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Abstract

Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive 

technique for characterizing brain tissue on the microscopic scale. However, the lack of validation 

of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data 

acquired using this method. Recently, structure tensor analysis has been applied to light 

microscopy images, and this technique holds promise to be a powerful validation strategy for d-

MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects 

of a large number of cellular structures, and its simplicity, which enables it to be implemented in a 

high-throughput manner. However, a drawback of previous implementations of this technique 

arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to 

tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the 

analytical framework for extending structure tensor analysis to 3D, and utilize the results to 

analyze serial image “stacks” acquired with confocal microscopy of rhesus macaque hippocampal 

tissue. Implementation of 3D structure tensor procedures requires removal of sources of 

anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with 

image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of 

anisotropy in the point spread function (PSF). In order to address the latter confound, we describe 

procedures for measuring the dependence of PSF anisotropy on distance from the microscope 

objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the 

hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least 
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restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We 

demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that 

are parallel to d-MRI derived diffusion tensors in each of these three regions. It is concluded that 

the 3D generalization of structure tensor analysis will further improve the utility of structure 

tensor analyses for d-MRI by making it a more flexible experimental technique that closer 

resembles the inherently 3D nature of d-MRI measurements.
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INTRODUCTION

In studies of brain development, aging, and pathology, it is often desirable to quantify 

cellular morphological changes, or differences in cell morphology between a perturbed and a 

control condition. Unfortunately, traditional anatomical methods for quantifying such 

differences involve time consuming, operator-dependent procedures (Parekh and Ascoli, 

2013). This problem is compounded in quantitative studies by the need to characterize large 

numbers of cells to detect potentially subtle morphological effects. Diffusion magnetic 

resonance imaging (d-MRI) techniques have the favorable property that large ensembles of 

cells present within an MRI voxel contribute to each measurement. In addition, d-MRI is 

commonly capable of characterizing cells in 3D throughout the brain in a non-invasive 

manner (Basser and Pierpaoli, 1996; Le Bihan, 2003; Mori et al., 2005). For these reasons, 

d-MRI is frequently utilized to study cellular-level anatomy in brain white matter (Beaulieu, 

2011; Jones et al., 2013), as well as in gray matter (Bozzali et al., 2002; D’Arceuil and 

Crespigny, 2010; Jespersen et al., 2007; Zhang et al., 2002). A primary difficulty 

encountered with d-MRI, however, is the inability to interpret quantitative indices of water 

diffusion in terms of underlying cellular structure. Mathematical modeling of water 

diffusion combined with independent experimental validation (Gao et al., 2013; Jespersen et 

al., 2010; Jespersen et al., 2012; Leergaard et al., 2010b; Wang et al., 2011; Wedeen et al., 

2008), are instrumental for developing the ability to interpret d-MRI measurements in terms 

of specific properties of underlying biological tissue. However, as a result of the difficulties 

of traditional methods, independent experimental validation is only available for a small 

subset of the experimental contexts in which d-MRI has been applied.

In a notable recent advance, Budde and co-workers applied structure tensor analysis of 

images obtained by light microscopy as a strategy to validate d-MRI findings (Budde and 

Frank, 2012). In their implementation, computation of the structure tensor for a given image 

pixel first involves determining direction-dependent spatial derivatives of image intensity 

near the pixel, and second, averaging the products of spatial derivatives over a user-specified 

neighborhood of the pixel. As described in detail in the following sections, this procedure 

shares several similarities to d-MRI measurements. Briefly, the length-scale used for 

calculating spatial derivatives is somewhat comparable to the displacement distance 

experienced by a water molecule, which is determined by the diffusion time of a d-MRI 

measurement. Second, the neighborhood size specified for averaging spatial derivatives is 
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analogous to the image resolution, or voxel size of a d-MRI experiment. As a result, 

structure tensor calculations provide information related to ensembles of many cellular 

features, as is true for d-MRI. Advantages of structure tensor analyses compared to other 

validation strategies are its ease of automated implementation, such that it can be applied to 

several experimental subjects in experiments designed to compare multiple groups; it can be 

used to analyze microscopy data obtained using virtually any staining method (Budde and 

Annese, 2013); and the directional information provided by the structure tensor can be 

compared to that of the diffusion tensor (Budde et al., 2011). One drawback to previous 

structure tensor implementations, however, is that they have been limited to two dimensions, 

whereas for d-MRI analyses, 3D measurements are standard. As a consequence, 2D 

structure tensor analyses must be performed on tissue that is sectioned in a frame that is 

parallel to the local cellular primary axis to be characterized. For cases in which the local 

axis system orientation is unknown, or if more than one principal axis system is present 

within a sample, 2D structure tensor analyses are of limited value for validating d-MRI.

