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Studies using massive, passively collected data from communication technol-

ogies have revealed many ubiquitous aspects of social networks, helping us

understand and model social media, information diffusion and organizational

dynamics. More recently, these data have come tagged with geographical

information, enabling studies of human mobility patterns and the science

of cities. We combine these two pursuits and uncover reproducible mobility

patterns among social contacts. First, we introduce measures of mobility simi-

larity and predictability and measure them for populations of users in three

large urban areas. We find individuals’ visitations patterns are far more similar

to and predictable by social contacts than strangers and that these measures are

positively correlated with tie strength. Unsupervised clustering of hourly

variations in mobility similarity identifies three categories of social ties and

suggests geography is an important feature to contextualize social relation-

ships. We find that the composition of a user’s ego network in terms of the

type of contacts they keep is correlated with mobility behaviour. Finally, we

extend a popular mobility model to include movement choices based on

social contacts and compare its ability to reproduce empirical measurements

with two additional models of mobility.
1. Introduction
The rise of ubiquitous mobile computing has facilitated the generation, collection

and storage of massive datasets of human behaviour. Social interactions are cap-

tured in calls, emails and tweets, whereas movement is logged by check-ins and

GPS traces [1–4]. Studied separately, social and mobility data have produced

a wealth of insights. Our understanding of information and disease spread

[5–7], how our friends affect our well being [8,9] and how societies are structured

[10–15] has been greatly improved by studying large social networks. Mobility

data have revealed that human movement is regular, predictable [16,17] and

unique [18]. To complement empirical findings, a number of simple models

have been proposed to reproduce the basic dynamics of both social networks

[19–21] and mobility [3,17,22,23], but the two have been traditionally treated

as independent.

Recognizing the interaction between social behaviour and mobility, research-

ers began measuring correlations between the two. They found that social

networks are heavily influenced by geography. We are far more likely to be

friends with someone nearby than far away [24], a fact that is useful for predicting

missing links [25,26]. With an estimated 15–30% of all trips taken for social pur-

poses, it is not surprising that the movement of our friends can improve

predictions of where we will be next [22,27,28]. While insightful, the primary

interest of most previous studies was measuring and reproducing patterns of geo-

graphical distance and its impact on network topologies [22]. In dense urban

areas, however, distance is less restrictive. Residents have access to a variety of

transportation options and are free to choose locations that provide the best

goods and services rather than the closest. The self-organized districts and neigh-

bourhoods of cities make it more natural to describe mobility as movement

between sets of locations, or habitats [29]. Which habitats users share with their

contacts and when they share them may indicate the nature of the social
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Figure 1. A small sample of calls between residents is shown for each of three cities. CDRs provide the location of each caller as well as a record of communication
between then. A dot is drawn at the approximate location of a user and a link appears between two users calling each other. Our aim is to identify useful and
reproducible patterns from this coupled tangle of social and spatial behaviour.
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relationship, e.g. a co-worker or a friend [30]. Two individuals

co-located between 09.00 and 17.00 on weekdays likely have

a different relationship than two who are found in the same

area at midnight on a Saturday. In these scenarios, mobility

is defined and measured as discrete visits to places within a

city that are shared with different types of social contacts at

different times and previous work has shown that users who

visit similar places are more likely to be friends in online

location-based social networks [27].

Here, we describe a set of metrics to explicitly measure

patterns of mobility and social behaviour that occur within

the context of cities. Using call detail records (CDRs) produced

by millions of mobile phone users, we find that indivi-

duals have far more similar visitation patterns to social

contacts than to strangers and that the movement of these con-

tacts can be used to reconstruct a considerable portion of the

individuals’ movements. We also find strong correlations

between tie strength and mobility similarity and show that

mobility similarity can be used to classify social relationships

and recover semantic information about the nature of a link

in the social network. Finally, we propose an extension to the

mobility model described in [17] that incorporates movement

based on the visitation patterns of social contacts and can

reproduce empirical relationships found in the data. We call

this model the GeoSim model and compare it against empirical

data and two other mobility models. The generality of these

results is demonstrated by their reproducibility in three

different cities in two different countries. This study pre-

sents advances in the understanding of how social behaviour

affects our spatial choices in the context of information and

communication technologies (ICTs).
2. Material and methods
2.1. Data
CDRs are generated when a mobile phone user performs an

