further confirmation.
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Nanodelivery of dopaminergic agonists like levodopa, apomorphine, ropinirole and 

bromocriptine is being pursued also because of the potential to improve brain uptake and 

reduce side effects associated with these compounds. Levodopa methyl ester, a highly 

soluble pro-drug that is hydrolysable by plasma esterases, was encapsulated with 

benserazide in poly (lactic-co-glycolic acid) (PLGA) NPs. This method of administering 

levodopa successfully abolished levodopa-induced dyskinesia in rats.118 More recently, 

intranasal delivery of levodopa NPs has been explored.119 Levodopa encapsulated in 

chitosan NPs was incorporated in a thermo-reversible gel prepared using Pluronic PF127, 

and then delivered via intranasal route, which increased drug levels in the brain.119 In 

another study, Md et al. developed a system for nose-to-brain delivery of bromocriptine-

loaded chitosan NPs.120 Intranasal administration of bromocriptine-loaded chitosan NPs 

effectively increased brain uptake of bromocriptine and prevented haloperidol-induced 

catalepsy and akinesia in a mouse PD model. An oil-based nanocarrier system 

(nanoemulsion gel) for ropinirole transdermal delivery has shown efficacy in the 6-OHDA-

lesioned rat model.121 While these studies have shown some promise in improving the 

bioavailability of dopaminergic agonists, more pre-clinical validations are needed before 

being applied in clinical settings.

Other targeting molecules include antioxidants,122, 123 peptides,124 and neurotrophic factors. 

The neurotrophic factor nerve growth factor (NGF) was absorbed on PBCA NPs coated with 

polysorbate 80 to enhance its pharmacological efficacy in the brain.125 Intravenous 

administration of the NP-bound NGF prevented amnesia and improved memory in the acute 

scopolamine-induced amnesia rat model. This formulation also demonstrated significant 

protection against MPTP-induced motor symptoms. Even combinatorial delivery of several 

neurotrophic factors has been recently investigated, yielding promising outcomes.126, 127 

Lectin-functionalized, polyethylene glycol–block-poly-(d,l)-lactic-co-glycolic acid NPs 

loaded with haloperidol and further functionalized with Solanum tuberosum lectin (STL) 

achieved higher drug concentrations in the striatum when administered intranasally than 

when delivered by intraperitoneal injection.128 The study also found a significantly higher 

percentage of STL-functionalized NPs present in the striatum and olfactory bulb relative to 

non-functionalized NPs. To cite another example, the macromolecular drug urocortin 

peptide, when encapsulated in odorranalectin-conjugated PEG-PLGA NPs, was able to 

reduce dopaminergic neurodegeneration and subsequent behavioral deficits in hemi-

Parkinsonian rats.129 Recently, Mito-apocynin, a derivative of apocynin, which is a known 

NADPH oxidase inhibitor, has been shown to attenuate behavioral deficits in LRRK2 

transgenic mouse model of PD.130 Ongoing studies are focused on encapsulating mito-

apocynin with polyanhydride nanoparticles to prolong the brain bioavailability of the drug.

Despite the relatively early stages of their development, overall these nanodelivery systems 

continue to represent a promising new direction for PD therapy. Furthermore, most current 

studies were performed in rodent models; and thus, their therapeutic potential to treat 

various neurodegenerative diseases has yet to be evaluated in pre-clinical animal models 

before eventual clinical testing. Oxidative stress and neuroinflammation have been 

established as major pathophysiological mechanisms of many neurological diseases 

including PD, but also for AD and ALS. Inflammation caused by trauma, infection or even 
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through the process of aging generates reactive oxygenated species and reactive nitrogen 

species resulting in the activation of microglia. While microglia help to contain the basal 

inflammation at quiescent stage, they end up, during excessive activation, secreting more 

pro-inflammatory cytokines including TNF-α. Both neurons as well as glial cells produce 

antioxidants.131 However, the persistence of free radicals beyond the pool of available 

antioxidants leads to neurodegeneration and subsequent neurological symptoms. Currently, 

efforts are being made to develop and transport naturally occurring and synthetically made 

antioxidants as well as neuroprotective drugs to the brain.