Here we present methods to extend previous structure tensor analyses to 3D. The analytical 

expressions used in the 2D implementation (Budde and Frank, 2012) are straightforwardly 

generalized to 3D. In order to demonstrate the technique, a 3D “stack” of confocal 

microscope images are acquired of gray matter and associated white matter of hippocampal 

tissue obtained from an adult rhesus macaque brain that had previously undergone ex vivo 

d-MRI, and was subsequently sectioned and stained with DiI following the procedures of 

Budde et al. (Budde and Frank, 2012). The region of tissue analyzed by the 3D structure 

tensor method was shown by d-MRI to contain three regions, with each region exhibiting a 

microscopic principal orientation parallel to the x, y, and z axes of the laboratory frame. For 

accurate 3D structure tensor analyses, multiple image transformations are necessary to 

remove experimentally-introduced sources of anisotropy associated with tissue preparation 

and measurement using a confocal microscope. Following these steps, it is demonstrated 

that 3D structure tensor orientations parallel to the principal directions measured by d-MRI 

are obtained within the hippocampal tissue section.

MATERIALS AND METHODS

Hippocampal brain tissue was obtained from a 13-year-old (middle-aged adult) female 

rhesus macaque. Following cerebral perfusion fixation with 4% paraformaldehyde, the brain 

was immersed in 4% paraformaldehyde for 24 hours and subsequently transferred to 

phosphate-buffered saline (PBS). The brain was sectioned into 5 mm-thick coronal blocks as 

described in (Daunais et al., 2010), and the left hippocampus and associated white matter, 

including the alveus and inferior longitudinal fasciculus (ILF), was extracted for ex-vivo 

MRI and histological analyses (Fig. 1). All experimental protocols and animal handling 

procedures were according to the guideline stipulated by NIH “Guide for the Care and Use 

of Laboratory Animals” (NIH, 1987) and were approved by the OHSU animal care and use 

committee.
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Diffusion Magnetic Resonance Imaging (d-MRI)

Ex vivo d-MRI was performed on an 11.7 T small-animal MRI system with a 30 cm clear 

bore magnet (Bruker, Rheinstetten, Germany) interfaced with 9 cm inner diameter magnetic 

field gradient coil. The tissue was immersed in PBS and held in a sample tube that fit within 

a 20 mm-diameter solenoid transmit/receive radiofrequency (Dauguet et al., 2007) coil. A 

multi-slice spin-echo pulse sequence incorporating a StejskalqTanner diffusion sensitization 

gradient pair was used to acquire d-MRI data. The diffusion weighting factor (b-value) was 

2500 s/mm2 with a gradient duration and separation of δ = 12ms and Δ = 21 ms, 

respectively, a gradient strength g = 11.6 G/cm, an echo time TE = 42 ms, and a recycle 

delay TR = 12.5 s. The image resolution was isotropic with 200 μm-sided voxels. Ten scans 

were acquired in which b = 0, and diffusion anisotropy was measured using a 63-direction 

diffusion sampling scheme, which consisted of 60 directions determined by an electrostatic 

repulsion algorithm (Jones et al., 1999), plus the three laboratory-frame vectors (1,0,0), 

(0,1,0), and (0,0,1). The length of the diffusion acquisition was 4 hours and 23 minutes. 

Diffusion tensor imaging metrics such as fractional anisotropy (FA) were calculated from 

the diffusion-weighted images using standard procedures (Basser and Pierpaoli, 1996; 

Batchelor et al., 2003). An FA map that is color-coded to indicate the direction of least 

restricted diffusion from a central slice within the tissue block is shown in Fig. 1d. In Fig. 1d 

and subsequent figures, the red, green, and blue (rgb) channels of directional FA maps are 

scaled by the x, y, and z components, respectively, of the primary eigenvector (v1) and FA. 

The rgb vector for each pixel is ( ).

Histological procedures

Subsequent to d-MRI, the 5 mm thick sections of dissected hippocampal tissue were further 

sub-sectioned at 200 μm with a vibratome as described in (Leigland et al., 2013), and 

staining procedures described in (Budde and Frank, 2012) were followed. In brief, sections 

were dehydrated with graded concentrations of ethanol and stained with a fluorescent 

lipophilic dye (1, 1′-Dioctadecyl-3,3,3′,3′-tetra-methylindocarbocyanine, or “DiI”) in 

absolute alcohol (0.25 mg/ml) for approximately 3 minutes. The stained sections were then 

rinsed with absolute ethanol to remove excess dye and then rehydrated by reversing the 

order of graded ethanol concentrations used for dehydration. Sections were mounted on 

glass slides with Prolong Antifade Gold mounting medium (Invitrogen, Molecular Probes).

Microscopy

A 2D montage of an entire tissue section obtained from the center of the 5 mm block was 

constructed at 10x magnification using a (Leica Microsystems, Bannockburn, IL) (Fig. 1c). 

For one subsection (yellow rectangle, Fig. 1c), chosen based on the presence of three regions 

in which the primary diffusion tensor eigenvector is parallel to the x, y, and z directions of 

the imaging frame, a 3D montage was obtained using a Leica SP5 AOBS microscope (Leica 

Microsystems, Bannockburn, IL) equipped with a Leica objective (HCX PLAPO CS63x 

1.40 Oil). The images were acquired with isotropic digital resolution of 0.25 μm-sided 

voxels. After converting images to tif format, they were imported into Matlab (The 

Mathworks, Natick, MA) for subsequent steps of image analysis. Slices from the 3D 
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montage are shown in Fig. 1e. Several orthogonal slices of the 3D images of the image stack 

are shown in figure 2.