action that requires the provider’s network, for example placing

a call or sending a text message. These records generally contain

the ID of the tower the phone connected through, which gives a

rough estimate of the user’s location. When the individual receiv-

ing a call or message is a customer of the same provider, the

unique identifier of the receiver and their location may also be

stored. CDRs allow us to observe mobility patterns of individuals
and construct social networks containing millions of people.

Figure 1 shows a small sample of calls between city residents

during a single hour and illustrates dynamics of the urban

system we wish to understand.

Our data consist of anonymized CDRs collected from three

cities (R1, R2 and R3) in two different industrialized countries.

Two cities (R1 and R2) were obtained from the same provider in

country 1, whereas another provider was used for the third city

(R3). The observation period covers 15 months in R1 and R2,

and five months in R3 and contains over 1 billion events in total.

Each record provides the time of the communication event, an

anonymous unique ID for the caller and callee, and the ID of the

tower used by at least the caller (in the case of R3) and in some

cases the callee (R1 and R2). More information on the datasets

can be found in the electronic supplementary material.
2.2. Social and mobility measurements
In each city, we construct a social network containing all users

(nodes) with sufficient call volume and connect users (edges) if

they have regular contact between each other (see the electronic

supplementary material for more detail). Each node is assigned a

48 � L location matrix L, where L is the number of unique cell

towers in the city. Each row of this matrix corresponds to an

hour of a typical weekday and hour of a typical weekend day

(giving 48 h in total), and each element Lt,j contains the number

of times that a user made a call from location j during hour t
across the entire observation period (figure 2a). We refer to individ-

ual rows of this matrix v(t) as location vectors. The location matrix

and location vectors can be used to compute various mobility

properties of nodes (mobile phone users). Summing all elements

of the location matrix gives the number of calls made and received

by a user N ¼
P

t,jLt,j while summing each column and dividing by

N provides the frequency of visits a user made to every location in

the city, fj ¼ (1/N)
P

tLt,j. Summing visits to each location at all

times gives a single location vector v for each user and represents

the total visits made to each location over the period of data collec-

tion. Applying the sign function and summing across all elements

of this vector provides the number of unique locations visited S ¼
P

j sign(vj). All of these features are measures of a user’s mobility

behaviour within the city.

We can also compare the location matrices and vectors of two

mobile phone users and measure similarities between the two.

While a number of metrics could be used to measure mobility simi-

larity between nodes (figure 2b), here we focus on the cosine

similarity between the location vectors of two nodes i and j defined

as cosui,j ¼ vi
. vj/jvijjvjj. The cosine similarity measures the cosine

of the angle between two vectors in our L-dimensional location
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space (figure 2c). It has been shown to correlate strongly with the

probability of being friends in an online social network [27] and

has a number of desirable properties. It is sensitive to visit frequen-

cies rather than set intersections alone, so two users who share

frequently visited locations appear more similar than those who

share less important destinations. Unlike the Pearson correlation

coefficient, it does not overstate similarity when vectors contain

many zero elements (as is often the case), and finally the cosine

similarity is a measure of the angle only and is not affected by

differences in the total number of calls made by two users. For

the remainder of this paper, we refer to the cosine similarity

between two location vectors as mobility similarity.

The mobility similarity between two users can be computed

from their entire movement history or visits during a small por-

tion of a weekday or weekend. In the former case, we assign a

single mobility similarity value to an edge in the network,

whereas in the latter, we assign a timeseries of cosine similarity

cosu(t) ¼ vi(t) . vj(t)/jvi(t)jjvj(t)j. This timeseries reveals how

often two users visit the same places at a given time of the day

and will later function as an attribute to differentiate between

types of social contacts.