A major drawback of using such antioxidants alone is their failure to cross the BBB as well 

as the inability to target deeper areas of the brain such as the hippocampus, midbrain and 

brain stem. Hence larger and repeated doses of the drug are needed to elicit a protective 

response. Drugs encapsulated in nanoparticles, on the other hand, can effectively cross the 

BBB owing to their small size and in some cases, their chemistry.132, 133 In addition, surface 

functionalization of nanoparticles with a ligand whose membrane receptors are present on 

specific neurons can help target these nanoparticles to these neurons. For example, PLGA-

coated curcumin NPs functionalized with Tet-1 peptide were able to eliminate amyloid 

aggregates.134 The Tet-1 functionalization allowed better uptake of NPs in GI-1 glioma cells 

as evidenced by flow cytometry analysis; however, these results were not validated by in 

vivo studies. Melanocortin-loaded polysorbate 80-coated NPs reduced lipid peroxidation 

while increasing antioxidant reactivity in various regions of the brain.135 In another 

experiment, intravenous or oral administration of dalargin-adsorbed NPs provided analgesic 

effects as assessed by the hot-plate test in mice. The same drug, when delivered without NPs 

was unable to provide pain-relief, as the drug could not cross the BBB.136 However, if the 

nanoformulation is administered via the circulatory system, they acquire opsonins on their 

surface and can be phagocytized.137 One way to circumvent this problem is to deliver 

nanoparticles via intra-nasal injections. The particles then reach the CNS via the olfactory or 

trigeminal tracts. For example, nasal injection of nimodipine (calcium channel blocker)-

encapsulated methoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) NPs lead to 

1.6- to 3.3-fold higher drug concentrations in the brain than nasal administration of the drug 

solution alone.138

Nanomaterials can also be therapeutically used to modulate detrimental immune responses 

in the CNS. Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the 

CNS, characterized by destruction of the protective myelin sheath that insulates neurons. 

Recent evidence has highlighted the possibility of using nanotechnology in MS patients as a 

potential new tool to deliver drugs with immunosuppressive activity. In a study of EAE, 

which is the most commonly used experimental model for MS, Kizelsztein et al. 

demonstrated that encapsulation of tempamine, a stable radical with antioxidant and 

proapoptotic activities, in nanoliposomes shows efficacy in inhibiting EAE in mice.139 

Later, Yeste and colleagues used Au NPs to deliver a tolerogenic compound in combination 

with oligodendrocyte antigen to dendritic cells to induce antigen-specific regulatory T cells 

(Tregs). Au NPs loaded with an aryl hydrocarbon receptor ligand and a T-cell epitope from 

myelin oligodendrocyte glycoprotein (MOG35-55) promoted the generation of Tregs by 

dendritic cells in vitro. When injected intraperitoneally to EAE mice, these NPs effectively 
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increased the Treg population and suppressed disease development.140 Using the relapsing-

remitting EAE (R-EAE) in a murine Th1/17-mediated model of EAE, Hunter et al. 

developed a biodegradable PLG NP as a myelin antigen carrier and showed its efficacy in 

generating robust tolerance and preventing disease development.141

Dendrimers are repetitively branched molecules with nanometer-scale dimensions. Owing to 

their intrinsic ability to localize to activated microglia and astrocytes, dendrimers can be 

used against immune diseases by delivering immunosuppressive drugs to target tissues. For 

example, polyamidoamine (PAMAM) dendrimers have been reported by Wang et al. to 

deliver the antioxidant and anti-inflammatory agent N-acetyl cysteine (NAC) to the brain.142 

In vitro experiments indicated that conjugating NAC with a PAMAM dendrimer increased 

its antioxidant and anti-inflammatory properties relative to free NAC. Subsequently, another 

study from the same group demonstrated in an animal model that intravenously administered 

dendrimer-NAC conjugates localized in the inflammation sites associated with cerebral 

palsy, leading to reduced neuroinflammation and improved cerebral palsy symptoms.143 