Structure Tensor Analysis

The published formulas for computing 2D structure tensors (Budde and Frank, 2012) are 

straightforwardly generalized to 3D. At each point (x, y, z) in a 3D image I(x, y, z), the 

spatial derivative with respect to x is abbreviated

[1]

and similarly for y and z. As a practical matter, the common method for computing spatial 

derivatives involves first convolving the image with a Gaussian kernel. For the procedures 

implemented in this study, the spatial derivatives were thus calculated according to the 

formula

[2]

and similarly for y and z, and where the convolution operation is represented by “[*]” and G 

is the Gaussian kernel

[3]

Thus, the size of the local region used for computing spatial derivatives is determined by the 

value chosen for the kernel width σ. Varying σ in structure tensor calculations is somewhat 

analogous to varying the diffusion time (and hence the root mean squared molecular 

displacement) in d-MRI experiments, because both parameters in principle influence the size 

of the local environment that contributes to the structure tensor, or diffusion tensor, at a 

given point. Specifically, the convolution operation implements a local average over a 

region of characteristic size σ, whereas the diffusion process itself averages local structural 

fluctuations on the scale of the diffusion length – and can in fact be shown to correspond to 

the convolution with a Gaussian filter of width equal to the diffusion length (Novikov et al., 

2014). Nevertheless, it should of course be kept in mind that structural features that 

influence staining and water diffusion may be different. At each voxel location, the above 

operations enable the image gradient vector ∇I = (Ix, Iy, Iz) to be constructed, the direction 

of which is the direction of the fastest intensity variation. This direction is expected to be 

perpendicular to any boundary passing through the pixels used to compute the derivatives.

As an example, a synthetic image was constructed in which voxels inside a cylinder (Fig. 

3a) differ in intensity from voxels outside of a cylinder. Gradients for this image are 

illustrated in Fig. 3b.

The structure tensor, S(x, y, z), is then computed by averaging products of the spatial 

derivatives over a specified neighborhood N
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[4]

in which 〈···〉N denotes the average product over all points within N. As discussed in (Budde 

and Frank, 2012), there is flexibility in choosing a method of averaging, which may for 

example involve assigning weights to different points in the neighborhood. Choosing a size 

of N is analogous to setting the voxel size, or the image resolution, in a d-MRI experiment 

because both parameters influence the granularity with which the set of local probes of 

tissue structure are averaged. Equation (4) makes evident two factors that influence the size 

of structure tensor matrix elements. First, the magnitude of the gradient components Ix, Iy, 

and Iz will be reflected in the size of each of the products in the structure tensor matrix. 

Second, due to the averaging operation performed on each tensor element, gradient vectors 

with similar orientations will contribute more than terms derived from voxels with dis-

similar gradient vector orientations. In this manner, Eq. 4 is similar to the scatter matrix of 

image gradient vectors over the neighborhood N. Equation 4 would be equal to the scatter 

matrix if the gradients were normalized by dividing by the length of the vector ∇I.

As described in 2D applications (Budde and Frank, 2012), the eigenvalues and eigenvectors 

of S are useful for characterizing structure tensor anisotropy. Here it is important to 

recognize a distinction between structure tensor and diffusion tensor analyses. In DTI, it is 

the eigenvector corresponding to the largest eigenvalue that is parallel to the primary 

structure orientation (such as a fiber bundle). However, in 2D structure tensor analyses, it is 

the direction of minimal image intensity variation, and hence the direction indicated by the 

eigenvector corresponding to the smallest eigenvalue, that is parallel to the primary structure 

orientation. This perspective also reveals an apparent difference between 2D and 3D 

structure tensor analysis. For example, if the averaging neighborhood is small compared to 

the radius of curvature of the boundary to be detected, the boundary appears locally planar 

and all gradient vectors point in nearly the same direction. Whereas this uniquely specifies 

the direction of a fiber bundle in two dimensions, i.e. the perpendicular direction, it does not 

do so in three dimensions. However, as long as the neighborhood is sufficiently large to 

include surface normals in more than one direction, the proper direction of the fiber bundle 

should be identified correctly by the third eigenvector of the 3D structure tensor. In practice, 

this is likely to be satisfied as soon as the averaging neighborhood can extend across the 

cross-section of the fiber bundle.

In the Fig. 3 example, the individual gradient vectors are translated to the origin of the Fig. 

3c graph (black lines). The blue, green and red line segments indicate the orientations of the 

structure tensor major, middle, and minor eigenvectors (in this example, there is no 

difference between the major and middle eigenvalues, so these were arbitrarily assigned). 

Notably, it is the orientation of the minor eigenvector that is co-linear with the cylinder axis.

In a manner analogous to diffusion tensor imaging (DTI), fractional anisotropy of the 

structure tensor FAST is defined as
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[5]

in which τ1, τ2, and τ3 are the largest, middle, and smallest eigenvalues of S.

