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Cerebral cartography and connectomics pursue similar goals in attempting to

create maps that can inform our understanding of the structural and functional

organization of the cortex. Connectome maps explicitly aim at representing

the brain as a complex network, a collection of nodes and their interconnecting

edges. This article reflects on some of the challenges that currently arise in the

intersection of cerebral cartography and connectomics. Principal challenges

concern the temporal dynamics of functional brain connectivity, the definition

of areal parcellations and their hierarchical organization into large-scale net-

works, the extension of whole-brain connectivity to cellular-scale networks,

and the mapping of structure/function relations in empirical recordings and

computational models. Successfully addressing these challenges will require

extensions of methods and tools from network science to the mapping and

analysis of human brain connectivity data. The emerging view that the brain

is more than a collection of areas, but is fundamentally operating as a complex

networked system, will continue to drive the creation of ever more detailed and

multi-modal network maps as tools for on-going exploration and discovery in

human connectomics.
1. Introduction
Cartography, or map-making, is the conception and creation of a graphical rep-

resentation of a system or object. In most cases creating maps means projecting a

selected subset of traits or features onto a low-dimensional space for purposes of

visualization. For example, geographical maps are typically flat (two-dimensional)

representations of morphological features of the Earth’s surface. Geographical

maps distill vast amounts of knowledge, give a comprehensive picture of spatial

relations among places, and enable search and navigation. Quite analogously,

brain mapping involves building representations of the brain’s major constituent

regions, recording their topography (e.g. their extent, location and geometric/

spatial relations), and displaying their physiological and anatomical characteristics.

‘Cerebral cartography’ in particular has occupied an important role in the study of

the human cortex, where brain maps have been indispensable tools in the on-going

quest of correlating brain anatomy with psychological and cognitive function [1].

In the modern era map-making is increasingly tied to ‘sense-making’, the

visualization of complex data in order to reveal patterns of organization that

enable data management and discovery [2,3]. Particularly important are efforts

to map the networked interactions that pervade complex socio-technological

and biological systems [4]. Prominent examples of such network maps chart

protein–protein interactions in cells [5], genetic associations among common

human diseases [6], the global spreading of epidemics [7] and interactions

among species in an ecosystem [8]. Building network maps is an integral part

of an emerging scientific discipline called ‘network science’ [9,10], the cross-

disciplinary study of the structure and function of complex interconnected

systems. Network science capitalizes on the fact that many complex systems

can be decomposed into sets of elements (nodes) and their mutual relations

(edges or connections). Jointly, the arrangement of these nodes and edges

defines the network’s topology. The topology summarizes how nodes and

edges link together, essentially corresponding to a map of ‘what is connected

to what’ within the system of interest. While many network maps emphasize

non-spatial aspects of topology over geometric or spatial relations, these two

aspects of mapping complex systems are often strongly related, since the
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Figure 1. Maps of structural brain connectivity from nineteenth century cerebral cartography and present day connectomics. (a) A depiction of major white matter
association pathways by the Belgian anatomist Arthur Van Gehuchten [18]. (b) A similar lateral view by the Austrian neurologist Heinrich Obersteiner [19]. (c) An
early map of the brain’s white matter connections represented as a network. Spheres mark cortical parcels (network nodes) and lines represent their connections
(network edges) as mapped with diffusion imaging and tractography [20]. Only the strongest connections are included in the plot. The network is shown with nodes
placed into their anatomical coordinates, hence preserving the spatial embedding of the network. (d ) The same network as in (c), but with nodes placed by a widely
used visualization algorithm that projects the network into two dimensions and places nodes such that densely connected regions are located nearby. Most highly
connected parts of the brain, corresponding to portions of the cingulate and posterior parietal cortex, are placed in the centre of the plot. See Hagmann et al. [20]
for details.
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presence or absence of connections may depend on the

arrangement of nodes in physical space.

While the informal use of the term ‘network’ has a long his-

tory in the neurosciences (often interchangeably used with the

term ‘circuit’), the direct application of quantitative tools for

mapping and analysing networks to making maps of the

brain is a relatively recent development. Starting with seminal

efforts to create connectivity maps of anatomical brain systems,

especially the primate cortex [11–13], the goal of building such

maps for the human brain gave rise to ‘human connectomics’,

the project of creating comprehensive network maps of the

human brain [14–17] (figure 1). Connectomics has become a

broad field of inquiry—it comprises studies of anatomical net-

works of individual neurons, neuronal populations and large-

scale brain systems, as well as studies of their functional

dynamics and interactions. A major motivation for human con-

nectomics derives from the theoretical idea that network maps
are fundamental for understanding the brain’s structural and

dynamic organization. The objectives of connectomics are

complementary to those of cerebral cartography—while con-

nectomics charts the topology of brain networks, leveraging

the extensive tools and methods of network science and

graph theory, cartography is mainly concerned with building

spatial maps that record brain topography. Together, cerebral

cartography and connectomics are natural adjuncts in the on-

going quest to make maps of the brain that reveal the principles

of its architecture and organization, its evolutionary origins

and its capacity to create complex dynamics that underpin

behaviour and cognition [21].