Within this mathematical framework, we can calculate an

upper bound on how much of an individual’s location vector

can be reconstructed from a linear combination of the location

vectors of other users. For example, a co-worker may share

office space with an individual, but not live in the same neigh-

bourhood, whereas the opposite may be true for a member of

that individual’s family. By combining the visitation patterns of

the co-worker and family members, however, a complete picture

of an individual’s visitation patterns can be obtained. Mathemat-

ically, we define a set of users F for each individual i in the

network. For example, we may choose F to be neighbours in i’s
ego network or a random set of nodes. The location vectors vj,

where j[F, are used as columns of an jFj � L matrix we

denote as A and span a subspace of the L-dimensional location

space. We then use QR-decomposition to find an orthonormal

basis B ¼ q1, . . . , qjFj for A. Our target user’s location vector is

then projected into this vector subspace: v̂ ¼
PjFj

i¼1 kqi, vlqi. This

projection represents the best approximation of a user’s visits

based on the visits of users in F. We can quantify how it com-

pares with a user’s true visitation patterns by taking the ratio

of its magnitude with the magnitude of the actual location

vector jvj. We refer to this ratio as predictability and define it

mathematically as jv̂j=jvj. When predictability is 1, the visitation

frequencies of a user can be completely obtained from location

vectors of users in F and when it is 0, nothing about their

visits can be learned. We note that for values between 0 and 1,

predictability cannot be interpreted as the fraction of a user’s
visits that can be recovered as the vector norms are computed

using the standard L2 norm. In principle, however, these two

quantities should be strongly correlated, because the individual

elements location vectors can never be negative.

We next apply these methods and metrics to social network

and mobility data from three cities.
3. Results
3.1. Correlations between social behaviour and mobility
Although similarity can be measured between any two arbi-

trary nodes and predictability from an arbitrary set of nodes

F, we hypothesize that an individual will likely be more similar

to and predictable by social contacts. To test this, we compare

the mobility similarity between users that call each other

regularly with the similarity between random users and the

predictability achieved using a node’s social ties with the pre-

dictability using random sets of nodes (essentially rewiring the

social network, but leaving mobility intact). Figure 3a,b shows

the distribution of similarity and predictability values for the

networks in each city. We find significantly more similarity

and predictability in empirical networks when compared

with random re-wirings. The similarity distribution is bimodal,

with peaks at very low similarity near 0 and very high simi-

larity near 1. We measure very high values of predictability

when using an individual’s social contacts as opposed to a

random set of people in the same city. As other studies have

suggested, we find that visitation patterns are strongly linked

to our social relationships; our movements are far more similar

to our social contacts than random users.

Interestingly, we observe higher levels of mobility similarity

between users separated by short network distances. We find

that two connected nodes are on average 10 times more geo-

graphically similar that two randomly selected nodes. Nodes

separated by two hops, or ‘friends of friends’, are nearly twice

as similar as randomly selected nodes and this elevated simi-

larity is observed up to three hops from an individual (see

electronic supplementary material, figure S5 for details). This

result is expected as two users who do not contact each other

may both visit the same friend.

Next, we explore the relationship between tie strength

and mobility similarity. We rank all contacts in each user’s

ego network by the number of calls shared between them
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tributions. This suggests that users who share social attention more evenly also share locations. Electronic supplementary material, figures S2 and S3 show these
results controlling for call frequency.
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(1 being contact that shares the most calls) and compute the

average mobility similarity for all edges with a given rank

(figure 3c). Stronger contacts have higher mobility similarity

on average than weaker ties, though this effect subsides for

contacts below rank 10. We note that region R3 shows a slightly

different trend. This is likely due to the shorter observation

period in this region resulting in few individuals with more

than 10 regular contacts, biasing the tail of this distribution

(see electronic supplementary material for more details). We

also observe a positive correlation between social similarity

as measured by the Jaccard index between the neighbours of

two nodes and mobility similarity (figure 3d); individuals

who share more social contacts share more locations.