Prior to calculating structure tensors of the 3D image stack, it was necessary to perform 

three corrections to remove confounding sources of anisotropy that do not arise from 

properties of the DiI-stained tissue, but instead from properties of the measurement system/

protocol. The first of these corrections was to de-trend the image intensity in the through-

plane direction (parallel to the z-axis). In Fig. 4a, the average intensity in each x–y plane is 

plotted as a function of distance from the face of the glass coverslip separating the 

microscope objective from the tissue over the range spanning 0 micrometer (immediately 

adjacent to the coverslip) to 20 micrometers within the tissue. Example x–z planes are 

shown as insets of Fig. 4a and 4b. The approximately 2-fold reduction in intensity over this 

range results from a larger path length for light to the objective from deeper image planes, 

and consequent increased light scattering within the intervening tissue. If not corrected, this 

intensity variation would be a source of systematic bias in structure tensor anisotropy 

determinations. Therefore, to generate a z-profile corrected image, each x–y plane was 

divided by the mean image intensity within that plane. The resulting intensity plot and 

example x–z plane is shown in Fig. 4b.

The second correction performed on the image stack was to remove the effect of anisotropic 

tissue shrinkage. Through comparisons of distances between landmark structures in the MRI 

and light microscopy images, it was determined that the histological preparation procedures 

caused the tissue in the xy plane to shrink to 90% of the size it was when the d-MRI data 

was acquired. In contrast, shrinkage along the z-dimension was more severe. The average 

tissue thickness measured throughout the slice was 125 μm, as determined by adjusting the 

focal plane depth with the confocal microscope. For this sample, z-dimension shrinkage was 

remarkably homogeneous, with thickness varying by only 5% from the region with most 

extreme shrinkage in CA1 to the region with the smallest amount of z-dependent shrinkage 

in the ILF. The mean thickness of 125 μm is 62.5% of the thickness of the original section. 

To correct this source of anisotropy bias, the image was interpolated in the z direction by a 

factor of 1.44 (90/62.5) using the Matlab “interp” function to generate image voxels with 

isotropic dimensions relative to the original tissue. The x–z plane of Fig. 2b–d following this 

resampling is shown in Fig. 2e–g.

The final correction applied to the image was to compensate for the depth-dependent 

anisotropy of the confocal microscope’s point spread function (PSF). The PSF is the 

response of the microscope system to a point source of light. The measured image, M(x, y, 

z), is related to the underlying “true” image, U(x, y, z), through a convolution with the PSF: 

M = PSF*U.

The method of Cole and co-workers (Cole et al., 2011) was followed to measure the PSF by 

collecting 3D image stacks of 0.175±0.005 μm diameter red beads (Molecular Probes, 

Eugene), and approximating the PSF with an anisotropic 3D Gaussian function with 
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standard deviations σx, σy, and σz, perpendicular to the x, y, and z axes, respectively. Due to 

the expectation that the microscope performance would degrade as a function of distance 

from the objective, a sample consisting of three layers of 40 μm-thick cerebral cortical brain 

tissue was constructed. Fluorescent beads were placed between the tissue and the cover slip, 

and between each layer of tissue. An image in the x–z plane from the serial stack used to 

measure the depth-dependent PSF is shown in Fig. 5a. Three layers of fluorescent beads are 

apparent. Within each layer, the Fiji plugin Metroloj (Matthews and Cordelières, 2010) was 

used to measure PSF σx, σy, and σz values from five beads. The mean values obtained from 

the 5 measurements at depths of 0 (the upper-most layer), 40 (the middle layer), and 80 μm 

(the lowest layer) are plotted in Fig. 5b. Differences between σx and σy are extremely modest 

(Fig. 5b), and neither value exhibits a dependence on distance from the coverslip. In 

contrast, σz is larger than σx and σy at all depths, and σz increases with distance from the 

cover slip. Thus, the value of σz subsequently used to correct for PSF anisotropy was a 

function of distance, d, from the cover slip. Interpolating over the range from 0 to 40 μm, in 

units of μm,

[6]

To prevent PSF anisotropy from systematically interfering with structure tensor anisotropy 

determinations, the z-profile and shrinkage corrected image was convolved with an 

anisotropic Gaussian convolution kernel with variances , and 0, parallel to the 

x, y, and z axes, respectively. This operation blurs the image selectively in the x and y 

directions so that the corrected image is the underlying image convolved with an isotropic 

“effective” PSF. The depth-dependent PSF corrected image is shown in Fig. 5a, panel (ii).

RESULTS

d-MRI

As has been described previously (Shepherd et al., 2006; Zhang et al., 2002), significant 

diffusion anisotropy is observable throughout the gray matter (GM) of the cornu-ammonis 

(CA) fields of the hippocampus, with the primary eigenvector of the diffusion tensor being 

parallel to apical dendrites of pyramidal neurons. Additionally, diffusion anisotropy is 

observed in the adjacent white matter of the ILF, as well as the intervening alveus (Fig. 1). 