Similarly, the dendrimer-based strategy achieved sustained suppression of inflammation in a 

model of retinal degeneration.144 More recently, in a spinal cord injury study, Cerqueira et 

al. showed that methylprednisolone-loaded carboxymethylchitosan dendrimer NPs are 

internalized by microglia, astrocytes and oligodendrocytes, modulating the release of growth 

factors while limiting the titer of pro-inflammatory molecules.145 Moreover, local 

administration of these dendrimer NPs to the spinal cord of Wistar rats following lateral 

hemi-section lesions improved their locomotor outcomes. In recent years, much attention 

has been focused on neurological disorders (chronic traumatic encephalopathies, CTE) that 

develop following single or repeated head injuries. Repetitive mild traumatic brain injury 

can lead to diffuse axonal injury as well as persistent neuroinflammation. This persistent 

neuroinflammation and associated neurodegeneration can lead to the development of 

chronic neurodegenerative diseases. The use of nanoformulations as a potential drug 

delivery platform to the CNS could prove critical in treating CTE.146-148 Indeed, Ruozi et al. 

have shown that cerebrolysin-loaded poly-lactide-co-glycolide NPs reduced brain edema 

and possibly limited the degree of BBB permeability typically seen after concussive head 

injury.149

5. Nanotoxicology

Man-made nanoparticles provide new opportunities for the creation of new consumer 

products and the manufacture of new materials for therapeutic and imaging applications as 

discussed here. Likewise, their potential benefit to human health has increased exponentially 

in recent years, but realizing this potential requires that any adverse effects to human health 

be minimized and characterized.

Nanotoxicology is a new branch of toxicology that addresses the adverse human and 

environmental health effects associated with nanoparticles.150-156 The main source of 

nanotoxicity comes from environmental and occupational exposure to nanoparticles derived 

from metals such as copper, magnesium, sodium, potassium, calcium and iron. A second, 

more recent source of nanotoxicity stems from specialized nanoparticles serving as novel 

platforms for the target-specific delivery of therapeutics. Although their benefits tend to 
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outweigh their ill effects, nanotoxic and immunogenic aspects of nanoparticles can no longer 

be overlooked. Upon passive entry into the cell, the nanoparticles have direct access to the 

cytoplasm and subcellular organelles. Depending on their intracellular localization, 

nanoparticles can induce oxidative stress, inflammation, DNA damage, cardiovascular 

effects and coagulation.157 Nanoparticles have been shown to enter the brain primarily by 

inhalation, specifically by crossing into the brain through the olfactory nerves.158 Besides 

the CNS, nanoparticles also enter the GI-tract, circulatory system, liver, kidney, spleen and 

lymphatic systems. Diseases such as asthma, bronchitis, emphysema, lung cancer, 

neurodegenerative diseases, Crohn's disease, colon cancer, arteriosclerosis, blood clots, 

arrhythmia and heart diseases, systemic lupus erythematosus, scleroderma, and rheumatoid 

arthritis as well as liver and spleen diseases are all associated with nanoparticle 

toxicity.158-160

Metal nanoparticles are particularly toxic to the CNS. Adverse neurological effects due to 

occupational exposure of non-particulate manganese (Mn), aluminium (Al) and iron are 

relatively well known. For example, chronic exposure to Al and iron have been linked to 

both PD and AD.161 Mn and neurotoxicity are now clearly linked in humans.162, 163 In the 

condition known as manganism, occupational exposure to Mn in miners and welders results 

in psychiatric and motor disturbances, with symptoms resembling those of idiopathic PD 

and that contribute to its etiopathogenesis. Currently, Mn nanomaterials are being pursued in 

metallurgic and chemical sectors;164 and therefore, neurotoxicological research on emerging 

Mn nanoparticle technologies are urgently needed.164

Our own recent work characterizing the neurotoxicological effects of Mn nanoparticles on 

dopaminergic neuronal cells suggests that environmental exposure to certain metallic 

nanoparticles may cause serious health problems in humans.165 Thus, a systematic 

characterization of potential adverse effects of nanomaterials will ultimately help formulate 

benign nanoformulations for human applications.

6. Conclusions and Outlook

Nanomedicine offers exciting possibilities to overcome the significant challenges associated 

with diagnosis, imaging and therapies to address the malfunction of the nervous system. 

This is a broad area of research with enormous potential and current efforts represent just the 

tip of the iceberg.

Nanoscale systems are extremely promising for safe, effective, targeted/site-specific, and 

sustained delivery of anti-inflammatory and immunomodulatory agents, growth factors and 

other bioactive molecules to treat neurodegenerative disorders and infectious diseases. 

Nanomedicine enables therapeutics and imaging agents to effectively cross the blood brain 

barrier. In this context, immunoprotective approaches harnessing the immune system 

through nanotechnology to address neurodegenerative disorders and traumatic brain injury 

are very novel and can provide a new paradigm for the treatment of such conditions.