The goal of this article is to identify critical challenges and

future developments at the intersection of cerebral cartography

and connectomics. The article begins with a brief definition of

core terms and concepts in brain connectivity and brain net-

works, drawing an important distinction between networks
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that record structural versus functional relations. The next section

focuses on the key role of connectivity for defining anatomical

and functional regions and sub-systems in the brain. Core

themes here are the use of anatomical and/or functional connec-

tions to delineate the borders of coherent brain regions, and the

application of various clustering and module detection methods

to parse the brain into larger anatomical and/or functional sub-

systems. The following three sections concentrate on three

different aspects of how structural connectivity relates to brain

function: the important role of model organisms for understand-

ing this relationship at the level of individual neurons and

circuits, the role of structural information in predicting patterns

of neural dynamics and the prospect of building increasingly

realistic network-based computational models of the brain.
.R.Soc.B
370:20140173
2. Mapping dynamic brain networks
One of the most fundamental challenges for the study of brain

networks is the appropriate definition of network elements

(nodes and edges) and an explicit consideration of the neuro-

biological underpinnings of neural measures and signals that

are employed in network construction. Especially important

is the distinction between two main modes of brain con-

nectivity—structural connectivity and functional connectivity
[21,22]. Structural connectivity refers to maps of anatomical

connections between pairs of nodes, corresponding to the

popular notion of the ‘wiring diagram’. In aggregate, such con-

nections define structural networks, and these networks are

generally sparse (i.e. only a small number out of all possible

anatomical connections exist). The strengths of anatomical con-

nections are often expressed as a connection density or weight.

Structural networks can be annotated with physiological data

on synaptic efficacy or biophysical data on neurotransmitter

systems. The complete set of all structural connections is the

‘connectome’, a network map of the synaptic connections

and projections comprising a nervous system [14,15,21].

Functional connectivity is defined quite differently. It refers

to estimates of pairwise statistical dependencies between

time courses of neuronal activity [23,24], in the simplest case

expressed as the system’s covariance or correlation matrix.

Functional networks can be dense (as for cross-correlations)

or considerably sparser (as for partial correlations, or for

measures that extract directed or causal influences). A major

difference between structural and functional networks is that

the former are relatively stable (at least on time scales of seconds

to minutes) while the latter are inherently dynamic and time-

dependent. Indeed, electrophysiological recordings indicate

that changes in dynamic couplings among neurons or neuronal

populations can occur as fast as tens or hundreds of millise-

conds. Functional connectivity can be measured with a wide

variety of recording or imaging methodologies—hence, esti-

mates of functional connectivity are strongly dependent on

acquisition techniques and parameters. In humans the majority

of studies examining functional connectivity over the past sev-

eral years have been based on fluctuations in blood oxygenation

level dependent (BOLD) signals observed during a task-free or

‘resting’ state [25–27]. Despite its unconstrained nature, numer-

ous studies have shown that spatial and temporal patterns of

resting-brain activity are robust and reproducible, and that

they provide rich information about the brain’s functional

organization [28,29]. Resting-state functional connectivity is

generally expressed as the cross-correlation of time series of
BOLD signals recorded with functional magnetic resonance

imaging (fMRI) across the whole brain.

Once translated into network form, both structural and

functional connectivity can be analysed and modelled using a

large set of quantitative tools from graph theory and network

science [22,30,31]. Method development is an active area of

human connectomics, as is the development of more refined

and sensitive approaches to mapping of structural and func-

tional connectivity [32], currently subject to numerous

methodological biases and shortcomings. Among the most pro-

minent are the inability to extract directionality of projections

from non-invasive diffusion imaging data [33], the uncertain

biological basis and validity of measures expressing the density

or magnitude of anatomical projections [34], and the failure

of simple functional connectivity measures such as cross-

correlation to distinguish between direct and indirect influences

[35]. The latter shortcoming is addressed by measures of ‘effec-

tive connectivity’ that estimate networks of causal dependencies

[36] and can be powerful tools for network discovery [37]. Other

methodological issues surrounding the construction of brain

networks involve the compatibility of different acquisition

parameters and pre-processing methods [38,39], test-retest

reliability for estimating connection maps in both structural

[40] and functional modalities [41–43] and comparisons of pat-

terns of connectivity estimated with different time-series

analysis tools [44].