Notably, as one follows a trace from the CA fields through the alveus and into the SLF, it is 

seen that the primary eigenvector of the diffusion tensor is oriented along three 

approximately orthogonal directions. In Fig. 6, a region of the directional FA map that is 

equal to the field of view for the confocal 3D montage (Fig. 6a) is shown in Fig. 6b. The 

diffusion tensor principal axis is oriented parallel to the left/right (x)-axis within CA1. 

Adjacent to this, diffusion is least restricted in the up/down direction (parallel to the y-axis) 

in the alveus. Within the ILF, diffusion anisotropy is oriented in the through-plane (z-axis) 

direction. It is thus not possible to section this tissue in a plane that is parallel to the primary 

axis system for each of these structures.
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Structure tensor based image Analysis

The results of 3D structure tensor analysis using a Gaussian kernel with standard deviation 

(Eq. 3) of 2 μm, and an averaging neighborhood N (Eq. 4) of 37.5 μm × 37.5 μm × 12.5 μm 

in the x, y, and z directions, respectively, are shown in Fig. 6c. In a manner analogous to the 

directional FA map of Fig. 6b, red, blue, and green color intensities in Fig. 6c are scaled by 

the 3D structure tensor-derived factors , and , respectively. 

Comparison of Figs. 6b and 6c reveals a strong similarity expected between the directions of 

the primary eigenvector of the diffusion tensor and the minor eigenvector of the 3D structure 

tensor. In particular, the boundary between CA1 (red voxels, Fig. 6b and c) and the alveus 

(blue voxels, Fig 6b and c), as well as the boundary between the alveus and the ILF (green 

voxels, Fig 6b and c) are coincident in the original DiI image and the directional FA and 3D 

structure tensor maps.

Directional 3D structure tensor maps shown in Fig. 6d–f illustrate the consequences of 

neglecting to implement the steps taken to remove artificially-introduced sources of 3D 

image anisotropy. In each of the Fig. 6d–f panels, all but one of the correction steps are 

applied, as indicated in the left side of the figure. If the z-dependent intensity bias is not 

corrected, systematic variation in image intensity will interfere with the ability to assign the 

direction of minimal intensity variation to the z-direction. As a result, the orientation of the 

structure tensor minor eigenvector is not co-linear with the z-axis, which leads to a 

discrepancy between the 3D structure tensor analysis and underlying tissue within structures 

oriented parallel to the z-axis such as the ILF (right side of Fig. 6d). Similarly, if anisotropic 

tissue shrinkage is not corrected, the calculated 3D structure tensor orientations will be 

inaccurate. As shown in Fig. 6e, preferential tissue shrinkage along the z-direction causes 

the ILF fibers to appear less anisotropic, and the direction of minimal image intensity 

variation is not co-linear with these fibers. Last, Fig. 6f illustrates the effects of omitting 

correction of PSF anisotropy. If image resolution is anisotropic, intensity variation will be 

minimal along the direction in which resolution is lowest. As shown in Fig. 6f, bias is 

present in the uncorrected image in which the 3D structure tensor minor eigenvectors largest 

component is found to be parallel to the z-direction within CA1 and parts of the alveus.

Quantitative comparisons between water diffusion anisotropy and anisotropy of the structure 

tensor are presented in figures 7 and 8. In Fig. 7, FA color maps (Fig. 7a–c) and grayscale 

FA maps (Fig. 7d–f) are shown for DTI data (Fig. 7a,d), and 3D structure tensor data, 

calculated using a Gaussian convolution kernel with a width of σ = 0.5 μm (Fig. 7b,e) and σ 

= 3 μm (Fig. 7c,f). As is evident in the FA color maps, the orientation of the structure tensor 

minor eigenvector remains constant over this range. Although close correspondence is 

observed between the structure tensor minor eigenvector and DTI primary eigenvector 

orientations throughout the field of view, there are regions of similarities as well as 

differences between FAST and FA. Within CA1 and the alveus, the same heterogeneous 

pattern is observable, in which anisotropy is lowest at the CA1/alveus border, and higher 

within neighboring gray and white matter regions. However, within the ILF, FA is uniformly 

high (0.7 to 0.8) whereas FAST is highest at the alveus/ILF border, and FAST decreases from 

approximately 0.75 at its highest value to approximately 0.5 deep within the ILF. In figures 

7a–f, FAST and FA are observed to vary as a function of position along the horizontal 

Khan et al. Page 9

Neuroimage. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



direction (the “x”-direction, Fig. 7a), but FAST and FA are constant along the vertical 

direction. In Fig. 7g, FAST and FA values are averaged along the vertical direction, and the 

averaged FAST values are plotted for σ = 0.5 μm and σ = 3 μm, alongside FA values. The 

effect of Gaussian convolution kernel width is for FAST to increase slightly with σ.