We also find other aspects of social behaviour to be corre-

lated with mobility. Individuals with more friends tend to

visit more locations, but despite this exploratory behaviour,

are still more predictable owing to increased information pro-

vided by additional contacts to reconstruct these movements

from (figure 3e). Again, R3 appears as an outlier owing to the

shorter observation period and the absence of mobility infor-

mation on the user receiving a call. We then measure the

entropy of the distribution of frequencies that a user i calls

another contact j and find that individuals with more entropic

calling patterns (distribute their calls more evenly) also visit

more unique places and are more predictable (figure 3f ). The

visitation patterns of those who spread social attention more

evenly can be more easily reproduced. Finally, to ensure that

these results are not an artefact of sampling frequencies, we
compute these distributions and correlations controlling

for the number of CDR events by and the degree of a user, find-

ing no change in the relationships (electronic supplementary

material, figures S1–S3).
3.2. Contextualizing social contacts with mobility
Having demonstrated that social behaviour and location

choices are strongly correlated, we next use temporal variations

in mobility similarity to provide context into the type of social

relationship between two individuals in our networks. We

measure mobility similarity cosu(t) over the course of a typical

weekday and weekend under the hypothesis that different

types of social contacts will have different levels of similarity

at different times. To identify any groups, we use a simple

k-means unsupervised clustering algorithm on these similarity

timeseries. We find three persistent groups. While we have

no ground truth data about the nature of these relationships,

for clarity, we label each group according to its qualitative

signature: (i) acquaintances with uniformly low levels of simi-

larity, (ii) co-workers with high similarity during work hours

on weekdays and low similarity on nights and weekends,

and (iii) family/friends with high similarity on nights and week-

ends. Figure 4a shows the cluster centres for each group. While

other interesting clusters are found for k . 3, they appear as

subgroups of the three general archetypes we discuss here.

More information on the clustering method along with results

for different numbers of clusters and different clustering
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methods can be found in the electronic supplementary

material. These three groups appear in each city despite the

unsupervised nature of the algorithm; cluster centres start at

random locations, yet find remarkably similar final positions

in each city.

Assigning each edge to a cluster based on the timeseries of

mobility similarity effectively paints all edges in the next in a

specific colour as illustrated in figure 2b. Previous work has

found that edges in real social networks are much more
likely to be arranged in triangles, resulting in high clustering

coefficients. In this case, we expect that some social groups,

such as co-workers or close friends, should exhibit high

degrees of intragroup clustering, whereas others such as

acquaintances do not. For example, many of an individual’s

co-workers visit similar places during work hours and tend to

call each other because they are part of the same office commu-

nity. We find evidence of this when measuring the clustering

coefficient within subgraphs containing only edges belonging
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to a single mobility similarity cluster (figure 4b). Interestingly,

the clustering coefficient (Cg) of acquaintances is much lower

than the co-workers and family ties despite consisting of nearly

70% of links in the network. This provides additional evidence

that we are capturing very different types of relationships with

our classifications based on mobility similarity. Moreover,

these results highlight mobility similarity as a property to

label functional communities within social networks as well

as individual edges.

Next, we consider how the composition of an individual’s

ego network correlates with their mobility. Is a person with a

stable job and family likely to be less exploratory and more

predictable than a young college student with many acquain-

tances? To answer this, we bin nodes into groups based on

two mobility metrics, the number of unique locations visited

S and how predictable that user is jv̂j=jvj. We then compute

the fraction of edges that belong to each classification for all

nodes in each mobility bin. Figure 4c shows that users who

tend to visit more unique locations tend to have a higher frac-

tion of acquaintances in their ego network, whereas figure 4d
suggests that less predictable individuals tend to have

fewer contacts in this category. Conversely, less spatially

explorative individuals and individuals that are easier to pre-

dict tend to have higher fraction of co-workers and family/
friends labels in their ego network. These results again show

the ability of mobility similarity to add contextual attribu-

tes to a network and reveal novel relationships between

the structure of a user’s ego network and their mobility

behaviour. In future works, it may be interesting to explore

correlations between the mix of one’s ego network and

social behaviours such as their propensity to form new

contacts [31].
3.3. Coupling social ties and mobility
Given the clear empirical relationship between social contacts

and mobility, our remaining task is to identify a coupled

model that captures these dynamics. While a number of

models consider mobility alone [2,17,23], only a few have

attempted to link the two [22,27]. Those that have combined

social and mobility behaviours have consistently found nearly

15–30% of trips are made for social purposes. Although these

coupled models have had considerable success reproducing

patterns of geographical distance within social network struc-

ture, as we show, they do not always capture properties of

geographical similarity.