A majorchallenge arises from the observation that functional

connectivity is both time- and task-dependent. For example, a

comparison of resting-state functional connectivity with task-

evoked functional connectivity, estimated across a broad range

of task domains, has shown characteristic changes in subsets

of functional connections as the brain switches between task-

related states [45]. Even the so-called ‘resting-state’ appears to

exhibit dynamic patterns involving changes in the strength

and topology of functional networks, and characterizing these

dynamic time-varying patterns represents a challenging new

frontier for studies of functional connectivity [46,47]. For

example, a sliding window analysis of resting-brain functional

connectivity has shown that variability exhibits regional differ-

ences, with a ‘zone of instability’ that includes several highly

connected and highly central regions [48]. Other studies have

presented evidence for non-stationary fluctuations in the

strengths of functional connections between specific pairs of

brain regions [49,50]. While the precise nature and extent of

these fluctuations in resting-brain fMRI functional connectivity

remains under investigation, much evidence suggests that,

at faster time scales accessible with electroencephalography/

magnetoencephalography (EEG/MEG) or electrocorticography,

dynamic interactions among neuronal populations are highly

variable [51], engage in sets of recurrent network patterns or

motifs [52], respond sensitively to momentary demands

imposed by the external environment [53] and are related to

behavioural performance [54]. Theoretical studies point to

potential functional roles for dynamic variability of functional

connectivity in the resting brain. For example, this variability

resembles a so-called ‘critical state’, a dynamic regime poised

between highly random and highly regular patterns character-

ized by series of noisy fluctuations [55]. These noisy dynamics

define a repertoire of network states that is continually rehearsed

and revisited in the resting brain.

Taken together, these studies paint a complex picture of

time-based (functional connectivity) brain maps, the brain’s

‘chronoarchitecture’ [56]. On the one side, the extended web
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Figure 2. Parcellation and network community detection. (a) A boundary map derived from group-averaged (n ¼ 160) resting-state functional connectivity. ‘Hot
colours’ (red/yellow) in edge density mark locations on the cortical surface where patterns of functional connections exhibit abrupt changes, corresponding to
boundaries between relatively homogeneous (black/blue/purple) regions. (Adapted with permission from Gordon et al. [61].) (b) A network map of the cerebral
cortex derived by clustering resting-state functional connectivity measured in a large number of participants (n ¼ 1000) into seven network communities. These
communities correspond to several well-studied resting-state or intrinsic connectivity networks. (Adapted with permission from Yeo et al. [62].)
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of statistical dependencies among the neural time courses of

remote brain regions is highly consistent when measured and

averaged over many minutes of brain activity. Over such

long sampling periods, functional connectivity may be inter-

preted as a reflection of anatomical constraints, rather than

of specific brain responses or computations. However, over

shorter time periods, functional connectivity appears highly

variable as it reflects neural activations and interactions that

occur in response to acute changes in internal state, tasks

and stimuli. Characterizing the dynamic nature of functio-

nal connectivity represents a key challenge for cerebral

cartography—creating dynamic brain maps will require devel-

oping new ways to capture temporal variability and context

dependence of functional networks.
3. Parcellation and community detection
Since the beginnings of cerebral cartography, anatomists have

expended extraordinary efforts to discern and map structu-

ral features of cortical micro-anatomy in order to define

architectonic boundaries between brain areas. Increasingly,

such areal maps are enriched by addition of multi-modal

information such as data on gene expression patterns [57],

energy metabolism [58] and meta-analyses of databases on

regional brain activation patterns [59,60]. This multi-modality

may ultimately result in maps that, like ‘Google Earth’, will

allow the user to ‘zoom in’ on anatomical locations and

view different layers of data types, with each layer represent-

ing distinct aspects of brain anatomy, physiology or function.
Such maps would not only represent the brain in new ways

but also aid in integrating multiple data domains, revealing

multi-level interactions from molecules to structural anatomy

and activity patterns of cells and circuits.

Creating accurate parcellations of the cerebral cortex

remains challenging (figure 2). In this on-going endeavour,

data on brain connectivity have turned out to be highly useful

for defining the borders of cortical areas. Numerous strategies

have been pursued in the past, including clustering of fibre bun-

dles and tractography-derived streamlines [63], myelination

patterns [64], boundary detection [65] and region-growing

methods applied to resting-state functional connectivity [66],

or combinations of functional connectivity and task-evoked

regional activation profiles [67]. All of these strategies build on

the notion that connectivity defines function. According to

this idea, what and how a patch of cortex ‘computes’ (how it

transforms inputs into outputs) depends crucially on its connec-

tional relations with other patches of cortex and subcortex [68].

In fact, it has been consistently found that each anatomically dis-

tinct brain region maintains a specific and unique pattern of

inputs and outputs. The similarities between these connection

‘fingerprints’ can be used to cluster regions into functionally

related sub-groups [69,70]. Connections that are made over

longer distances are generally sparser than short-distance

connections [71], suggesting a strong role for long-distance

projections in specialized cortical processing.

Connectivity-based parcellation has begun to make impor-

tant contributions in more refined mapping of some parts of

the cerebral cortex. For example, recent studies using structural

connectivity patterns have revealed new subdivisions of
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Broca’s area [72], cingulate cortex [73], parietal cortex [74,75]

and the frontal pole [76], among others. Some studies have

suggested that regional borders defined through structural

and functional parcellation significantly overlap [77], and

others have shown that structural and functional organiza-

tion closely parallel each other [78]. Yet, the generality and

extent to which functionally established boundaries between

regions agree with cytoarchitectonic or anatomically defined

boundaries across the cortical surface is currently unknown.