The influence of the neighborhood size on FAST was examined as shown in figure 8. Color 

FA (Fig. 8b–e) and grayscale (Fig. 8g–j) FAST maps are shown for a range of neighborhood 

sizes, and these are compared to the DTI data shown in Fig. 8a and f. For all calculations, 

the Gaussian kernel width was σ = 2 μm, the neighborhood size in the z-direction was 12.5 

μm, and the in-plane dimensions were 12.5×12.5 μm (Fig. 8b,g), 37.5×37.5 μm (Fig. 8c,h), 

75×75 μm (Fig. 8d,i), and 112.5×112.5 μm (Fig. 8e,j). It was not possible to vary the 

neighborhood size in the z-direction due to the thickness of the tissue section. Average FAST 

values are shown as a function of horizontal position in Fig. 8k. As can be seen, within CA1 

and alveus, FAST values approach DTI-derived FA as the neighborhood size approaches the 

voxel volume used in the d-MRI experiment. However, within the ILF, discrepancies are 

observed at all neighborhood sizes examined, in which FAST nearest the alveus/ILF border is 

highest, and FAST decreases with depth within ILF. The correlation between FAST and FA is 

directly compared in Fig. 8l (12.5×12.5×12.5 μm neighborhood size) and Fig. 8m 

(112.5×112.5×12.5 μm neighborhood size), in which data from CA1, alveus, and ILF, are 

color-coded red, blue, and green, respectively. For the smaller neighborhood size, the 

correlation between 3D structure tensor and DTI is poor. However, for CA1 and alveus 

voxels, the correlation between 3D structure tensor and DTI improves markedly with 

increased neighborhood size. Within the ILF, a persistent discrepancy between FAST and FA 

is observed, in which FAST is lower than FA within the deep ILF (right-most side of Fig 8k) 

regardless of neighborhood size. To explore this discrepancy in greater detail, individual 

eigenvalues of the structure tensor are plotted as a function of horizontal position 

specifically within the ILF in Fig. 9b. Throughout the ILF, the eigenvalue associated with 

lowest intensity variation (τ3) is oriented in the through-plane direction and remains 

constant. In contrast, the largest structure tensor eigenvalue is associated with an eigenvector 

oriented in the left/right direction in Fig. 9a, and this eigenvalue varies from a relatively high 

value proximal to the alveus/ILF border to a lower value that approaches τ2 deep within the 

ILF. Thus, reduced in-plane image intensity variation on the right side of the Fig. 9a 

compared to the left underlies the varying degrees of agreement between FAST and FA 

observed throughout the ILF.

DISCUSSION

With recent advances in tissue preparation methods (Kim et al., 2013; Kuwajima et al., 

2013; Wu et al., 2014) and microscope configurations (Wu et al., 2013) designed to improve 

3D light microscopy capabilities, 3D analyses for validating d-MRI findings will become 

increasingly powerful. Here, an extension of 2D structure tensor determinations to 3D is 

presented. The purpose of this work is to make structure tensor analyses possible in tissue 

sections that are not cut parallel to the orientation of underlying cellular structures. 

Quantitative anisotropy indices obtained from 2D structure tensor calculations depend on the 

angle between the sectioning plane and the structure tensor minor eigenvector. This 

dependence introduces a potential confound for 2D structure tensor analyses but the 
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sectioning plane orientation does not influence 3D structure tensor calculations. The DiI 

immersion staining method used for this work was designed to non-specifically label 

membrane structures for purposes of d-MRI validation (Budde and Frank, 2012). Brain 

tissue from a nonhuman primate hippocampus and associated WM was used for 

implementing the method because it contains regions with three distinct groups of 

orthogonal fiber orientations. In addition, the cellular morphological characteristics of this 

structure are of functional significance, including the potential to reveal responses to 

environmental stimuli such as stress (Vestergaard-Poulsen et al., 2011).

In order to obtain 3D structure tensor orientations that resemble those of diffusion tensors in 

orientation-weighted FA maps, it was found that three operations were necessary to remove 

sources of 3D structure tensor anisotropy introduced by the confocal measurement system. 

As shown in Fig. 6, de-trending of the z-dependent intensity variation, correction for 

anisotropic tissue shrinkage, and application of a blurring filter in the x and y dimensions 

were each necessary. It is noted that the need for these steps arises from sectioning and 

confocal microscopy measurement through more than 100 μm of non-transparent tissue. 

Thus, in future work it may be possible to utilize optical clearing methods (Kuwajima et al., 

2013) to enable the analysis of thicker and more transparent tissue sections. Such efforts 

may reduce or remove the need for the post-acquisition data processing steps described here.

Although the correction methods enabled structure tensor orientation maps to be generated 

that correspond to diffusion tensor orientations, differential results were observed between 

magnitudes of 3D structure tensor and diffusion tensor fractional anisotropy values. Within 

the CA1 GM and alveus, FAST was larger than FA for small neighborhood sizes, but as the 

neighborhood size was increased to approach the d-MRI voxel size, the CA1 and alveus 

FAST decreased toward the value of FA. Within the ILF however, FAST was more similar to 

FA near the alveus/ILF border than deep within the tract. This discrepancy was not resolved 

by changing the 3D structure tensor neighborhood size, and although differences between 

FAST and FA could not be assigned to any obvious structural/morphological characteristic 

within the ILF WM, inspection of the structure tensor eigenvalues revealed that differences 

in image intensity variation in x vs. y directions present near the alveus were absent in deep 

ILF tissue (Fig. 8b–e) which resulted in the observed FAST variation. Additional analyses 

were also performed in which the image derivatives Ix, Iy, and Iz were normalized by the 

length of the vector ∇I (data not shown). These analyses yielded a similar discrepancy 

between FAST and FA in the deep ILF but not at the alveus/ILF border, which indicates that 

heterogeneity in image gradient orientation, rather than the magnitude of the image 

derivatives, underlies the differential agreement between FAST and FA throughout the ILF. 