While therapies represent an important aspect of nanoneuromedicine, diagnostics as well as 

imaging can benefit enormously from recent developments in this new field as well. 

Delivery of therapeutics as well as imaging and contrast agents need to overcome some 

Gendelman et al. Page 16

Nanomedicine. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similar challenges such as being able to traverse the BBB. Advances in delivery of 

therapeutics can lead to better diagnostics, better delivery of imaging agents and 

development of new theranostics as well. Much of the work in this area so far has been 

conducted in various animal models; and showing efficacy in clinical studies, while 

addressing any potential nanotoxicological issues, is the next important step in moving this 

field forward.
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Abbreviations

Aβ amyloid beta

AD Alzheimer's disease

ADDL amyloid-β-derived diffusible ligands

ALS amyotrophic lateral sclerosis

ApoE apolipoprotein E

ART antiretroviral therapy

BBB blood-brain barrier

CNS central nervous system

CSF cerebral spinal fluid

CTE chronic traumatic encephalopathies

EAE experimental autoimmune encephalomyelitis

MOG myelin oligodendrocyte glycoprotein

MP mononuclear phagocytes

MPIO microparticles of iron oxide

MRI magnetic resonance imaging

MS multiple sclerosis

NAC N-acetyl cysteine

NGF nerve growth factor

NRTI nucleoside reverse transcriptase inhibitors
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PAMAM polyamidoamine

PBCA poly(n-butyl cyanoacrylate)

PD Parkinson's disease

PEG polyethylene glycol

PET positron emission tomography

QD quantum dots

RES reticuloendothelial system

SLNs solid lipid nanoparticles

SPIO superparamagnetic iron oxide

STL Solanum tuberosum lectin

Tregs regulatory T cells

USPIO ultra-small superparamagnetic iron oxide

VCAM vascular cell adhesion molecule-1

VSPIO very-small superparamagnetic iron oxide
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Figure 1. Polymer composition strategies for nanomedicines
A range of nanomedicines has been developed for drug delivery. These include particle 

platforms that have versatile and tunable composites for large surface to volume ratios, an 

optimal surface charge, hydrophobicity, and controllable particle shape and size. 

Descriptions are made for cargos and surface targeting modifications. The availability of 

enhanced imaging modalities has facilitated bioimaging and theranostics applications. These 

are illustrated and represent the development and use of polymer drug conjugates, 

dendrimers, micelles, liposomes, solid lipid nanoparticles and polymeric nanoparticles 
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(upper panel). The abilities of these nanoformulations to cross the blood-brain barrier and 

target specific neural and glial cells underpin their therapeutic activity in disease and drug 

storage capacities (lower panel).
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Figure 2. Pathogenesis and nanomedicine treatment of neuroinfectious diseases
Disease in the CNS is caused, in largest measure, by genetic, degenerative, immune and 

infectious events. This results in neuronal injury or death, astroglial and microglial 

activation, or infection with consequent secretion of inflammatory neurotoxic mediators. 

Nanomedicines can directly cross the blood-brain barrier, affect physiological response 

barrier function or be carried within circulating immunocytes (monocyte/macrophages and 

lymphocytes) and stem cells. Once inside the brain, they release their cargo and affect 

ongoing disease processes leading to clearance of microbial infections, neuronal repair 

and/or anti-inflammatory responses leading to restoration of glial homeostasis.
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Figure 3. Targeted nanoformulated drug delivery for infectious diseases of the nervous system
Nanoformulated antimicrobial drugs can be targeted to brain endothelial cell receptors such 

as insulin, leptin, transferrin and epidermal growth factor receptors to promote transfer 

across the blood-brain barrier (BBB). They can also be targeted to monocyte-macrophage 

receptors such as folate, CD4, mannose and CD44 receptors to promote cell uptake for 

macrophage-based drug delivery across the BBB. The nanoformulated antimicrobial agent 

that is decorated with the appropriate ligand for the targeted cellular receptor can be 

administered systemically with the insurance it will either find a BBB-target cell or an 

appropriate carrier cell such as MPs that support transport across the BBB. Once inside the 

brain the drug cargo can be released from free nanoparticles or macrophages to facilitate 

resolution of microbial infection.
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