While the aim of parcellation is to define relatively small-

scale areas or regions, the related methodology of community

detection is generally applied at the whole-brain level to

define communities (clusters or ‘modules’) of areas that form

extended networks [79,80]. It should be noted that the term

‘module’ is used in this context to refer to sets of densely inter-

connected cortical regions, and that its usage does not imply

strict cognitive specialization or discrete ‘mental faculties’ [81].

Applications of community detection have yielded significant

new insights about the organization and spatial arrangement

of extended brain networks, especially coming from the use of

resting-state functional connectivity [29]. Several systematic sur-

veys have converged onto a taxonomy of resting-state (or

intrinsic) networks that are reliably observed across large num-

bers of participants [62,82,83], can be robustly measured across

different sites and acquisition protocols [28], resemble sets of

areas that are co-active during a range of behavioural tasks

[84], and exhibit topological features (e.g. modularity) that are

directly relevant to cognitive function [85].

An interesting issue for the future concerns the relationship

between areal parcellations and partitioning of the cortex

into coherently active and spatially extended network com-

munities. Are these network communities composed of

discrete and non-overlapping sets of areas, or can areas straddle

network boundaries and participate in multiple large-scale

networks at different times? Recent work suggests that some

parts of the cortex are more rigidly associated with a single net-

work, while others can participate in multiple networks [86].

A related set of questions concerns the uniformity and temporal

stability of both areal and network representations. For

example, do task-evoked activations always respect areal

boundaries, as established for example by connectivity-based

gradient methods? Comparison of areal boundaries derived

from resting-state functional connectivity with task-evoked

areal activations and cytoarchitectonic boundaries suggests a

high degree of spatial correspondence [61,87]. Other data

suggest that, in addition to areal boundaries, supra-areal assem-

blies or ‘map clusters’ may also play an important functional

role [88]. A related question concerns the extent to which intrin-

sic or resting-state networks represent coherent functional units.

Recent studies suggest that resting-state networks can be

further decomposed and hence may not always respond

uniformly in diverse task contexts. For example, a convergent

set of findings suggests variable task-dependent patterns of

functional interactions among sub-components of specific rest-

ing-state networks, e.g. the default mode network [89–91],

executive control networks [92] and saliency networks [93].

The emerging picture is considerably more complex than

perhaps was anticipated in the early days of cerebral carto-

graphy, which were dominated by the idea that the cortical

surface could be unambiguously subdivided into a mosaic

of discrete and non-overlapping areas, each internally coher-

ent and functionally specialized. Instead, the anatomical and

functional units of the cortex may be more adequately
represented as a nested hierarchy ranging from large-scale

components or networks, to differentially engaged sub-

components that can in turn be subdivided into finer and

finer parcels. Classic brain areas may reside at a level that is

somewhat distinct in terms of cortical microstructure and/or

connectivity, but above and below this level areas blend into

both finer and coarser partitions that manifest at different

spatial scales. In line with this view, network analyses have pro-

vided evidence for hierarchical modularity in human structural

[94] and functional brain networks [95]. Network analysis

suggests that the theoretical framework of functional specializ-

ation and integration [96–98] requires extension to include

multi-scale organization and dynamics [99,100]. This represents

another future challenge for cerebral cartography—capturing

the hierarchical arrangement of the brain’s anatomical and

functional units across multiple scales, from extended networks

to local neuronal populations.
4. Mapping structure and function in model
organisms

The remainder of the article will centre on how cerebral car-

tography and connectomics can make progress towards

integrating structural and functional brain (network) maps.

Structure/function relations are of fundamental importance

in many biological systems—including the brain. One of the

long-standing objectives of cerebral cartography is to link

the physical arrangement of the brain’s neural elements to

their functional roles. Connectomics shares this integrative

perspective on structure/function relations. Since the begin-

ning, connectomics was explicitly motivated by the desire

to provide mechanistic (structural) accounts of functional

brain activity. This goal was a central objective in the original

proposal for mapping the human connectome [14], and it was

also inherent in the compilation of the Caenorhabditis elegans
connectome, carried out at the level of individual neurons

and synapses more than a quarter century ago [101]. In

fact, model organisms such as C. elegans offer unique oppor-

tunities for understanding how network structure and

function relate at the scale of cells and circuits.

At the microscale, modern advances in circuit mapping

and manipulation [102] have begun to significantly expand

our understanding of how circuit topology relates to neural

computation and behaviour. Many important insights have

come from studies in model organisms. For example, analysis

of the ‘wiring diagram’ of the C. elegans adult male [103]

has revealed network features such as multiple parallel path-

ways that link sensory neurons to effector neurons, some

degree of recurrence within sensory systems, and structural

modules—all features that can be related to specific aspects

of sensorimotor processing and behaviour. In another study

[104], differences in the synaptic connectivity of the pharyngeal

nervous system of two nematode species could explain

differences in their feeding behaviour. In Drosophila, the recon-

struction of microscale wiring patterns in the optic medulla, a

brain structure involved in motion detection, revealed specific

connectional patterns of inter-neurons that were consistent

with their specific roles in generating direction selectivity

[105]. The Drosophila nervous system is also being mapped at

the scale of the whole brain, and these mapping efforts are

useful for demonstrating the structural basis of several well-

studied behaviours. One approach involved the aggregation
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of thousands of single-neuron images into a map of functional

subdivisions, so-called ‘local processing units’. The resulting

mesoscale connectivity map comprised 41 nodes and their

weighted interconnections [106]. Community detection

methods revealed distinct network modules whose members

were functionally specialized to carry out visual, olfactory,

auditory and motor processing.