These differences between FAST and FA serve to emphasize the intrinsic differences 

between d-MRI and structure tensor analyses of DiI-stained tissue. Whereas d-MRI reveals 

anisotropy of water diffusion, the structure tensor analysis provides a measure of anisotropy 

in the variation in staining intensity. Several factors, such as axon diameter, myelin sheath 

thickness, packing density of stained fibers, and the spatial scale of each of these factors 

relative to the resolution of the light microscope images, could influence DiI staining 

intensity variation. Thus, in 3D structure tensor applications designed to validate 

quantitative diffusion MRI measurements and interpretations, fundamental differences in the 
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techniques should be recognized as potential limitations in quantitative comparisons 

between d-MRI and 3D structure tensor results.

A number of methods have recently been described for using light microscopy to validate 

interpretations of d-MRI measurements in terms of cell morphology and intra-voxel fiber 

orientation dispersion (Budde and Frank, 2012; Choe et al., 2012; Flint et al., 2010; Hansen 

et al., 2011; Jespersen et al., 2012; Leergaard et al., 2010a). From these studies, two image 

analysis strategies have emerged. In the biophysical modeling strategy, manual (Dean et al., 

2013; Leergaard et al., 2010a) or automatic (Jespersen et al., 2012) tracing is performed to 

construct models of neurons. These could in principle be used as boundary conditions for the 

diffusion equation in simulations, but in practice to date have been used in combination with 

simplifying assumptions to model diffusion restricted by cellular membranes (Jespersen et 

al., 2010; Jespersen et al., 2007; Jespersen et al., 2012; Kroenke et al., 2004). Advantages of 

this strategy stem from the fact that assumptions related to the connection between the d-

MRI signal and cellular structural characteristics are made explicitly, which facilitates the 

interpretation of diffusion measurements in terms of cellular structure and morphology. The 

disadvantages of this approach are 1) that it relies on a staining method that selectively 

labels cells so that reconstructions can be performed, and this constraint can introduce bias 

in the set of cells that are labeled, and 2) that reconstructions are time consuming and 

operator dependent. The alternate method of d-MRI validation is the statistical/empirical 

strategy. In this approach, statistical quantities such as cell number or component volume 

fractions (Jespersen et al., 2010; Vestergaard-Poulsen et al., 2011), fiber orientation density 

metrics (Choe et al., 2012), or structure tensor metrics (Budde and Annese, 2013; Budde and 

Frank, 2012; Budde et al., 2011; Leigland et al., 2013) are compared to quantitative 

outcomes from d-MRI measurements. Although a disadvantage of this empirical strategy is 

that it relies on correlations between measured parameters rather than direct biophysical 

modeling, this can be offset by its flexibility and ease of implementation. Structure tensor 

measurements in particular have been demonstrated to be possible using a wide variety of 

staining techniques (Budde and Annese, 2013; Budde et al., 2011). Given the flexibility with 

regard to staining procedure, additional nonspecific fluorescent microscopy methods that do 

not rely on “exogenous probes,” such as imaging following glutaraldehyde fixation 

(Christensen et al., 2014), could likely further complement structure tensor analyses of DiI-

immersion stained tissue.

An additional specific advantage of structure tensor analysis as a d-MRI validation tool is 

the ability to control the kernel size for calculating spatial derivatives, which is analogous to 

controlling the diffusion time in a d-MRI experiment, and the neighborhood size, which is 

analogous to controlling the d-MRI image resolution. For the tissue examined here, 

anisotropy in the 3D structure tensor did not change appreciably as the Gaussian kernel 

standard deviation ranged from 0.5 to 3 μm. In contrast, manipulation of the neighborhood 

size did influence FAST measurements in a predictable manner. In future work, biophysical 

modeling approaches could be incorporated into the empirical structure tensor analysis 

framework by replacing the spatial derivatives in Eqs. [1–2] with operations that more 

closely resemble the response of the d-MRI signal to molecular diffusion. Even as an 

empirical tool, however, structure tensor analysis has already demonstrated utility for 
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validating d-MRI measurements, and it is hoped that generalization of this method to 3D 

will further contribute to its flexibility (Budde and Annese, 2013; Budde and Frank, 2012; 

Budde et al., 2011; Leigland et al., 2013).