In the light of the time scales we are studying, we make the

assumption that our social network is static and extend the

mobility model introduced by Song et al. [17] to include move-

ment choices based on social contacts. We call our extension the

GeoSim model and have released code and data required to run

this model in the electronic supplementary material. We com-

pare our model with the original individual-mobility model

(IM model) by Song et al. and the travel-friendship model

(TF model) described by Grabowicz et al. See the electronic

supplementary material for more details on implementation

and parameters for model comparisons.

The GeoSim model works as follows: first, a population of N
agents are initialized and connected to replicate the undirected

social network constructed from the CDR data in R1. Each edge

that exists in the call data exists in the model, but all weights and

similarities are set to 0. Agents are randomly assigned to a

location at the start and their location vectors are initialized to
reflect this single visit. They are allowed to move in a discrete

space of L locations replicating the towers from CDRs.

Each timestep corresponds to a single hour of the day. At

each timestep, individuals decide whether or not to change

locations according the waiting time distribution measured in

[17], a power law with an exponential cut-off p(Dt) ¼ Dt21 2b

exp(Dt/t), where b ¼ 0.8 and t ¼ 17 h. If an individual

moves, they must decide to either return to a previously visited

location with probability 1 2 rSg or explore and visit a new one

with probability rSg, where S is the number of unique locations

they have visited thus far and r ¼ 0.6 and g ¼ 0.6 are par-

ameters chosen by procedures outlined in [17]. In the original

model, an individual u preferentially returns to a location l
with probability proportional to the frequency of previous

visits, P(l)/ fu
l and new locations to explore are chosen uni-

formly at random (note that in our version of the model

distance is irrelevant).

In our extension of this model, we choose some locations

based on social influence. When picking a return location, our

agent has two possibilities. With probability 1 2 a, they select

a return location with the preference for locations they have

visited in the past as in the original model. With probability

a a social contact v is chosen. The probability a given contact

is chosen is directly proportional to the current mobility simi-

larity between the two, P(v)/ cos(uu,v), and a location to visit

is chosen based on a preference to visit locations frequented

by the selected contact, P(l)/ f v
l (note the location choice is

repeated until an agent finds a location they have visited

before). In the social case, this amounts to preferential

return based on a contact’s visit frequency as opposed to

the ego’s visits. In the event that an agent is exploring a

new location, the same weighted social coin is flipped. This

time, though, with probability 1 2 a a random, previously

unvisited location is selected and with probability a the

agent again chooses a contact based on mobility similarity

and chooses a new place to visit based on the visit frequen-

cies of that contact. The cosine similarity across all edges is

computed and updated as the model progresses and changes

dynamically during the simulation. A schematic of this

process can be found in figure 5.
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Figure 6. Comparing social mobility models. (a) We compare model results simulating the rate of exploration S(t) compared with empirical data. While all three models
appear to estimate more absolute locations visited, the rate of this growth is consistent between them and in line with data. (b) For each user, we sort locations based on
the number visits and compute the frequency that a user visits a location of rank k. We find that the IM model and our extension to it reproduce this distribution well,
whereas the TF model is much flatter, distributing visits more evenly over all locations. (c) Only the GeoSim model is able to reproduce patterns of mobility similarity and
(d ) predictability. The TF model results shown in the inset in (c) show similarity values orders of magnitude below the observed data. As the similarity is heavily influenced
by the frequency distribution of visits, this deviation is likely owing to the flatter distribution of fk produced by the TF model.
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In this variant of the mobility model, the parameter a con-