Microscale structure/function relations are also increasingly

explored in vertebrate animals, particularly in the mouse brain.

Using serial block-face electron microscopy, a recent study car-

ried out in the mouse retina [107] showed specific patterns of

structural connectivity between amacrine and ganglion cells

that coincided with physiologically measured direction selectiv-

ity of individual neurons. These ‘dense reconstructions’ at the

sub-micrometer scale are continually growing in size and

scale. Most recently, the use of a combination of manual annota-

tion and machine learning has resulted in the construction of a

synaptic ‘contact matrix’ among approximately a thousand

neurons in the inner plexiform layer of the mouse retina [108].

Microscale connection motifs in this matrix revealed circuit

mechanisms underlying motion detection and other aspects of

visual function. A related study has shown that specific

wiring patterns among individual amacrine and bipolar cells

can account for the timing and receptive field properties of

these neurons in motion detection [109]. These findings stron-

gly underscore the importance of circuit structure for circuit

function [110].

Outside of the retina, similar dense reconstruction approa-

ches combined with physiological recordings are beginning

to reveal structure/function relations in specific regions of

mouse cerebral cortex. An example is an analysis of anatomy

and physiology of a subset of neurons in primary visual

cortex of the mouse [111]. First, functional properties of neurons

such as their preferred stimulus orientation were established by

using optical imaging. This was followed by serial sectioning

electron microscopy of the same tissue volume with the aim

of mapping and reconstructing synaptic interconnections

among these neurons. Detailed analysis of the structural con-

nection pattern revealed some specific connectional features

such as convergence of inputs from multiple pyramidal cells

with diverse orientation preference onto inhibitory neurons.

Structure/function relations are also seen at the larger scale

of whole-brain mouse connectome maps. For example, a com-

munity detection analysis of the anatomical connections of 10

areas of mouse visual cortex demonstrated a division of

mouse cortex into two processing streams somewhat analo-

gous to the dorsal/ventral streams found in primate visual

cortex [112]. In addition, several systematic efforts to compile

whole-brain mouse connectomes have been carried out. Aggre-

gation of data from hundreds of tracer injections into a single

network representation resulted in a directed connectivity

network that was shown to contain several modules corre-

sponding to sets of areas jointly involved in various sensory,

motor and integrative functions [113]. A parallel effort [114],

involving high-resolution optical imaging and tracing of

projections across the entire mouse brain, has resulted in an

even more comprehensive mouse connectome map which

charts the directed and weighted anatomical links among

295 grey-matter regions. Initial network analysis of this map

indicates the presence of high clustering as well as a number

of highly connected network hubs, network features that are

consistent with those found in a number of other mammalian

species [115].
These brain mapping studies in model organisms will

provide new methodological tools and approaches that even-

tually may become important for use in humans. While most

human cerebral cartography has so far been carried out at the

macroscale of regions and interregional projections, the next

few decades will likely see strong efforts to link macro-scale

human brain mapping to microscale circuits and maps of con-

nectivity at the level of single cells. For example, future

studies may capitalize on surgical interventions that offer the

opportunity to carry out single-cell physiology and micro-

anatomy in resected human tissue. This would allow more

detailed representation of regional ‘nodes’ as composed of

heterogeneous cell types and differentiated circuits. ‘Edges’

of connectivity maps at macro- and microscales will also

become more multi-dimensional, going beyond merely report-

ing adjacency (‘what connects to what’) by including data

on additional anatomical or physiological parameters of con-

nections, for example, axonal microstructure, myelination,

conduction velocity, neurotransmitter receptors, plasticity and

neuromodulators. Jointly, these more detailed node/edge fea-

tures reflect structural features of connectivity that contribute

to neuronal signalling and dynamic interactions reflected in

functional connectivity.
5. Predicting brain dynamics
The observation of large populations of neurons, potentially

including the whole brain, results in very rich datasets of neur-

onal time series, sometimes referred to as the brain’s ‘functional

connectome’ [116]. Studies in model organisms are beginning

to provide unprecedented insights into functional connec-

tomes imaged at the microscale of single-cell resolution.

Large-scale recording methods applied to organisms such as

the zebrafish larva yield whole-brain recordings of highly

resolved neural population activity [117], and these data can

be decomposed into functionally coherent circuits forming

clusters or modules [118]. The use of optogenetics may soon

open the possibility to not only monitor but also manipulate

circuit activity in behaving model organisms (e.g. [119]). The

complexity of cellular-scale whole-brain recordings presents

many challenges, which can be addressed for example by redu-

cing the dimensionality of the datasets through various

clustering or component mapping techniques [120–122].