CONCLUSION

Here we demonstrate the ability to perform 3D structure tensor analyses on confocal light 

microscopy data of DiI-stained primate hippocampal tissue. The advantage of 3D structure 

tensor analysis relative to 2D derives from the ability to characterize through-plane 

anisotropy, in a manner that is similar to MRI-based diffusion anisotropy measurements. It 

is envisioned this analysis will extend the utility of structure tensor-based validation 

analyses by removing the need to section tissue in a direction orthogonal to the primary 

direction of diffusion anisotropy, and by enabling the analysis of tissue in which primary 

diffusion directions of interest are oblique to a single 2D plane.
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Highlights

• Diffusion MRI (d-MRI) is an important neuroimaging modality that is in need 

of validation

• Structure tensor (ST) analysis of light microscopy data has been generalized 

from 2D to 3D

• 3D ST analysis can be performed independent of tissue sectioning plane 

orientation

• 3D ST analysis is implemented on confocal microscopy images of hippocampal 

tissue

• Agreement is observed for the 3 dominant tissue orientations present in the 

hippocampal sample
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Figure 1. 
(a) Coronal section of rhesus macaque brain following dissection of hippocampal tissue 

analyzed in this study. (b) Directional diffusion FA map of hippocampus. Anisotropic 

diffusion oriented in the left/right, up/down, and in/out of plane directions are indicated by 

red, blue, and green colors, as described in the text. (c) A 2D montage of a 200 μm-thick 

hippocampal tissue section obtained at 10x magnification using 3D confocal microscopy. (d) 

Directional FA map of the region subsequently analyzed by 3D confocal microscopy. 

Dashed black rectangle indicates the location of the yellow box in Fig. 1b, and corresponds 
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to the location indicated by the yellow box in Fig. 1c. (e) One slice of the 3D image acquired 

at 63x magnification, digitized at 0.25μm resolution on confocal microscope. Scale bars (a) 

10 mm, (b) and (c) 1mm, (d) and (e) 200 μm; Abbreviations: ILF: Inferior longitudinal 

fasciculus; CA: Cornu Ammonis.
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Figure 2. 
(a) An xy slice of the 3D montage acquired using a 63x objective. Regions (b–d) show 

magnified xy, xz (lower), and yz (right) planes from the labeled green squares in (a). The xz 

planes prior shrinkage correction are shown in (e–g).
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Figure 3. 
(a) A synthetic image of a solid cylinder was constructed for illustrating properties of the 

structure tensor. Here only the surface of the cylinder is shown. (b) A subset of image 

intensity gradient vectors corresponding to (a) are shown. (c) Structure tensor eigenvectors 

(red, blue, and green) are shown together with the population of gradient vectors (black). 

The structure tensor eigenvector that corresponds to the minor eigenvalue (red) is parallel to 

the cylinder axis of symmetry. The two other eigenvectors correspond to eigenvalues equal 

in magnitude, and therefore assignment of the major eigenvector is arbitrary for this axially 

symmetric structure.
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Figure 4. 
(a) Plot of average image intensity in the 3D montage as a function of distance from the 

coverslip. (b) Plot of average image intensity in 3D montage following intensity correction. 

Insets show yz slices before (a) and after (b) intensity bias correction.
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Figure 5. 
(a) A 63x image of the three-layered sample used for PSF determinations. Inset image (i) of 

single bead prior to, and (ii) following PSF correction. (b) Standard deviation of PSF widths 

(σx, σy and σz) calculated from micro-beads at 0 μm, 40 μm and 80 μm distance from the 

coverslip.
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Figure 6. 
(a) An xy plane of the 3D montage. (b) Directional diffusion FA map. (c) A directional 

FAST map with all three corrections, (d) without intensity correction, (e) without anisotropic 

shrinkage correction, and (f) without PSF correction.
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Figure 7. 
(a–c) Directional FA maps and (d–f) grayscale FA maps following DTI and 3D structure 

tensor analyses. (a) and (d) are d-MRI data, (b) and (e) are FAST with σ = 0.5 μm and (c) and 

(f) are FAST with σ = 3.0 μm. (g) FA (solid thick line) and FAST (dashed and dotted thin 

lines) values were averaged along the vertical (y) direction and plotted vs. position along the 

horizontal (x) direction.
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Figure 8. 
(a–e) Directional FA maps and (f–j) grayscale FA maps following DTI and 3D structure 

tensor analyses. FAST values were determined with neighborhood sizes of (b,g) 

12.5×12.5×12.5 μm3, (c,h) 37.5×37.5×12.5 μm3, (d,i) 75×75×12.5 μm3, and (e,j) 

112.5×112.5×12.5 μm3 with a Gaussian kernel width σ = 2.0 μm. (k) Average FAST values 

(thin lines) and FA values (thick line) are shown as a function of horizontal position in the 

hippocampal montage. (l) and (m) are correlation plots between FAST (ordinate) and FA 

(abscissa) with neighborhood size 12.5×12.5×12.5 μm in (l) and 112.5×112.5×12.5 μm (m).
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Figure 9. 
(a) Microscopic image of the ILF region of the hippocampal montage. (b) Each of the 

eigenvalues are averaged over the vertical (y) direction, and plotted as a function of the 

horizontal (x) direction.
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