trols the influence of social contacts on the visitation patterns of

individuals. When a ¼ 0, we recover the original mobility

model of [17], whereas when a ¼ 1 all location choices are

influenced by social ties. In reality, each user may have an

inherent value of a that we cannot observe. To incorporate

this heterogeneity, we simulate this model for a number of dis-

tributions of the parameter a. We find an exponentially

distributed a with a mean of kal ¼ 0:2 produces a close fit to

distributions of mobility similarity and predictability observed

in the population and refer the reader to the electronic sup-

plementary material for results for different distributions of

a. This value is consistent with the results of both Cho et al.
[27] and Grabowicz et al. [22], who find that roughly 15–30%

of trips were motivated by social intentions.

Having found an appropriate distribution for a, we next

compare simulation results with this distribution to results

from the IM model (equivalent to the GeoSim model with

a ¼ 0) and the TF model all run for the same 1 year duration

and population size. Like the IM model it extends, the

GeoSim model is able to reproduce elements of individual

mobility such as the rate of exploration of new locations

S(t) over time (figure 6a) as well as frequency at which

users visit their locations fk (figure 6b). Here, the TF model

adequately reproduces exploration rates, but produces a flat-

ter visit frequency distribution. In the case of mobility
similarity and predictability, however, only the GeoSim

model reproduces observed behaviour (figure 6c,d). Interest-

ingly, the TF model results in relatively high predictability of

users, despite similarity values orders of magnitude lower

than those observed in the data or with the IM model. This

is likely due to the flattened frequency distribution to

which the cosine similarity is highly sensitive. Even if two

users share a few locations due the friendship component

of the TF model, there are preferential dynamics that will con-

tinually bring those two users back to that place, increasing

cosine similarity. On the other hand, this flat frequency distri-

bution makes it highly likely that users will share at least

some locations in common with each other, making it poss-

ible to reproduce location vectors based on social contacts.

Despite its inability to recover these distributions, the TF

model is the only model tested that builds a social network

endogenously. For this reason, we hope future work will find

variants on this model capable of dynamically reproducing

empirical data of both social and mobility behaviour.
4. Discussion
Linking mobility to social ties has generated a number of

insights into the dynamics of both. Social networks are

embedded in geography where face-to-face interactions are
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often preferred and chance of interacting with those nearby is

greatest. At the same time, we are willing to travel to achieve

this proximity and rendezvous at places across the city for

work and play. Novel high-resolution datasets passively col-

lected from mobile, online devices now enable us to quantify

the correlation between mobility similarity and social behav-

iour. Here, we have offered new metrics and empirical

findings that relate social behaviours to mobility similarity

and predictability. Our results show that our mobility is far

more similar to our social contacts than strangers and that

this similarity can be used to reconstruct our own mobility

patterns. We find strong, positive correlations between tie

strength and mobility similarity. Moreover, temporal vari-

ations in this similarity reveal three distinct groups of social

ties that hint at semantic types of relationships such as co-

worker or family member. These subgraphs often have high

levels of intragroup clustering, suggesting functional groups

of individuals within the network. The mix of these groups

among the edges of an individual’s ego network is correlated

with their mobility behaviour; users with many dissimilar

contacts tend to explore more locations. Speaking to their

generalizability, these results persist across three different

cities in two countries.

Finally, we extended an established mobility model to

include choices based on social behaviour that replicates the

empirical findings described here as well as from other

works. We call this model the GeoSim model and have
compared its results to those of two similar models. We

hope that this model provides a useful tool for future work

in the area. The findings presented have a number of impli-

cations for those interested in social networks or mobility

applications extracted from ICTs. Additional contextual infor-

mation of relationships may help predict missing links or

provide critical details to more accurately model the flows of

information or diseases. Urban planners or those needing

good estimates of travel demand can incorporate social mech-

anisms like the ones described here to improve on their models

and to capture movements previously unaccounted for. Robust

findings that classify social contacts from passive data alone

may influence future studies and help with data informed pol-

icies through city science. In the new data-rich reality of cities,

deeper insights into the connections between us will help make

the places we live more sustainable, efficient, productive

and fun.
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