Studies in mouse and macaque combining structural

connectome data and non-invasive recording of functional

brain activity are adding to our understanding of how anatomy

shapes dynamic functional connectivity at the meso- and macro-

scales. A recent study of monkey somatosensory cortex [123]

examined the relationship between structural and functional

connectivity at high spatial resolution. The study focused on

connectivity within two specialized areas of the squirrel

monkey somatosensory cortex (areas 3b and 1), both containing

representations of the digits of the monkey’s hand. Resting-state

functional connectivity was recorded with high-field strength

fMRI and exhibited topographically precise coupling between

corresponding digits across both areas, as well as within

area 3b. This pattern corresponded closely to anatomical connec-

tivity patterns observed after injections of anatomical tracers.

Overall, these findings suggest that connectivity within the squir-

rel monkey somatosensory cortex appears to be organized

anatomically and functionally in highly similar patterns.
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Correspondence between patterns of structural and func-

tional connectivity has also been observed at the whole-brain

level. Studies carried out in the macaque cortex found that

patterns of coherent spontaneous BOLD fluctuations are simi-

lar to patterns of anatomical connectivity derived from tract

tracing studies [124–126]. The relationship between patterns

of structural and functional connections extends to pairs of

regions that are not directly structurally linked. A detailed

analysis of macaque cortex functional connectivity patterns

demonstrated that strong coupling among brain regions

could be observed even if no direct anatomical connection

was present [125]. These functional connections were pre-

dicted by indirect structural paths and other more complex

network-wide coupling effects, strongly suggesting that func-

tional connectivity is due to a mixture of direct and indirect

effects emerging from the underlying structural network. In

support of this notion, both direct and indirect couplings

could be successfully captured in computational models

that were based on simulating dynamics constrained by

structural connectivity. Taken together, these studies suggest

a mechanistic role of structural connections in generating

organized patterns of neural dynamics.

In the human brain, direct comparisons of resting-state func-

tional connectivity and structural connectivity (connectome)

networks have revealed robust and reproducible statistical

relationships, lending further support to the idea that structural

connections shape functional connectivity. An early example

came from a systematic analysis of structural and functional

connectivity in a small cohort of human participants [20],

which reported robust correlations between the strengths of

structural and functional connectivity across the cortex.

A more detailed analysis of the same dataset [127] demonstrated

that this correlation persisted even after potential confounds

such as spatial proximity between regions were taken into

account. The analysis also showed that indirect structural con-

nections could account for a significant proportion of the

functional connectivity observed between node pairs lacking

direct linkage. This finding strongly suggested that functional

connectivity may be partly due to the passing on of indirect

influence along multi-step paths in the connectome [125].

More recent studies combining analyses of structural

and functional connectivity have confirmed the existence of

robust and significant statistical relationships between

structural and (resting state) functional connectivity in the

human brain (e.g. [128,129]). Computational analyses have

addressed how anatomical connections constrain not only

resting-brain functional connectivity, but also task-dependent

correlations in neural activity [130], suggesting that the

separation between distinct cognitive states is reflected in

the topology of the human connectome. This interpretation

is compatible with findings that suggest the existence of a

‘core functional architecture’ that is common to numerous

task-dependent and reconfigurable modes of functional

connectivity [131]. Anatomical connectivity may constrain

this shared core, thus effectively reducing the dimensionality

of the patterns of functional connectivity that emerge in

response to momentary task demands. The notion that

structural connections shape and/or constrain functional

connections is further reinforced by interventional studies

that have reported changes in functional connectivity result-

ing from targeted manipulations of the anatomical

substrate, e.g. callosotomy carried out in both humans and

non-human primates [132,133].
An important extension of structure/function relations is

in clinical and translational research that examines brain and

mental disorders. A large number of studies have attempted

to link dysregulation of functional connectivity patterns to

underlying disturbances of structural connectivity, e.g. in

disruptions of highly central nodes or edges [134,135]. Dis-

turbed structure/function relationships have been detected

in schizophrenia [136], and disruptions of both structural

and functional connectivity appear to be associated with

different neurodegenerative conditions [137]. These clinical

findings reinforce the need for cerebral cartography to cap-

ture not only normative patterns or population averages

but also individual differences in brain connectivity. Mapping

brain networks in individuals may provide new diagnostic

tools or measures, and may even become important for

developing new network-based interventions and therapies

that capitalize on charting the network architecture of an

individual’s brain. New approaches may involve targeted

manipulations of nodes or edges, e.g. with tools of brain stimu-

lation [138], in order to restore network function. Of particular

importance in this endeavour are new developments in com-

putational neuroscience that combine connectome data with

sophisticated computer models that can reproduce and predict

the dynamic activity of human brain networks.
6. Network-based computational models of the
brain

Linking brain structure to brain function is not only a major

challenge for cerebral cartography—it also offers unpreceden-

ted opportunities for building computational models of the

brain. Propelled by rapid progress in information technology,

high-performance computing and chip design, sophisticated

computational models aim at constructing large network

models of cortical micro- and macro-circuits capable of replicat-

ing realistic neuronal firing patterns. The sheer complexity of

the task and limitations on currently available anatomical and

physiological data may prevent the construction of cell-based

models of the human brain for some time to come. But these dif-

ficulties notwithstanding, ‘building a model of the human brain

in a computer’ will almost certainly remain an ambitious and

alluring goal for generations.

Modest and yet promising beginnings have been made,

especially in attempts to computationally reproduce empirically

observed features and patterns in resting-brain dynamics.

A series of models have addressed the structural basis of spon-

taneous or resting-brain functional connectivity as recorded

with fMRI (reviewed in [139]). The design of these models gen-

erally combines sets of biophysical equations that specify the

‘nodal dynamics’ of neurons or neuronal populations with

sets of coupling terms that define their ‘inter-nodal edges’.

These coupling terms are specified by a connectome map of

structural connectivity. The model generates time series that

can then be analysed using the same time series measures

(e.g. cross-correlations or measures of directed neuronal inter-

actions) that are employed in empirical studies. The approach

has been elaborated within the framework of the ‘Virtual

Brain’, a set of modelling, analysis and visualization tools that

allow users to upload anatomical and physiological data, per-

form simulations, and compare model results with empirical

observations [140].
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Figure 3. A network-based computational model of functional connectivity [148]. (a) The left triangular half of the plot shows a functional connectivity (cross-
correlation) map of 500 parcels comprising the right cortical hemisphere, computed from empirical resting-state fMRI (n ¼ 5 participants, [20]). The right triangular
half shows a prediction derived from a computational model, based entirely on network measures of communication applied to the underlying structural connectivity
matrix. The model uses direct connections as well as (mostly indirect) shortest paths within the structural connectivity to predict how strongly each node pair should
be correlated. The two halves of the plot are significantly correlated (R ¼ 0.60). (b) Seed-based cross-correlation maps projected onto the surface of the cortex, with
each plot showing lateral and medial surfaces. Plots on the left (‘FCemp’) depict correlation maps from empirical data [20]. Plots on the right (‘FCpre’) depict maps
from model predictions. Three example seeds are shown, placed in the visual cortex (top), superior parietal cortex (middle) and the superior temporal cortex
(bottom). Note loss of cross-hemispheric functional connectivity in model prediction for temporal cortex, likely due to inter-hemispheric pathways that were
missed in diffusion imaging and tractography.
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Models of resting-brain dynamics contribute to our

understanding of the structural basis of functional connec-

tivity. For example, modelling work has established robust

relations between empirical and simulated functional

networks [125,127,141], as well as an important role for con-

duction delays and noise in generating realistic resting-brain

dynamics [142]. Computational models have also proved

useful for understanding the network dynamics underlying

non-stationary fluctuations in functional connectivity [143].

While most studies so far have focused on ‘normal’ brain

dynamics, the framework can be extended to include anatomi-

cally detailed models of dynamic effects induced by focal brain

lesions [144], degeneration [145] or psychiatric disorders [146].

Another intriguing application of network-based computatio-

nal modelling is the use of such models to capture spreading

dynamics of epilepsy, which may eventually become a tool

for data-driven surgical mapping and selection of stimulation

sites [147].

Computational models are also increasingly useful for

understanding the mechanistic underpinnings of functional

connectivity. This is important since functional connectivity

has become a prominent mode for measuring brain dynamics,

despite the fact that its neurobiological origin and meaning are

far from clear. It is generally assumed that functional con-

nectivity reflects ‘dynamic interactions’ among nodes in the

brain, i.e. is driven by the temporal dynamics of neural
signalling and communication. However, it is worth noting

that neuronal communication is difficult, if not impossible, to

observe and measure directly—usually, only the consequen-

ces of numerous communication events are accessible, for

example, in the temporal alignment of neural time series

expressed in their covariance. Our understanding of how func-

tional connectivity emerges from distributed communication

processes unfolding in structural brain networks is hence

severely limited. Modelling can help in this regard, for example

through the application of deliberately simple physics models

of communication processes. Such models are complementary

to more detailed physiological models that can generate simu-

lations of rich temporal patterns of brain dynamics, but that

are also computationally costly and difficult to implement.

Physics-based models of communication processes combine

computational simplicity with analytic transparence. Despite

their simplicity, models that are based on structural graph

measures [148] and/or models of diffusive processes [149]

and routing [150] have proved capable of reproducing observa-

tional data on brain dynamics, for example, the topography of

resting-brain functional connectivity (figure 3).

In summary, computational models of the human brain

that can reproduce and predict patterns of brain activity at

rest and in response to stimulus- and task-evoked pertur-

bations have come within reach, not least because of

significant progress in human connectomics and cerebral
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cartography. It seems certain that network maps will remain

important ingredients for building ever more detailed

computational brain models in the future.
royalsocietypublishing.org
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7. Conclusion
Cerebral cartography and connectomics pursue complemen-

tary goals. Cerebral cartography is directed at map-making

of the anatomical and functional topography of the cerebral

cortex, using an ever more sensitive and sophisticated array

of molecular, histological, physiological and imaging tools.

Connectomics aims to chart network maps of the brain’s

structural and functional connections, across scales, from

cells to systems, and these maps have begun to reveal prin-

ciples of organization (e.g. modules and hubs) that are

shared across nervous systems of different species. Chal-

lenges arise in the intersection of these two complementary

endeavours, and this review attempted to sketch how some

of these challenges might be addressed in the near future.

Principal challenges concern the temporal dynamics of func-

tional brain connectivity, the definition of areal parcellations
and their hierarchical organization into large-scale networks,

the extension of whole-brain connectivity to cellular-scale

networks, and the mapping of structure/function relations

in empirical recordings and computational models.

The long-term future of cerebral cartography and connec-

tomics is difficult to predict. As in the past, new technologies

are likely to open entirely new vistas on brain structure and

function. Almost certainly, the future of both fields will

bring a flood of data (‘big data’ as it is fashionably called)

that will require a whole new set of analytic and visualization

tools. But one hopes that, in addition to more data, there will

also be progress in creating a theoretical framework for

understanding the brain [151]—a framework that serves to

organize our rapidly increasing knowledge and reveals fun-

damental principles of operation. If current trends prevail,

network science will be a cornerstone of this framework,

paving the way towards a more complete understanding of

the brain as a complex networked system.
Funding statement. O.S. was supported by the J.S. McDonnell
Foundation.
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Friederici AD, Knösche TR. 2007 Connectivity-based
parcellation of Broca’s area. Cereb. Cortex 17,
816 – 825. (doi:10.1093/cercor/bhk034)

73. Beckmann M, Johansen-Berg H, Rushworth MF.
2009 Connectivity-based parcellation of human
cingulate cortex and its relation to functional
specialization. J. Neurosci. 29, 1175 – 1190. (doi:10.
1523/JNEUROSCI.3328-08.2009)

74. Mars RB et al. 2011 Diffusion-weighted imaging
tractography-based parcellation of the human
parietal cortex and comparison with human and
macaque resting-state functional connectivity.
J. Neurosci. 31, 4087 – 4100. (doi:10.1523/
JNEUROSCI.5102-10.2011)
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150. Mišić B, Sporns O, McIntosh AR. 2014 Communication
efficiency and congestion of signal traffic in large-scale
brain networks. PLoS Comput. Biol. 10, e1003427.
(doi:10.1371/journal.pcbi.1003427)

151. Sejnowski TJ, Churchland PS, Movshon JA. 2014
Putting big data to good use in neuroscience. Nat.
Neurosci. 17, 1440 – 1441. (doi:10.1038/nn.3839)

http://dx.doi.org/10.1038/nmeth.3041
http://dx.doi.org/10.1016/j.neuron.2013.04.023
http://dx.doi.org/10.1016/j.neuron.2013.04.023
http://dx.doi.org/10.1038/nature05758
http://dx.doi.org/10.1093/cercor/bhr234
http://dx.doi.org/10.1523/JNEUROSCI.4229-13.2014
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1016/j.neuroimage.2008.07.063
http://dx.doi.org/10.1073/pnas.1219562110
http://dx.doi.org/10.1073/pnas.1219562110
http://dx.doi.org/10.1371/journal.pcbi.1003591
http://dx.doi.org/10.1098/rstb.2013.0526
http://dx.doi.org/10.1098/rstb.2013.0526
http://dx.doi.org/10.1523/JNEUROSCI.0573-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.0573-08.2008
http://dx.doi.org/10.1073/pnas.1305062110
http://dx.doi.org/10.1016/j.tics.2013.09.012
http://dx.doi.org/10.1038/nrn3801
http://dx.doi.org/10.1016/j.nicl.2014.05.004
http://dx.doi.org/10.1016/j.nicl.2014.05.004
http://dx.doi.org/10.1016/j.biopsych.2014.01.020
http://dx.doi.org/10.1038/nrn2961
http://dx.doi.org/10.1089/brain.2012.0120
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1073/pnas.0901831106
http://dx.doi.org/10.1073/pnas.0901831106
http://dx.doi.org/10.1016/j.neuroimage.2014.11.001
http://dx.doi.org/10.1371/journal.pcbi.1000408
http://dx.doi.org/10.1371/journal.pcbi.1002582
http://dx.doi.org/10.1371/journal.pcbi.1002582
http://dx.doi.org/10.1063/1.4851117
http://dx.doi.org/10.1016/j.jneumeth.2014.08.010
http://dx.doi.org/10.1016/j.jneumeth.2014.08.010
http://dx.doi.org/10.1073/pnas.1315529111
http://dx.doi.org/10.1016/j.neuroimage.2013.12.039
http://dx.doi.org/10.1016/j.neuroimage.2013.12.039
http://dx.doi.org/10.1371/journal.pcbi.1003427
http://dx.doi.org/10.1038/nn.3839

	Cerebral cartography and connectomics
	Introduction
	Mapping dynamic brain networks
	Parcellation and community detection
	Mapping structure and function in model organisms
	Predicting brain dynamics
	Network-based computational models of the brain
	Conclusion
	Funding statement
	References


